首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the adhesion of meningococci under the conditions of a monoinfection and mixed infection (in association with influenza virus), the experimental model of mixed influenzal and meningococcal infection has been created in the culture of epithelial cells HEp-2. On this model in increase in the intensity of the adhesion of meningococci to eukaryotic cells, as well as in the intensity of the meningococcal colonization of such cells, after their preliminary infection with influenza virus has been observed. The study has revealed that in mixed infection the adsorption of extracellular virions onto the surface of bacteria occurs. During this adsorption viral processes directly interact with the microcapsule of the meningococcus.  相似文献   

2.
Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial type four pili (T4P) that trigger intense host cell signalling. Among the components of the meningococcal T4P, the concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180 epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same molecule (i.e. PilC1 and PilC2) brings a new model to light for the analysis of the interplay between pathogenic bacteria and human host cells.  相似文献   

3.
After separation of the bone marrow or the spleen suspension on the discontinuous albumin gradient cell fractions were obtained in which the activity of the DNA-dependent DNA polymerase, aspartate carbamoyl transferase, as well as the rate of the 14C-thymidine incorporation in the DNA was 2 to 3 times higher than in the original suspension. The most actively DNA-synthesizing cells were concentrated in the 5th-6th fractions when the osmolarity of 35% BSA was 370 mOsm, or in the 2nd-3rd fractions when the osmolarity of 35% BSA was 380 mOsm.  相似文献   

4.
Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known receptors for these bacteria. All viruses enhanced bacterial adhesion to primary and immortalized cell lines. RSV and HPIV-3 infection increased the expression of several known receptors for pathogenic bacteria by primary bronchial epithelial cells and A549 cells but not by primary small airway epithelial cells. Influenza virus infection did not alter receptor expression. Paramyxoviruses augmented bacterial adherence to primary bronchial epithelial cells and immortalized cell lines by up-regulating eukaryotic cell receptors for these pathogens, whereas this mechanism was less significant in primary small airway epithelial cells and in influenza virus infections. Respiratory viruses promote bacterial adhesion to respiratory epithelial cells, a process that may increase bacterial colonization and contribute to disease. These studies highlight the distinct responses of different cell types to viral infection and the need to consider this variation when interpreting studies of the interactions between respiratory cells and viral pathogens.  相似文献   

5.
Using COS (African green monkey kidney) cells transfected with cDNAs encoding human cell surface molecules, we have identified human cellular receptors for meningococcal virulence-associated Opa proteins, which are expressed by the majority of disease and carrier isolates. These receptors belong to the immunoglobulin superfamily of adhesion molecules and are expressed on epithelial, endothelial and phagocytic cells. Using soluble chimeric receptor molecules, we have demonstrated that meningococcal Opa proteins bind to the N-terminal domain of biliary glycoproteins (classified as BGP or CD66a) that belong to the CEA (CD66) family. Moreover, the Opa proteins of the related pathogen Neisseria gonorrhoeae , responsible for urogenital infections, also interact with this receptor, making CD66a a common target for pathogenic neisseriae. Over 95% of Opa-expressing clinical and mucosal isolates of meningococci and gonococci were shown to bind to the CD66 N-domain, demonstrating the presence of a conserved receptor-binding function in the majority of neisserial Opa proteins.  相似文献   

6.
The electron-microscopic study of the interaction of meningococci with continuous human amnion cell culture F1 has revealed that this process comprises 3 stages. The study has shown that, following the adhesion of meningococci to the surface of cells F1, these cells are invaded by individual coccal forms of meningococci. In response to infection vacuoles appear in the cytoplasm of the cells. Meningococci are either phagocytosed inside these vacuoles, or their release into the intercellular space and the death of the infected by meningococci are observed. When the cells are infected by cytopathogenic strains, the infectious process results in the appearance of degenerative changes in the cells.  相似文献   

7.
No reliable cell culture assay is currently available for monitoring human influenza virus sensitivity to neuraminidase inhibitors (NAI). This can be explained by the observation that because of a low concentration of sialyl-alpha2,6-galactose (Sia[alpha2,6]Gal)-containing virus receptors in conventional cell lines, replication of human virus isolates shows little dependency on viral neuraminidase. To test whether overexpression of Sia(alpha2,6)Gal moieties in cultured cells could make them suitable for testing human influenza virus sensitivity to NAI, we stably transfected MDCK cells with cDNA of human 2,6-sialyltransferase (SIAT1). Transfected cells expressed twofold-higher amounts of 6-linked sialic acids and twofold-lower amounts of 3-linked sialic acids than parent MDCK cells as judged by staining with Sambucus nigra agglutinin and Maackia amurensis agglutinin, respectively. After transfection, binding of a clinical human influenza virus isolate was increased, whereas binding of its egg-adapted variant which preferentially bound 3-linked receptors was decreased. The sensitivity of human influenza A and B viruses to the neuraminidase inhibitor oseltamivir carboxylate was substantially improved in the SIAT1-transfected cell line and was consistent with their sensitivity in neuraminidase enzyme assay and with the hemagglutinin (HA) receptor-binding phenotype. MDCK cells stably transfected with SIAT1 may therefore be a suitable system for testing influenza virus sensitivity to NAI.  相似文献   

8.
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa–CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.  相似文献   

9.
Neisseria meningitidis possesses a repertoire of surface adhesins that promote bacterial adherence to and entry into mammalian cells. Here, we have identified heparan sulphate proteoglycans as epithelial cell receptors for the meningococcal Opc invasin. Binding studies with radiolabelled heparin and heparin affinity chromatography demonstrated that Opc is a heparin binding protein. Subsequent binding experiments with purified 35SO4-labelled epithelial cell proteoglycan receptors and infection assays with epithelial cells that had been treated with heparitinase to remove glycosaminoglycans confirmed that Opc-expressing meningococci exploit host cell-surface proteoglycans to gain access to the epithelial cell interior. Unexpectedly, Opa28-producing meningococci lacking Opc also bound proteoglycans. These bacteria also bound CEA receptors in contrast to the Opc-expressing phenotype, suggesting that Opa28 may possess domains with specificity for different receptors. Opa/Opc-negative meningococci did not bind either proteoglycan or CEA receptors. Using a set of genetically defined mutants with different lipopolysaccharide (LPS) and capsular phenotype, we were able to demonstrate that surface sialic acids interfere with the Opc–proteoglycan receptor interaction. This effect may provide the molecular basis for the reported modulatory effect of capsule and LPS on meningococcal adherence to and entry into various cell types.  相似文献   

10.
We describe the characterization of influenza A virus infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). Sialic acid receptors for both human and avian viruses, alpha-2,6- and alpha-2,3-linked sialic acids, respectively, were detected on the HAE cell surface, and their distribution accurately reflected that in human tracheobronchial tissue. Nonciliated cells present a higher proportion of alpha-2,6-linked sialic acid, while ciliated cells possess both sialic acid linkages. Although we found that human influenza viruses infected both ciliated and nonciliated cell types in the first round of infection, recent human H3N2 viruses infected a higher proportion of nonciliated cells in HAE than a 1968 pandemic-era human virus, which infected proportionally more ciliated cells. In contrast, avian influenza viruses exclusively infected ciliated cells. Although a broad-range neuraminidase abolished infection of HAE by human parainfluenza virus type 3, this treatment did not significantly affect infection by influenza viruses. All human viruses replicated efficiently in HAE, leading to accumulation of nascent virus released from the apical surface between 6 and 24 h postinfection with a low multiplicity of infection. Avian influenza A viruses also infected HAE, but spread was limited compared to that of human viruses. The nonciliated cell tropism of recent human H3N2 viruses reflects a preference for the sialic acid linkages displayed on these cell types and suggests a drift in the receptor binding phenotype of the H3 hemagglutinin protein as it evolves in humans away from its avian virus precursor.  相似文献   

11.
Some details of the ultrastructure of several meningococcal strains having had contacts with cells in continuous human amnion cell culture FL for 6 hours to 2 days have been defined with greater precision by means of electron microscopy. The study has shown that the contact of meningococci with the tissue culture is accompanied by the appearance of meningococcal forms with the defective cell wall, similar to L-forms: spheroplast, protoplast, gigantic cells and microcells, as well as budding variants. The meningococcal variants with the defective cell wall, appearing in the cell culture, and the forms occurring (in different proportions) in "ripe" meningococcal populations developing in the culture media for a long time and isolated from a human body have been found to have no essential differences in their fine structure. These data indicate that any external influences (meningococci are highly sensitive to such influences) produce sufficiently rapid changes, similar to L-transformation, in the fine structure of these microorganisms.  相似文献   

12.
The persistence of 3 low-pathogenicity avian influenza viruses (LPAIV) (H4N6, H5N1, and H6N8) and one human influenza virus (H1N1) as well as Newcastle disease virus (NDV) and enteric cytopathogenic bovine orphan (ECBO) virus was investigated in lake sediment, duck feces, and duck meat at 30, 20, 10, and 0°C using a germ carrier technique. Virus-loaded germ carriers were incubated in each substrate, and residual infectivity of the eluted virus was quantified on cell culture after regular intervals for a maximum of 24 weeks. Data were analyzed by a linear regression model to calculate T(90) values (time required for 90% loss of virus infectivity) and estimated persistence of the viruses. In general, the persistence of all of the viruses was highest in lake sediment, followed by feces, and was the lowest in duck meat at all temperatures. For the avian influenza virus subtypes, T(90) values in sediment ranged from 5 to 11, 13 to 18, 43 to 54, and 66 to 394 days at 30, 20, 10, and 0°C, respectively, which were 2 to 5 times higher than the T(90) values of the viruses in the feces and meat. Although the individual viruses vary in tenacity, the survival time of influenza viruses was shorter than that of NDV and ECBO virus in all substrates. The results of this study suggest that lake sediment may act as a long-term source of influenza viruses in the aquatic habitat, while the viruses may remain infectious for extended periods of time in duck feces and meat at low temperatures, allowing persistence of the viruses in the environment over winter.  相似文献   

13.
Kuespert K  Roth A  Hauck CR 《PloS one》2011,6(1):e14609

Background

Several human-restricted Gram-negative bacteria exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) for host colonization. For example, Neisseria meningitidis engages these human receptors via outer membrane proteins of the colony opacity-associated (Opa) protein family triggering internalization into non-phagocytic cells.

Principal Findings

We report that a non-opaque strain of N. meningitidis selectively interacts with CEACAM1, but not other CEACAM family members. Using functional assays of bacterial adhesion and internalisation, microscopic analysis, and a panel of CEACAM1 deletion mutants we demonstrate that the engagement of CEACAM1 by non-opaque meningococci occurs in a manner distinct from Opa protein-mediated association. In particular, the amino-terminal domain of CEACAM1 is necessary, but not sufficient for Opa protein-independent binding, which requires multiple extracellular domains of the human receptor in a cellular context. Knock-down of CEACAM1 interferes with binding to lung epithelial cells, whereas chemical or pharmacological disruption of host protein glycosylation does not abrogate CEACAM1 recognition by non-opaque meningococci. The previously characterized meningococcal invasins NadA or Opc do not operate in a CEACAM1-dependent manner.

Conclusions

The results demonstrate a mechanistically distinct, Opa protein-independent interaction between N. meningitidis and human CEACAM1. Our functional investigations suggest the presence of a second CEACAM1-binding invasin on the meningococcal surface that associates with the protein backbone and not the carbohydrate structures of CEACAM1. The redundancy in meningococcal CEACAM1-binding factors further highlights the important role of CEACAM recognition in the biology of this human-adapted pathogen.  相似文献   

14.
15.
Group B meningococcal antigens, such as polysaccharide, lipopolysaccharide, protein preparation, as well as sonicates obtained from meningococcal cells, groups A, B and C, have been isolated. On the basis of these preparations the parameters of an enzyme immunoassay system for the detection of antibodies to individual meningococcal antigens have been established, and the specificity of the system and the possibility of using it for the evaluation of the level of antibodies to meningococci in human sera have been studied.  相似文献   

16.
In 1997, 18 confirmed cases of human influenza arising from multiple independent transmissions of H5N1 viruses from infected chickens were reported from Hong Kong. To identify possible phenotypic changes in the hemagglutinin (HA) and neuraminidase (NA) of the H5 viruses during interspecies transfer, we compared the receptor-binding properties and NA activities of the human and chicken H5N1 isolates from Hong Kong and of H5N3 and H5N1 viruses from wild aquatic birds. All H5N1 viruses, including the human isolate bound to Sia2-3Gal-containing receptors but not to Sia2-6Gal-containing receptors. This finding formally demonstrates for the first time that receptor specificity of avian influenza viruses may not restrict initial avian-to-human transmission. The H5N1 chicken viruses differed from H5 viruses of wild aquatic birds by a 19-amino-acid deletion in the stalk of the NA and the presence of a carbohydrate at the globular head of the HA. We found that a deletion in the NA decreased its ability to release the virus from cells, whereas carbohydrate at the HA head decreased the affinity of the virus for cell receptors. Comparison of amino acid sequences from GenBank of the HAs and NAs from different avian species revealed that additional glycosylation of the HA and a shortened NA stalk are characteristic features of the H5 and H7 chicken viruses. This finding indicates that changes in both HA and NA may be required for the adaptation of influenza viruses from wild aquatic birds to domestic chickens and raises the possibility that chickens may be a possible intermediate host in zoonotic transmission.  相似文献   

17.
It is widely recognized that sialic acid (SA) can mediate attachment of influenza virus to the cell surface, and yet the specific receptors that mediate virus entry are not known. For many viruses, a definitive demonstration of receptor function has been achieved when nonpermissive cells are rendered susceptible to infection following transfection of the gene encoding a putative receptor. For influenza virus, such approaches have been confounded by the abundance of SA on mammalian cells so that it has been difficult to identify cell lines that are not susceptible to infection. We examined influenza virus infection of Lec2 Chinese hamster ovary (CHO) cells, a mutant cell line deficient in SA. Lec2 CHO cells were resistant to influenza virus infection, and stable cell lines expressing either DC-SIGN or L-SIGN were generated to assess the potential of each molecule to function as SA-independent receptors for influenza A viruses. Virus strain BJx109 (H3N2) bound to Lec2 CHO cells expressing DC-SIGN or L-SIGN in a Ca(2+)-dependent manner, and transfected cells were susceptible to virus infection. Treatment of Lec2-DC-SIGN and Lec2-L-SIGN cells with mannan, but not bacterial neuraminidase, blocked infection, a finding consistent with SA-independent virus attachment and entry. Moreover, virus strain PR8 (H1N1) bears low levels of mannose-rich glycans and was inefficient at infecting Lec2 CHO cells expressing either DC-SIGN or L-SIGN, whereas other glycosylated H1N1 subtype viruses could infect cells efficiently. Together, these data indicate that human C-type lectins (DC-SIGN and L-SIGN) can mediate attachment and entry of influenza viruses independently of cell surface SA.  相似文献   

18.
The affinity of the duck, chicken, and human influenza viruses to the host cell sialosides was determined, and considerable distinctions between duck and chicken viruses were found. Duck viruses bind to a wide range of sialosides, including the short-stem gangliosides. Most of the chicken viruses, like human ones, lose the ability to bind these gangliosides, which strictly correlates with the appearance of carbohydrate at position 158-160. The affinity of the chicken viruses to sialoglycoconjugates of chicken intestine as well as chicken, monkey, and human respiratory epithelial cells exceeds that of the duck viruses. The human influenza viruses have high affinity to the same cells but do not bind at all to the duck epithelial cell. This testifies to the absence of 6'-sialylgalactose residues from the duck cells, in contrast to chicken and monkey cells. The alteration of the receptor specificity of chicken viruses in comparison with duck ones results in the similarity of the patterns of accessible cells for chicken and human influenza viruses. This may be the cause of the appearance of the line of H9N2 viruses from Hong Kong live bird markets with receptor specificity similar to that of H3N2 human viruses, and of the ability of H5N1 and H9N2 chicken influenza viruses to infect humans.  相似文献   

19.
The interactions of Neisseria meningitidis with cells of the meninges are critical to progression of the acute, compartmentalized intracranial inflammatory response that is characteristic of meningococcal meningitis. An important virulence mechanism of the bacteria is the ability to shed outer membrane (OM) blebs containing lipopolysaccharide (LPS), which has been assumed to be the major pro-inflammatory molecule produced during meningitis. Comparison of cytokine induction by human meningeal cells following infection with wild-type meningococci, LPS-deficient meningococci or after treatment with OM isolated from both organisms, demonstrated the involvement of non-LPS bacterial components in cell activation. Significantly, recognition of LPS-replete OM did not depend on host cell expression of Toll-like receptor (TLR)4, the accessory protein MD-2 or CD14, or the recruitment of LPS-accessory surface proteins heat shock protein (HSP)70, HSP90alpha, chemokine receptor CXCR4 and growth differentiation factor (GDF)5. In addition, recognition of LPS-deficient OM was not associated with the expression of TLR2 or any of these other molecules. These data suggest that during meningococcal meningitis innate recognition of both LPS and non-LPS modulins is dependent on the expression of as yet uncharacterized pattern recognition receptors on cells of the meninges. Moreover, the biological consequences of cellular activation by non-LPS modulins suggest that clinical intervention strategies based solely on abrogating the effects of LPS are likely to be only partially effective.  相似文献   

20.
We have characterized an interaction of 20 strains of Neisseria meningitidis serogroups A, B, C, 29E, W-135 and Z with immobilized fibronectin of human plasma. The adhesion of meningococci to fibronectin was determined by the extent of piliated cells and did not depend on the meningococcal serogroup. Binding of non-piliated or weakly piliated strains (2-5% of piliated cells in the stock) was sufficiently greater than those piliated (8-10%), where the adhesion to fibronectin was not at all observed. The examination of two well-piliated strains showed that the loss of pili resulted in the increase of bacterial adhesion to fibronectin. Constants of association and dissociation of piliated and non-piliated strains to fibronectin were calculated. The role of meningococci-fibronectin interaction in the pathogenesis of meningococcal infection is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号