首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering, migration, and branching tubule formation of MDCK cells. To examine the role of the Ras protein in the HGF/SF-induced responses, we constructed MDCK cell clones expressing either inducible dominant-negative Ras or constitutively activated Ras and analyzed their effects on responses of cells to HGF/SF. Induced expression of dominant-negative Ras prevented cell dissociation required for cell scattering, migration, and cystic formation as well as branching morphology required for branching tubule formation. Constitutively activated Ras induced cell dissociation, but not a scattered fibroblastic morphology even in the presence of HGF/SF. MDCK cells expressing constitutively activated Ras migrated at a level similar to that of wild-type MDCK cells stimulated by HGF/SF. MDCK cells expressing constitutively activated Ras showed disorganized growth in three-dimensional culture and did not form the branching tubule structures. These results indicate that activation of the Ras protein is essential for the cell scattering, migration, and branching tubule formation of MDCK cells induced by HGF/SF, and a properly regulated activation is required for some stages of the HGF/SF-induced responses of MDCK cells.  相似文献   

2.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

3.
Summary Using an automated cell analyzer system, the effect of hepatocyte growth factor/scatter factor (HGF/SF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), endothelial acidic fibroblast growth factor (a-FGF), platelet derived growth factor (PDGF), and recombinant human insulinlike growth factor (IGF) on the motility and morphology of Madin-Darby canine kidney (MDCK), rat hepatomas, C2, and H5–6 and murine mammary carcinoma (EMT-6) cells was investigated. Treatment of MDCK cells with HGF/SF, bFGF, EGF, and a-FGF resulted in an increase in average cell velocity and in the fraction of moving cells. Cells treated with the PDGF and IGF did not show significant alterations in velocity. MDCK cells treated with each growth factor were classified into groups of “fast” and “slow” moving cells based on their average velocities, and the average morphologic features of the two groups were quantitated. Fast-moving cells had larger average area, circularity, and flatness as compared to slow-moving cells. Factors that stimulated cell movement also induced alterations in cell morphologic parameters including spreading, flatness, area, and circularity. HGF/SF also scattered and stimulated motility of C2 and H5–6 hepatoma cells. In contrast to MDCK cells, there was no significant difference between the morphology of the fast moving and slow moving C2 and H5–6 cells. These studies suggest that growth factor cytokines have specific effects on motility of normal and tumor cells.  相似文献   

4.
Multiple aspects of the transformed phenotype induced in a murine mammary epithelial cell line scp-2 by expression of activated G22V M-Ras, including maintainance of cell number at low density, anchorage-independent growth, invasion of Matrigel, and secretion of matrix metalloproteinases (MMP) 2 and 9, were dependent on an autocrine mechanism. Conditioned medium from dense cultures of scp-2 cells expressing G22V M-Ras, but not from parental cells, induced activation of Erk and Akt in cells expressing G22V M-Ras, maintained the cell number and promoted anchorage-independent growth of cells expressing G22V M-Ras (although not the parental cells), and induced scattering of MDCK cells. The latter activities were blocked by neutralizing antibodies to hepatocyte growth factor/scatter factor (HGF/SF) and could be mimicked by HGF/SF. Anti-HGF/SF antibodies also inhibited invasion of Matrigel, and the production of MMP-2 and MMP-9, together with urokinase-type plasminogen activator, was secreted by G22V M-Ras scp-2 cells but not by parental cells. Invasion of Matrigel was blocked by an inhibitor of MMPs, BB94, and by the mitogen-activated protein kinase kinase 1/2 kinase inhibitor PD98059 but was only marginally affected by the phosphatidylinositol 3-kinase inhibitor LY294002. Autocrine HGF/SF was thus critical for expression of key features of the phenotype of mammary epithelial cells transformed by expression of activated M-Ras.  相似文献   

5.
Scatter Factor (SF) is a fibroblast-secreted protein which promotes motility and matrix invasion of epithelial cells. Hepatocyte Growth Factor (HGF) is a powerful mitogen for hepatocytes and other epithelial tissues. SF and HGF, purified according to their respective biological activities, were interchangeable and equally effective in assays for cell growth, motility and invasion. Both bound with identical affinities to the same sites in target cells. The receptor for SF and HGF was identified as the product of the MET oncogene by: (i) ligand binding and coprecipitation in immunocomplexes; (ii) chemical crosslinking to the Met beta subunit; (iii) transfer of binding activity in insect cells by a baculovirus carrying the MET cDNA; (iv) ligand-induced tyrosine phosphorylation of the Met beta subunit. SF and HGF cDNA clones from human fibroblasts, placenta and liver had virtually identical sequences. We conclude that the same molecule (SF/HGF) acts as a growth or motility factor through a single receptor in different target cells.  相似文献   

6.
Basic fibroblast growth factor (bFGF) together with other pleiotropic factors plays an important role in many complex physiological processes such as embryonic development, angiogenesis, and wound repair. Among these factors, hepatocyte growth factor/scatter factor (HGF/SF) which is secreted by cells of mesodermal origin exerts its mito- and motogenic activities on cells of epithelial and endothelial origin. Knowledge of the regulatory mechanisms of HGF/SF may contribute to the understanding of its role in physio-pathological processes. We observed that the secretion of HGF/SF by MRC-5 cells and by other fibroblast-derived cell cultures in conditioned media was enhanced by exposure to bFGF. HGF/SF was measured by the scatter assay, a bioassay for cell motility, and was further characterized by Western blot analysis with anti-HGF/SF antibodies. Exposure of MRC-5 cultures to 10 ng/ml of bFGF resulted already 6 h posttreatment in a threefold higher amount of scatter factor secreted into the medium as compared to untreated cultures. HGF/SF secretion was sustained after bFGF treatment for the following 72 h when increased amounts of HGF/SF were detected both in conditioned media as well as associated to the extracellular matrix. The secretion of HGF/SF in cell supernatants increased dose dependently upon treatment with bFGF starting from basal levels of 6 U/ml and reaching 27 U/ml at 30 ng/ml bFGF, plateauing thereafter. Upregulation of HGF/SF by IL-1, already described by others, was confirmed in this study. Based on our findings an articulated interaction can be speculated for bFGF, HGF/SF, and IL-1, e.g., in tissue regeneration during inflammatory processes or in wound healing. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Scatter factor/hepatocyte growth factor (SF/HGF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of cell colonies followed by disruption of cell-cell junctions and subsequent cell scattering. These responses are accompanied by changes in the actin cytoskeleton, including increased membrane ruffling and lamellipodium extension, disappearance of peripheral actin bundles at the edges of colonies, and an overall decrease in stress fibers. The roles of the small GTP-binding proteins Ras, Rac, and Rho in regulating responses to SF/HGF were investigated by microinjection. Inhibition of endogenous Ras proteins prevented SF/HGF-induced actin reorganization, spreading, and scattering, whereas microinjection of activated H-Ras protein stimulated spreading and actin reorganization but not scattering. When a dominant inhibitor of Rac was injected, SF/HGF- and Ras-induced spreading and actin reorganization were prevented, although activated Rac alone did not stimulate either response. Microinjection of activated Rho inhibited spreading and scattering, while inhibition of Rho function led to the disappearance of stress fibers and peripheral bundles but did not prevent SF/HGF-induced motility. We conclude that Ras and Rac act downstream of the SF/HGF receptor p190Met to mediate cell spreading but that an additional signal is required to induce scattering.  相似文献   

8.
EDA-containing fibronectin (EDA + FN) is selectively produced under several physiological and pathological conditions requiring tissue remodeling, where cells actively proliferate and migrate. Only a few growth factors, such as transforming growth factor (TGF)-beta1, have been reported to regulate FN splicing at the EDA region. In the present study, we showed for the first time that hepatocyte growth factor/scatter factor (HGF/SF), which is mainly produced by mesenchymal cells and functions as a motogenic and mitogenic factor for epithelial cells, modulates FN splicing at the EDA region in MDCK epithelial cells. HGF/SF treatment increased the ratio of EDA + FN mRNA to mRNA of FN that lacks EDA (EDA - FN) (EDA+/EDA- ratio) more than TGF-beta1 treatment did: at a range from 0.02 to 20 ng/ml, HGF/SF increased the ratio in a dose-dependent manner by up to 2. 1-fold compared with nontreated control, while TGF-beta1 stimulated the EDA+/EDA- ratio by 1.5-fold at the optimum dose of 10 ng/ml. However, TGF-beta1 increased total FN mRNA levels by 3-fold at 10 ng/ml, but HGF/SF did not. We previously demonstrated that fibroblasts cultured at low cell density expressed more EDA + FN than those at high cell density. The same effect of cell density was also observed in MDCK cells. Furthermore, at low cell density, HGF/SF stimulated EDA inclusion into FN mRNA more effectively than did TGF-beta1, whereas at high cell density, TGF-beta1 was more potent than HGF/SF. Simultaneous treatment of cells with HGF/SF and TGF-beta1 synergistically stimulated EDA inclusion into FN mRNA. This stimulation of EDA inclusion into FN mRNA by HGF/SF led to increased EDA + FN protein production and secretion by cells, which was demonstrated by immunoblotting. Thus, our studies have shown that HGF/SF is an enhancer of EDA inclusion into FN mRNA as is TGF-beta1. However, these two factors were different in their effects at low and high cell densities and also in their effects on total FN mRNA levels.  相似文献   

9.
《The Journal of cell biology》1995,131(6):1573-1586
Hepatocyte growth factor/scatter factor (HGF/SF) is the mesenchymal ligand of the epithelial tyrosine kinase receptor c-Met. In vitro, HGF/SF has morphogenic properties, e.g., induces kidney epithelial cells to form branching ducts in collagen gels. Mutation of the HGF/SF gene in mice results in embryonic lethality due to severe liver and placenta defects. Here, we have evaluated the morphogenic activity of HGF/SF with a large variety of epithelial cells grown in three- dimensional collagen matrices. We found that HGF/SF induces SW 1222 colon carcinoma cells to form crypt-like structures. In these organoids, cells exhibit apical/basolateral polarity and build a well- developed brush border towards the lumen. Capan 2 pancreas carcinoma cells, upon addition of HGF/SF, develop large hollow spheroids lined with a tight layer of polarized cells. Collagen inside the cysts is digested and the cells show features of pancreatic ducts. HGF/SF induces EpH4 mammary epithelial cells to form long branches with end- buds that resemble developing mammary ducts. pRNS-1-1 prostate epithelial cells in the presence of HGF/SF develop long ducts with distal branching as found in the prostate. Finally, HGF/SF simulates alveolar differentiation in LX-1 lung carcinoma cells. Expression of transfected HGF/SF cDNA in LX-1 lung carcinoma and EpH4 mammary epithelial cells induce morphogenesis in an autocrine manner. In the cell lines tested, HGF/SF activated the Met receptor by phosphorylation of tyrosine residues. These data show that HGF/SF induces intrinsic, tissue-specific morphogenic activities in a wide variety of epithelial cells. Apparently, HGF/SF triggers respective endogenous programs and is thus an inductive, not an instructive, mesenchymal effector for epithelial morphogenesis.  相似文献   

10.
The extracellular protease urokinase is known to be crucially involved in morphogenesis, tissue repair and tumor invasion by mediating matrix degradation and cell migration. Hepatocyte growth factor/scatter factor (HGF/SF) is a secretory product of stromal fibroblasts, sharing structural motifs with enzymes of the blood clotting cascade, including a zymogen cleavage site. HGF/SF promotes motility, invasion and growth of epithelial and endothelial cells. Here we show that HGF/SF is secreted as a single-chain biologically inactive precursor (pro-HGF/SF), mostly found in a matrix-associated form. Maturation of the precursor into the active alpha beta heterodimer takes place in the extracellular environment and results from a serum-dependent proteolytic cleavage. In vitro, pro-HGF/SF was cleaved at a single site by nanomolar concentrations of pure urokinase, generating the active mature HGF/SF heterodimer. This cleavage was prevented by specific urokinase inhibitors, such as plasminogen activator inhibitor type-1 and protease nexin-1, and by antibodies directed against the urokinase catalytic domain. Addition of these inhibitors to HGF/SF responsive cells prevented activation of the HGF/SF precursor. These data show that urokinase acts as a pro-HGF/SF convertase, and suggest that some of the growth and invasive cellular responses mediated by this enzyme may involve activation of HGF/SF.  相似文献   

11.
12.
《The Journal of cell biology》1995,129(5):1411-1419
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.  相似文献   

13.
Human embryonic lung fibroblasts (MRC5) produced scatter factor which enhanced motility of Madin-Darby canine kidney (MDCK) epithelial cells and a factor which stimulates DNA synthesis of adult rat hepatocytes in primary culture. These activities were both completely neutralized by antibody against human hepatocyte growth factor (HGF). Human recombinant HGF induced a marked scattering of MDCK cells. Moreover, MRC5 cells highly expressed 6kb mRNA which hybridized with HGF cDNA probe and scatter factor cDNA cloned from the MRC5 cDNA library had the same sequence as that of HGF cDNA from human leukocytes. These results indicate that HGF possesses scatter factor activity and the scatter factor derived from the MRC5 cells is probably identical to HGF.  相似文献   

14.
Hepatocyte growth factor (HGF), a humoral mediator for regeneration of liver and kidney, possesses multiple biological activities. To investigate target cell specificity and to examine whether multiple actions of HGF are related to properties of the HGF receptor on target cells, we examined the effects of HGF on cell growth and motility and analyzed the HGF receptor in various species of cells. HGF stimulated growth and DNA synthesis of PAM212 (naturally immortalized mouse keratinocytes), Mv1Lu (mink lung epithelia), and A431 (human epidermoid carcinoma) cells, as well as mature hepatocytes, but inhibited those of IM-9 (human B-lymphoblasts). Conversely, HGF had a marked stimulatory effect on cell motility of MDCK (Mardin-Darby canine kidney epithelia) cells, but not on their growth. Also, HGF enhanced the motility of various species of cells, including A431, PAM212, HepG2 (human hepatoma), KB (human epidermoid carcinoma), and J-111 (human monocytes) cells. Scatchard analysis of 125I-HGF binding to hepatocytes indicated that the cells expressed both high- and low-affinity binding sites for HGF with Kd values of 23 and 260 pM, respectively. High-affinity HGF receptor with Kd values of 20-25 pM was detected at 40-720 sites/cell in MDCK, A431, PAM212, Lu99, and IM-9 cells, but not in fibroblasts and hematopoietic cells. In contrast, low-affinity binding sites were detected in all cell lines examined, even in those not responsive to HGF. Northern blots revealed that cells possessing a high-affinity HGF receptor expressed c-MET/HGF receptor mRNA. Therefore, HGF probably regulates both cell growth and motility of various types of epithelial cells and some types of mesenchymal cells. The multiple biological activities of HGF may be exerted through a high-affinity HGF receptor linked to multiple distinct intracellular signaling pathways.  相似文献   

15.
The expressions of mRNAs of hepatocyte growth factor (HGF) and its receptor (c-met) and its effects were examined in cultured renal epithelial cell lines (OK, LLCPK1, and MDCK cells) and rat mesangial cells in primary culture. Northern blot analysis revealed the presence of HGF mRNA in mesangial cells, but not in epithelial cells. c-met mRNA was detected in epithelial cells, but not in mesangial cells. HGF stimulated [3H]-thymidine incorporation (DNA synthesis) dose-dependently in OK and LLCPK1 cells, but not in MDCK and mesangial cells. Ouabaine sensitive rubidium uptake (Na,K-ATPase activity) was stimulated by 63% with HGF (10 ng/ml) treatment for 16hr in MDCK cells. The results suggest that HGF is produced in the kidney, at least in mesangial cells and works on epithelial cells to stimulate the proliferation and/or to modify cell functions in a paracrine manner.  相似文献   

16.
Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are major hepatacyte mitogens, but HGF, also known as scatter factor (SF), has also been shown as a potent motogen for epithelial and endothelial cells. The mechanisms by which HGF is a stronger motogen compared to other mitogens are not understood. Here we report a comparative study of the effect of the two growth factors on cultured primary rat hepatocytes regarding their differential effects on morphology, mitogenicity, and motility as well as the phosphorylation of cytoskeletal-associated proteins. Using three different motility assays, both HGF and EGF increased the motility of hepatocytes, but HGF consistently elicited a significantly greater motility response than EGF. Additionally, HGF induced a more flattened, highly spread morphology compared to EGF. To examine if HGF and EGF phosphorylated different cytoskeletal elements as signal transduction targets in view of the observed variation in morphology and motility, primary cultures of 32P-loaded rat hepatocytes were stimulated by either HGF or EGF for up to 60 min. Both mitogens rapidly stimulated four isoforms of MAP kinase with similar kinetics and also rapidly facilitated the phosphorylation of cytoskeletal-associated F-actin. Two cytoskeletal-associated proteins, however, were observed to undergo rapid phosphorylation by HGF and not EGF during the time points described. One protein of 28 kDa was observed to become phosphorylated fivefold over controls, while the EGF-stimulated cells showed only a slight increase in the phosphorylation of this protein. Another protein with an apparent mwt of 42 kDa was phosphorylated 20-fold at 1 min and remained phosphorylated over 50-fold over control up to the 60 min time point. This protein was observed to become phosphorylated by EGF only after 10 min, and to a lesser extent (20-fold). Taken together, the data suggest that HGF and EGF stimulate divergent as well as redundant signal transduction pathways in the hepatocyte cytoskeleton, and this may result in unique HGF- or EGF-specific motility, morphology, and mitogenicity in hepatocytes. © 1994 Wiley-Liss, Inc.  相似文献   

17.
18.
Hepatocyte growth factor (scatter factor) (HGF/SF) is a pleiotrophic mediator of epithelial cell motility, morphogenesis, angiogenesis, and tumorigenesis. HGF/SF protects cells against DNA damage by a pathway from its receptor c-Met to phosphatidylinositol 3-kinase (PI3K) to c-Akt, resulting in enhanced DNA repair and decreased apoptosis. We now show that protection against the DNA-damaging agent adriamycin (ADR; topoisomerase IIalpha inhibitor) requires the Grb2-binding site of c-Met, and overexpression of the Grb2-associated binder Gab1 (a multisubstrate adapter required for epithelial morphogenesis) inhibits the ability of HGF/SF to protect MDCK epithelial cells against ADR. In contrast to Gab1 and its homolog Gab2, overexpression of c-Cb1, another multisubstrate adapter that associates with c-Met, did not affect protection. Gab1 blocked the ability of HGF/SF to cause the sustained activation of c-Akt and c-Akt signaling (FKHR phosphorylation). The Gab1 inhibition of sustained c-Akt activation and of cell protection did not require the Gab1 pleckstrin homology or SHP2 phosphatase-binding domain but did require the PI3K-binding domain. HGF/SF protection of parental MDCK cells was blocked by wortmannin, expression of PTEN, and dominant negative mutants of p85 (regulatory subunit of PI3K), Akt, and Pak1; the protection of cells overexpressing Gab1 was restored by wild-type or activated mutants of p85, Akt, and Pak1. These findings suggest that the adapter Gab1 may redirect c-Met signaling through PI3K away from a c-Akt/Pak1 cell survival pathway.  相似文献   

19.
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility.  相似文献   

20.
Hepatocyte growth factor (HGF) induces mitogenesis, motogenesis, and tubulogenesis of cultured Madin-Darby canine kidney (MDCK) epithelial cells. We report that in addition to these effects HGF stimulates morphogenesis of tight, polarized MDCK cell monolayers into pseudostratified layers without loss of tight junction (TJ) functional integrity. We tested TJ functional integrity during formation of pseudostratified layers. In response to HGF, the TJ marker ZO-1 remained in morphologically complete rings and functional barriers to paracellular diffusion of ruthenium red were maintained in pseudostratified layers. Transepithelial resistance (TER) increased transiently two- to threefold during the morphogenetic transition from monolayers to pseudostratified layers and then declined to baseline levels once pseudostratified layers were formed. In MDCK cells expressing the trk/met chimera, both HGF and NGF at concentrations of 2.5 ng/ml induced scattering. However, 2.5 ng/ml HGF did not affect TER. The peak effect of HGF on TER was at a concentration of 100 ng/ml. In contrast, NGF at concentrations as high as 25 µg/ml had no effect on TER or pseudostratified layer morphogenesis of trk/met-expressing cultures. These results suggest that altered presentation of the stimulus, such as through HGF interaction with low-affinity sites, may change the downstream signaling response. In addition, our results demonstrate that HGF stimulates pseudostratified layer morphogenesis while inducing an increase in TER and maintaining the overall tightness of the epithelial layer. Stimulation of epithelial cell movements by HGF without loss of functional TJs may be important for maintaining epithelial integrity during morphogenetic events such as formation of pseudostratified epithelia, organ regeneration, and tissue repair. c-met protooncogene; transepithelial resistance; Madin-Darby canine kidney cell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号