首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
西瓜食酸菌RND蛋白家族外排转运体cusB基因抗铜功能研究   总被引:2,自引:0,他引:2  
【目的】研究RND外排泵中cus B基因突变对西瓜食酸菌抗铜性的影响。【方法】采用Tn5转座子随机插入基因组制备筛选得到突变体,通过双亲杂交的方法构建功能互补菌株,并从西瓜食酸菌抗铜性、胞外纤维素酶和胞外蛋白酶分泌、胞外多糖产生、生物膜形成、致病性及过敏性反应等方面阐明RND外排泵中MFP蛋白亚基对西瓜食酸菌的影响。【结果】突变体Δcus B在含有1.25 mmol/L或2.5 mmol/L Cu SO4的KMB平板上不能生长,cus B基因的突变导致西瓜食酸菌的胞外多糖分泌和生物膜形成与野生型有差异,但不影响胞外纤维素酶、胞外蛋白酶、致病性及过敏性反应。【结论】RND外排泵相关基因cus B的突变会影响西瓜食酸菌的某些生物学特性,并导致病菌对铜十分敏感。研究以RND外排泵转运重金属为导向初步解析了西瓜食酸菌的抗铜机制。  相似文献   

2.
Francisella tularensis causes the human disease tularemia. F. tularensis is able to survive and replicate within macrophages, a trait that has been correlated with its high virulence, but it is unclear the exact mechanism(s) this organism uses to escape killing within this hostile environment. F. tularensis virulence is dependent upon the Francisella pathogenicity island (FPI), a cluster of genes that we show here shares homology with type VI secretion gene clusters in Vibrio cholerae and Pseudomonas aeruginosa. We demonstrate that two FPI proteins, VgrG and IglI, are secreted into the cytosol of infected macrophages. VgrG and IglI are required for F. tularensis phagosomal escape, intramacrophage growth, inflammasome activation and virulence in mice. Interestingly, VgrG secretion does not require the other FPI genes. However, VgrG and other FPI genes, including PdpB (an IcmF homologue), are required for the secretion of IglI into the macrophage cytosol, suggesting that VgrG and other FPI factors are components of a secretion system. This is the first report of F. tularensis FPI virulence proteins required for intramacrophage growth that are translocated into the macrophage.  相似文献   

3.
Abstract The impact of Lps gene on the course of immune response against subcutaneous infection of mice with Francisella tularensis live vaccine strain was studied. Production and specificity of antibodies, cytotoxic responses of macrophages and NK-cells, spontaneous production ex vivo of cytokines IL-1α, IL-2, IL-4, IL-6, IL-10, IFN-γ, and TNF-α in spleen cell cultures in C3H/HeJ ( Lps d) mice in comparison with C3H/HeN ( Lps r) mice were tested. The value of LD50 was significantly different in the two strains of mice (8.0 × 103 cfu for C3H/HeJ versus 4.61 × 105 cfu for C3H/HeN mice after subcutaneous inoculation). The production of NO2 is also impaired in C3H/HeJ mice in the early intervals after infection. Thus, the defective Lps gene of C3H/HeJ mice influences both the level of innate resistance of mice to F. tularensis live vaccine strain infection and the process of induction and regulation of immune response against this intracellular bacterial pathogen.  相似文献   

4.
Abstract Cytokine mRNA expression was determined in the liver of mice subcutaneously inoculated with a lethal dose of the highly virulent strain FSC 041 of Francisella tularensis subvar. tularensis or a sublethal dose of the live vaccine strain of F. tularensis subvar. palaearctica . Expression of mRNA for TNF-α, IL-12, IFN-γ, and IL-10 was demonstrated within 48 h of inoculation, the kinetics being similar irrespective of bacterial strain used. Thus, the expression of a cytokine response believed to be important in the early host defence against live vaccine strain seemed insufficient to prevent the lethality of a more virulent strain.  相似文献   

5.
Francisella tularensis, which causes tularemia, is an intracellular gram‐negative bacterium. F. tularensis has received significant attention in recent decades because of its history as a biological weapon. Thus, development of novel vaccines against tularemia has been an important goal. The attenuated F. tularensis strain ΔpdpC, in which the pathogenicity determinant protein C gene (pdpC) has been disrupted by TargeTron mutagenesis, was investigated as a potential vaccine candidate for tularemia in the present study. C57BL/6J mice immunized s.c. with 1 × 106 CFUs of ΔpdpC were challenged intranasally with 100× the median lethal dose (LD50) of a virulent SCHU P9 strain 21 days post immunization. Protection against this challenge was achieved in 38% of immunized C57BL/6J mice administered 100 LD50 of this strain. Conversely, all unimmunized mice succumbed to death 6 days post challenge. Survival rates were significantly higher in vaccinated than in unimmunized mice. In addition, ΔpdpC was passaged serially in mice to confirm its stable attenuation. Low bacterial loads persisted in mouse spleens during the first to tenth passages. No statistically significant changes in the number of CFUs were observed during in vivo passage of ΔpdpC. The inserted intron sequences for disrupting pdpC were completely maintained even after the tenth passage in mice. Considering the stable attenuation and intron sequences, it is suggested that ΔpdpC is a promising tularemia vaccine candidate.  相似文献   

6.
Abstract A new lot of Francisella tularensis live vaccine strain (LVS) was tested for immunogenicity in 19 human volunteers. Scarification vaccination induced specific cell-mediated and humoral immune responses. We noted a significant rise in antibodies against irradiation-killed LVS, formalin-killed virulent strain SCHU4, and an ether extracted antigen preparation (EEx) beginning 14 days after vaccination. A main target of the humoral immune response was lipopolysaccharide. Eighty percent of vaccinated volunteers developed a positive IgG response to EEx by day 14 and 100% of vaccinees responded positively by day 21. Background IgA titers were lower than corresponding IgG or IgM titers. No early IgM rise was noted with any antigen. By day 14 after vaccination, in vitro lymphocyte responses to LVS, the rough variant of LVS, and EEx were significantly increased compared to controls. Seventy percent of volunteers had a positive in vitro lymphocyte response to EEx within 14 days of vaccination. We predict that EEx will be a usefull antigen for diagnosing tularemia and for evaluating the immunogenicity of vaccines against tularemia. We are testing this antigen using sera from human cases of tularemia and control sera.  相似文献   

7.
Abstract We constructed mutant strains of Francisella tularensis biotype novicida by insertional mutagenesis with a kanamycin resistance (KmR) cassette. One mutant, KEM7, was defective for survival in macrophages in comparison with the wild-type (WT) strain and a random insertion strain, KEM21. While all three strains exhibited intracellular growth, the number of viable KEM7 present after 24–48 h of infection was approximately 10 times less than that of WT or KEM21. This observation was apparently due to a reduced number of viable KEM7 associated with the macrophages one hour after phagocytosis. KEM7 was approximately 3 times more susceptible than WT or KEM21 to killing by the products of the xanthine-xanthine oxidase reaction or by hydrogen peroxide. KEM7 was also found to be susceptible to killing by serum, whereas WT and KEM21 were resistant. Upon intravenous inoculation of C57BL/6 mice, the number of KEM7 in the livers and spleens 48 h post-infection was found to be 1000- to 10 000-times less than that of either KEM21 or WT. DNA sequence analysis at the KmR insertion site suggested that the F. tularensis homologue of min D had been interrupted. Western immunoblot analysis confirmed the presence of a MinD homologue in F. tularensis WT and KEM21, and demonstrated its absence in KEM7.  相似文献   

8.
The tripartite efflux systems MexAB-OprM and MexCD-OprJ of Pseudomonas aeruginosa each display characteristic substrate specificity against a variety of antimicrobial agents. The chimeric efflux system MexC-MexB-OprJ/DeltaMexD constructed by exchange of MexD with MexB endowed the recombinant host the same resistance profile as MexAB-OprM rather than MexCD-OprJ. The change of substrate specificity was shown to be due to extrusion from the chimeric efflux system by cellular accumulation experiments using tetracycline, erythromycin, and ethidium bromide. Thus, we conclude that MexB and MexD are primary components of the efflux system responsible for sorting extrusion substrates.  相似文献   

9.
The genus Xanthomonas contains plant pathogens exhibiting innate resistance to a range of antimicrobial agents. In other genera, multidrug resistance is mediated by a synergy between a low-permeability outer membrane and expression of a number of multidrug efflux systems. This report describes the isolation of a novel gene cluster xmeRSA from Xanthomonas strain IG-8 that mediates copper chloride resistance. Subsequent analysis of these genes showed that they were responsible for the high level of multiple resistance in this strain and were homologues of the sme system of Stenotrophomonas maltophilia. Knock-out mutants of this gene cluster indicate that these genes are required for the copper resistance phenotype of strain IG-8. Expression analysis using lacZ fusions indicates that the genes are regulated by copper and other antimicrobials. Bioinformatic analysis suggests that these genes were acquired by horizontal gene transfer.  相似文献   

10.
11.
12.
Although metronidazole (Mtz) is an important component of Helicobacter pylori eradication regimens, it has been pointed out that the increasing use of Mtz may result in increase in the incidence of Mtz-resistant strains. The present study was designed to examine the initial mechanism of resistance acquisition of H. pylori to Mtz. After 10 Mtz-susceptible strains were cultured on plates containing sub-inhibitory concentrations of Mtz, the MIC of Mtz for 9 of the 10 strains increased to levels of the Mtz-resistant strains. In the Mtz-resistance-induced strains, the expression of the TolC efflux pump (hefA) was significantly increased under Mtz exposure, without the reduction of the Mtz-reductive activity. Our finding suggests that overexpression of hefA may be the initial step in the acquisition of Mtz resistance in H. pylori.  相似文献   

13.
14.
15.
Francisella tularensis is the causative agent of the highly, infectious disease, tularemia. Amongst the genes identified as essential to the virulence of F. tularensis was the proposed serine hydrolase FTT0941c. Herein, we purified FTT0941c to homogeneity and then characterized the folded stability, enzymatic activity, and substrate specificity of FTT0941c. Based on phylogenetic analysis, FTT0941c was classified within a divergent Francisella subbranch of the bacterial hormone sensitive lipase (HSL) superfamily, but with the conserved sequence motifs of a bacterial serine hydrolase. FTT0941c showed broad hydrolase activity against diverse libraries of ester substrates, including significant hydrolytic activity across alkyl ester substrates from 2 to 8 carbons in length. Among a diverse library of fluorogenic substrates, FTT0941c preferred α-cyclohexyl ester substrates, matching with the substrate specificity of structural homologues and the broad open architecture of its modeled binding pocket. By substitutional analysis, FTT0941c was confirmed to have a classic catalytic triad of Ser115, His278, and Asp248 and to remain thermally stable even after substitution. Its overall substrate specificity profile, divergent phylogenetic homology, and preliminary pathway analysis suggested potential biological functions for FTT0941c in diverse metabolic degradation pathways in F. tularensis.  相似文献   

16.
The ability of Salmonella to invade tissue culture cells is correlated with virulence. Therefore, the tissue culture invasion model has been used extensively to study this process and to identify the bacterial genes involved and their products. Described here is the further characterization of a Salmonella enteritidis mutant (SM6T) originally identified as non-invasive for tissue culture cells. A chromosomal DNA fragment complementing this defect was cloned and sequenced. The derived protein sequence is 89% identical to TolC from Escherichia coli , an outer membrane protein required for the signal peptide-independent transport of α-haemolysin and colicin V. Therefore, sinA was renamed tolC and is referred to in this text as tolC s to distinguish it from tolC of E. coli TolCs and TolC are functionally similar since tolC can complement the invasion-defective phenotype of a tolCs mutant, and tolCs is required for export of α-haemolysin by Salmonella . The tolC s mutant is avirulent for mice when administered by the oral route, suggesting that the gene is important for virulence. Further characterization of the tolCs mutant indicated that like tolC mutants it is more sensitive than the wild-type strain to various detergents, antibiotics and dyes. This mutant is more sensitive to Triton X-100 only when associated with the monolayer, and the invasion-defective phenotype appears to be an artifact of this sensitivity. In addition, the tolCs mutant is more sensitive to the bactericidal activity of human serum. Therefore, the avirulent phenotype could be the result of an inability to secrete a necessary virulence factor, or an increased sensitivity to complement and detergents as a result of a subtle alteration in the lipopolysaccharide (LPS) associated with tolC mutations.  相似文献   

17.
Francisella tularensis is a highly infectious, facultative intracellular bacterial pathogen that is the causative agent of tularemia. Nearly a century ago, researchers observed that tularemia was often fatal in North America but almost never fatal in Europe and Asia. The chromosomes of F. tularensis strains carry two identical copies of the Francisella pathogenicity island (FPI), and the FPIs of North America-specific biotypes contain two genes, anmK and pdpD, that are not found in biotypes that are distributed over the entire Northern Hemisphere. In this work, we studied the contribution of anmK and pdpD to virulence by using F. novicida, which is very closely related to F. tularensis but which carries only one copy of the FPI. We showed that anmK and pdpD are necessary for full virulence but not for intracellular growth. This is in sharp contrast to most other FPI genes that have been studied to date, which are required for intracellular growth. We also showed that PdpD is localized to the outer membrane. Further, overexpression of PdpD affects the cellular distribution of FPI-encoded proteins IglA, IglB, and IglC. Finally, deletions of FPI genes encoding proteins that are homologues of known components of type VI secretion systems abolished the altered distribution of IglC and the outer membrane localization of PdpD.  相似文献   

18.
Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号