首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Circular dichroism and UV absorption data showed that poly[d(A-C).d(G-T)] (at 0.01M Na+ (phosphate), 20 degrees C) underwent two reversible conformational transitions upon lowering of the pH. The first transition was complete at about pH 3.9 and resulted in an acid form of the polymer that was most likely a modified, protonated duplex. The second transition occurred between pH 3.9 and 3.4 and consisted of the denaturation of this protonated duplex to the single strands. UV absorption and CD data also showed that the separated poly[d(A-C)] strand formed two acid-induced self-complexes with pKa values of 6.1 and 4.7 (at 0.01M Na+). However, neither one of these poly[d(A-C)] self-complexes was part of the acid-induced rearrangements of the duplex poly[d(A-C).d(G-T)]. Acid titration of the separated poly[d(G-T)] strand, under similar conditions, did not show the formation of any protonated poly[d(G-T)] self-complexes. In contrast to poly[d(A-C).d(G-T)], poly[d(A-T).d(A-T)] underwent only one acid-induced transition, which consisted of the denaturation of the duplex to the single strands, as the pH was lowered from 7 to 3.  相似文献   

2.
Poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)], each dissolved in 0.1 M NaClO4, 5 mM cacodylic acid buffer, pH 6.8, experience inversion of their circular dichroism (CD) spectrum subsequent to the addition of Hg(ClO4)2. Let r identical to [Hg(ClO4)2]added/[DNA-P]. The spectrum of the right-handed form of poly[d(A-T).d(A-T)] turns into that of a seemingly left-handed structure at r greater than or equal to 0.05 while a similar transition is noted with poly[d(G-C).(G-C)] at r greater than or equal to 0.12. The spectral changes are highly cooperative in the long-wavelength region above 250 nm. At r = 1.0, the spectra of the two polymers are more or less mirror images of their CD at r = 0. While most CD bands experience red-shifts upon the addition of Hg(ClO4)2, there are some that are blue-shifted. The CD changes are totally reversible when Hg(II) is removed from the nucleic acids by the addition of a strong complexing agent such as NaCN. This demonstrates that mercury keeps all base pairs in register.  相似文献   

3.
The kinetics of the hydrogen-deuterium exchange reactions of deoxyguanosine (dG), deoxycytidine (dC), double-helical poly[d(G-C)] X poly[d(G-C], and double-helical poly(dG) X poly(dC) have been examined at 20 degrees C, pH 7.0, and in low-salt (0.15 M NaCl) medium by stopped-flow ultraviolet spectrophotometry, in the spectral region of 260 to 320 nm. The rate constant was found to be 78.9 s-1 for dG-NH, 2.2 s-1 for dG-NH2, 39.3 s-1 for dC-NH2, 2.4 s-1 (fast) and 0.94 s-1 (slow) for poly[d(G-C)] X poly[d(G-C)], and 2.2 s-1 (fast) and 0.92 s-1 (slow) for poly(dG) X poly(dC). From these values, the probability of base-pair opening of the G X C containing B-form double helix is estimated to be (3 +/- 1) X 10(-3). This is much greater than what is expected from an extrapolation of the van't Hoff plot at the helix-coil transition region, i.e. at about 110 degrees C. The mechanism of these base-pair openings at 20 degrees C (as well as the mechanism of base-pair reformation) is suggested to be totally different from those in the melting temperature range.  相似文献   

4.
Mg(ClO4)2 induces the cooperative B-to-Z transition of poly[d(G-C)]; the salt concentration at the midpoint is 0.26 M. A comparison with previous data for NaCl, MgCl2 and NaClO4 (F.M. Pohl and T.M. Jovin, J. Mol. Biol. 67 (1972) 375) indicates that Mg(ClO4)2 is more effective than would be anticipated from the simple additive effects of the Mg2+ and ClO4- ions (the ionic strengths of the respective transition points are: NaCl, 2.4; MgCl2, 2.1; NaClO4, 1.8 and Mg(ClO4)2, 0.78). These results suggest the importance of specific interactions involving ClO4-, particularly in the presence of Mg2+. The B-Z transition of poly[d(G-C)] can be monitored spectroscopically via the large hyperchromic shift at 295 nm and the inversion in the CD spectrum. The reaction is fully reversible and can be fitted by a monoexponential function with half times varying between 8 and 150 min. The observed relaxation times are strongly dependent on the concentration of Mg(ClO4)2 with a distinct maximum at the transition point, in accordance with a concerted mechanism involving only the B and Z states. As the polymer assumes the Z conformation it progressively aggregates into a gel-like precipitate, which, however, redissolves rapidly upon lowering the salt concentration. The natural DNA from Micrococcus lysodeikticus which has a high GC content of 72% is also precipitated by Mg(ClO4)2 but we do not have direct spectroscopic evidence for the involvement of the Z conformation in this phenomenon. Neither calf thymus DNA (41% GC) nor poly[d(A-T)] (0% GC) aggregates under the same conditions.  相似文献   

5.
In contrast to poly(dG).poly(dC), which remains in the B-DNA conformation under all experimental conditions the polynucleotides with the strictly alternating guanine/cytosine or guanine/5'-methylcytosine sequences can change from the classical right-handed B-DNA structure to the left-handed Z-DNA structure when certain experimental conditions such as ionic strength or solvent composition are fulfilled. Up to now the investigation of the helix/coil transition of left-handed DNA structures was not possible because the transition temperature exceeds 98 degrees C. By applying moderate external pressure to the surface of the aqueous polymer solution in the sample cell the boiling point of the solvent water is shifted up the temperature scale without shifting the transition temperature, so that we can measure the helix/coil transition of the polynucleotides at all experimental conditions applied. It can thus be shown that the Z-DNA/coil transition is cooperative and reversible. The Tm is 125 degrees C for poly(dG-m5dC).poly(dG-m5dC) in 2mM Mg2+, 50mM Na+, pH 7.2 and 115 degrees c for poly[d(G-C)].poly[d(G-C)] in 3.04M Na+. The transition enthalpy per base pair was determined by the help of an adiabatic scanning microcalorimeter.  相似文献   

6.
On the basis of circular dichroism (CD) data, we have now identified six different conformational states (other than the duplex) of poly[d(A-G).d(C-T)] at pH values between 8 and 2.5 (at 0.01M Na+; 20 degrees C). Three of these structural rearrangements were observed as the pH was lowered from 8 to 2.5, and three additional rearrangements were observed as the pH was raised from 2.5 back to neutral pH. The major components of the six conformational states were defined using appropriate combinations of the CD spectra of the duplex, triplex, and denatured forms of this polymer, as well as the CD spectra of the individual single strands and their respective acid-induced self-complexes. Our results show that the acid-induced rearrangements of poly[d(A-G).d(C-T)] include not only the poly[d(C+-T).d(A-G).d(C-T)] triplex, but also include the poly[d(C-T)] loop-out structure and a self-complexed form of the poly[d(A-G)] strand that is pH-dependent.  相似文献   

7.
The effects of the first-row transition metal ions on the right(B)- to left(Z)-handed helical transition of poly[d(G-C)] have been determined. The Z conformation is induced by MnCl2 at submillimolar concentrations. The forward reaction has a very large activation energy (440 kJ/mol) so that a facile conversion occurs only at temperatures above 45 degrees C. However, the left-handed form remains stable upon cooling. The addition of ethanol (20% v/v) eliminates the requirement for elevated temperature. The transition is highly co-operative and is accompanied by spectral changes (absorption, circular dichroism) characteristic for the B----Z conformational transition. NiCl2 and CoCl2 also induce the B----Z transition in poly[d(G-C)] but the activation energies and thus the temperature requirements for the forward reaction are lower than those observed with MnCl2. The left-handed DNA formed in the presence of Mn2+ is similar to 'Z DNA' previously described in Mg2+-EtOH (van de Sande and Jovin , 1982): (a) it readily sediments out of solution at low speed as a consequence of intermolecular association which, however, is not accompanied by turbidity; and (b) it supports the binding of ethidium bromide although this drug interacts preferentially with the B form of DNA. With Ni2+, the B----Z isomerization step can be separated from the subsequent specific Z----Z* association. Mn2+, Ni2+, and Co2+ also promote the B----Z transition of poly[d(G-m5C)] at substoichiometric concentrations with respect to DNA nucleotide.  相似文献   

8.
Evidence for Z-form RNA by vacuum UV circular dichroism.   总被引:8,自引:8,他引:0       下载免费PDF全文
J H Riazance  W A Baase  W C Johnson  Jr  K Hall  P Cruz    I Tinoco  Jr 《Nucleic acids research》1985,13(13):4983-4989
Circular dichroism (CD) spectra in the vacuum UV region for different conformations of poly d(G-C) X poly d(G-C) and poly r(G-C) X poly r(G-C) are very characteristic. The CD of the RNA in the A-form (6 M NaClO4 and 22 degrees C) is very similar to that of the DNA in 80% alcohol where it is believed to be in the A-form. With the exception of the longest wavelength transition, the CD of the RNA in 6 M NaClO4 at 46 degrees C is similar to the CD of the DNA under conditions where it is believed to be in the Z-form (2 M NaClO4). This substantiates that poly r(G-C) X poly r(G-C) assumes a left-handed Z-conformation in 6 M NaClO4 above 35 degrees C. CD spectra for the left-handed Z-forms of both the RNA and DNA are characterized by an intense negative peak at 190-195 nm, a crossover at about 184 nm, and an intense positive peak below 180 nm. The right-handed A- and B-forms of RNA and DNA all have an intense positive peak in their CD spectra near 186 nm. The large difference in CD in the range 185-195 nm for right- and left-handed conformations of nucleic acids can be used to identify the sense of helix winding.  相似文献   

9.
R S Johnson 《Biochemistry》1991,30(1):198-206
A derivative of RNA polymerase containing approximately 2 pyrene equiv per enzyme molecule has been used to study the interaction of RNA polymerase with poly[d(A-T)].poly[d(A-T)] and poly[d-(G-C)].poly[d(G-C)]. As monitored by fluorescence spectroscopy, pyrenyl RNA polymerase displays a unique set of conformational changes with each synthetic polynucleotide as a function of temperature. An increase in the fluorescence intensity was observed for both polynucleotides at 5 degrees C. A decrease was observed in the case of poly[d(A-T)].poly[d(A-T)] at 25 and 37 degrees C, whereas no discernible perturbation was observed in the case of poly[d(G-C)].poly[d(G-C)]. Different salt dependencies were observed for the interaction of pyrenyl RNA polymerase with these polynucleotides at 5 and 25 degrees C. Further characterization of these interactions as well as correlation of the observed fluorescence changes to the corresponding open and closed complexes was carried out with heparin. The interaction between pyrenyl RNA polymerase and poly[d-(A-T)].poly[d(A-T)] at 25 degrees C was quantified by using two different methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
R B MacGregor  M Y Chen 《Biopolymers》1990,29(6-7):1069-1076
The equilibrium between the right- and left-handed conformations of poly[d(G-C)] in aqueous NaCl shifts towards the right-handed (B) form with increasing pressure. The optical density at 290 and 260 nm was determined at 50 and 180 MPa for solutions in which approximately equal amounts of the two conformations were present at 0.1 MPa (atmospheric pressure). Interpretation of the observed changes in terms of a two-state unimolecular reaction mechanism results in an average molar reaction volume (delta V0) equal to 26 cm3 mol-1 at 22 degrees C; that is, the partial molar volume of B form poly[d(G-C)] is smaller than that of the left-handed (Z) form. Based upon the thermodynamics of ion-pair formation in polar solvents, it is proposed that the positive delta V0 reflects a favorable entropy change for the reaction toward the Z conformation. The larger entropy change of the Z form may derive from the release of water molecules from the hydration spheres of the cation and the poly[d(G-C)] due to the formation of ionic interactions with the Z conformer. The delta V0 of the transition is similar in sign and magnitude to the calculated molar volume change of the interaction of Na+ with H2PO4- in water.  相似文献   

11.
Pressure-jump study of the kinetics of ethidium bromide binding to DNA   总被引:4,自引:0,他引:4  
Pressure-jump chemical relaxation has been used to investigate the kinetics of ethidium bromide binding to the synthetic double-stranded polymers poly[d(G-C)] and poly[d(A-T)] in 0.1 M NaCl, 10 mM tris(hydroxymethyl)aminomethane hydrochloride, and 1 mM ethylenediaminetetraacetic acid, pH 7.2, at 24 degrees C. The progress of the reaction was followed by monitoring the fluorescence of the intercalated ethidium at wavelengths greater than 610 nm upon excitation at 545 nm. The concentration of DNA was varied from 1 to 45 microM and the ethidium bromide concentration from 0.5 to 25 microM. The data for both polymers were consistent with a single-step bimolecular association of ethidium bromide with a DNA binding site. The necessity of a proper definition of the ethidium bromide binding site is discussed: it is shown that an account of the statistically excluded binding phenomenon must be included in any adequate representation of the kinetic data. For poly[d(A-T)], the bimolecular association rate constant is k1 = 17 X 10(6) M-1 s-1, and the dissociation rate constant is k-1 = 10 s-1; in the case of poly[d(G-C)], k1 = 13 X 10(6) M-1 s-1, and k-1 = 30 s-1. From the analysis of the kinetic amplitudes, the molar volume change, delta V0, of the intercalation was calculated. In the case of poly[d(A-T)], delta V0 = -15 mL/mol, and for poly[d(G-C)], delta V0 = -9 mL/mol; that is, for both polymers, intercalation is favored as the pressure is increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

13.
Factors influencing the binding of tetracationic porphyrin derivatives to DNA have been comprehensively evaluated by equilibrium dialysis, stopped-flow kinetics, etc., for mesotetrakis (4-N-methylpyridiniumyl)porphyrin [TMpyP (4)]. Technical difficulties have previously precluded a comprehensive study of metalloporphyrins. Since electrostatic interactions with the DNA and metal derivatization of the porphyrins have important consequences, we have investigated in greater detail two isomers of TMpyP (4) (meso-tetrakis(3-N-methylpyridiniumyl)porphyrin, [TMpyP (3)] and meso-tetrakis(2-N-methylpyridiniumyl)porphyrin [TMpyP (2)]) in which the position of the charged centers has been varied. A comprehensive study of the Cu(II) derivatives, e.g., CuTMpyP (4), was possible since the difficulties encountered previously with Ni(II) compounds were not a problem with Cu(II) porphyrins [J. A. Strickland, L. G. Marzilli, M. K. Gay, and W. D. Wilson (1988) Biochemistry 27, 8870-8878]. At 25 degrees C, the apparent equilibrium constants [Kobs] decreased with increasing [Na+] for all porphyrins. The Kobs values were comparable for TMpyP (4) and TMpyP (3) binding to either polyd(G-C).polyd(G-C) [poly[d(G-C)2]] or poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]]. For the copper(II) porphyrins, the Kobs values were about fivefold greater. The Kobs value for CuTMpyP (2) binding to poly[d(G-C)2] was too small to measure under typical salt conditions; however, Kobs for binding to poly[d(A-T)2] was about two orders of magnitude smaller than those found for CuTMpyP (4) or CuTMpyP (3). Application of the condensation theory for polyelectrolytes suggests about three charge interactions when CuTMpyP (4), CuTMpyP (3), and TMpyP (3) bind to poly[d(G-C)2] or poly[d(A-T)2], a result comparable to that reported for TMpyP (4). At 20 degrees C and 0.115 M [Na+], incorporation of copper decreased the rates of dissociation from poly[d(A-T)2] by a 100-fold compared to those reported for TMpyP (4) but had little effect on the rates of dissociation from poly[d(G-C)2]. Also, movement of the H3CN+ group from the fourth to the third position of the pyridinium ring enhanced the rates of dissociation from poly[d(A-T)2] but decreased the rates of dissociation from poly[d(G-C)2]. From polyelectrolyte theory, the [Na+] dependence of the dissociation rates from poly[d(G-C)2] is consistent with intercalative binding, while that for poly[d(A-T)2] is consistent with an outside binding model. For calf thymus [CT] DNA at 20 degrees C, a greater decrease in the AT than in the GC imino 1H-nmr signal was observed upon addition of CuTMpyP (2), suggesting selective outside binding to the AT regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Fluorescence-determined preferential binding of quinacrine to DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA.  相似文献   

15.
H H Klump  T M Jovin 《Biochemistry》1987,26(16):5186-5190
Ultraviolet spectroscopic and nuclear magnetic resonance (NMR) studies have shown that poly[r(G-C)] in a solution of 4 M NaClO4 undergoes a transition to a left-handed Z-RNA helix upon raising the temperature to 60 degrees C [Hall, K., Cruz, P., Tinoco, I., Jr., Jovin, T. M., & van de Sande, J. H. (1984) Nature (London) 311, 584-586]. In the present report, the transition temperature of this particular order/order transition is shown to increase with decreasing NaClO4 concentration to about 110 degrees C, above which only the helix-to-random coil transition is detectable. The reversibility and cooperativity of the helix/helix conversion has facilitated the quantitative evaluation of the transition enthalpy by means of differential scanning microcalorimetry. In 5 M NaClO4, the transition temperature is 43 degrees C, the conversion enthalpy 4.2 kJ (1.0 kcal) per mole of base pair, and the corresponding entropy change 13 J (3.1 cal) deg-1. The van't Hoff enthalpy for the same process, determined from the temperature dependence of the optical transition, is 0.26 MJ (62 kcal) per mole of cooperative unit. The ratio of the two enthalpy values yields an apparent cooperative length for the A-Z transition of poly[r(G-C)] of approximately 60 base pairs, indicative of a concerted all-or-none process.  相似文献   

16.
Long-range allosteric effects on the B to Z equilibrium by daunomycin   总被引:2,自引:0,他引:2  
J B Chaires 《Biochemistry》1985,24(25):7479-7486
Spectroscopic and fluorometric methods were used to study the binding of the anticancer drug daunomycin to poly[d(G-C)] and poly[d(G-m5C)] under a variety of solution conditions. Under high-salt conditions that favor the left-handed Z conformation, binding isotherms for the interaction of the drug with poly[d(G-C)] are sigmoidal, indicative of a cooperative binding process. Both the onset and extent of the cooperative binding are strongly dependent upon the ionic strength. The binding data may be explained by a model in which the drug preferentially binds to B-form DNA and acts as an allosteric effector on the B to Z equilibrium. At 2.4 M NaCl, binding of as little as one drug molecule per 20 base pairs (bp) results in the conversion of poly[d(G-C)] from the Z form entirely to the B form, as inferred from binding data and demonstrated directly by circular dichroism measurements. Similar results are obtained for poly[d(G-m5C)] in 50 mM NaCl and 1.25 mM MgCl2. Under these solution conditions, it is possible to demonstrate the Z to B structural transition in poly[d(G-m5C)] as a function of bound drug by the additional methods of sedimentation velocity and susceptibility to DNase I digestion. The transmission of allosteric effects over 20 bp is well beyond the range of the drug's binding site of 3 bp. Since daunomycin preferentially binds to alternating purine-pyrimidine sequences, which are the only sequences capable of the B to Z transition, the allosteric effects described here may be of importance toward understanding the mechanism by which the drug inhibits DNA replicative events.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The secondary structure of the alternating polydeoxynucleotide sequence poly[d(C-T)] was studied as a function of pH by ultraviolet absorbance and circular dichroism spectroscopy and by the analysis of UV-induced photoproducts. As the pH was lowered, poly[d(C-T)] underwent a conformational transition that was characterized by changes in the long-wavelength region (280-320 nm) of the CD spectrum. These changes have previously been interpreted as evidence for the formation of a core of stacked, protonated C X C+ base pairs in a double-helical complex of poly[d(C-T)], with the thymidyl residues being looped out into the solvent [Gray, D. M., Vaughan, M., Ratliff, R. L., & Hayes, F. N. (1980) Nucleic Acids Res. 8, 3695-3707]. In the present work, poly[d(C-T)] was labeled with [U-14C]cytosine and [methyl-3H]thymine and irradiated at pH values both above and below the conformational transition point (monitored by CD spectroscopy). The distribution of radioactivity in uracil means value of uracil dimers, uracil means value of thymine dimers (the deamination products of cytosine means value of cytosine and cytosine means value of thymine dimers, respectively), and thymine-means value of thymine dimers was then determined. As the pH was decreased, we found an increase in the yield of uracil means value of uracil dimers and a decrease in the yield of uracil means value of thymine dimers, which occurred concomitantly with the change in the CD spectrum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The rate constants of 1H----3H exchange between water and C8H-groups of purinic residues of alternating polynucleotides: poly[d(A-T)].poly[d(A-T)] (I), poly[d(G-C)].poly[d(G-C)] (II), poly[d(A-C)].poly[d(G-T)] (III) and homopolynucleotides: poly(dA).poly(dt) (IV), poly(dG).poly(dC) (V), as well as DNA E. coli, was determined in 0.15 M NaCl at 25 degrees C. The retardation of exchange observed at these conditions (compared to that of the B-form DNA) is in agreement with the model of B-alternating structure for the (I) and is attributed to the co-existence of B- and A-conformers for the (V) in solution. Absence of distinguishable differences in exchange rate constants for purinic residues of the (II), (III) and (IV) (compared to that of the B-form DNA) evidences that conformations of these polynucleotides in solution are similar to "canonical" B-form DNA and don't correlate with the model of "heteronomous" DNA which was proposed for (IV).  相似文献   

19.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

20.
The interactions of two positional isomers and one analogue of meso-tetra (4-N-methylpyridyl) porphine, with the synthetic polynucleotides poly[d(A-T)] . poly[d(A-T)] and poly[d(G-C)] . poly[d(G-C)] have been investigated by circular dichroism. All four porphyrins were found to bind to the polynucleotides as shown by the induction of circular dichroism in their Soret bands. Furthermore, the sign of the induced ellipticity reflects selective occupation of binding sites by the porphyrin ligands. The conformational lability of poly[d(A-T)] X poly[d(A-T)] was found to be appreciable as micromolar amounts of meso-substituted 4-N-methylpyridyl, 3-N-methylpyridyl, and p-N-trimethylanilinium porphines induced a CD spectrum similar but not identical to that of DNA in the Z-form, i.e. a negative band at 280 nm and a positive band at 259 nm. The effect of porphyrin binding to poly[d(G-C)] X poly[d(G-C)] was less pronounced and dissimilar to that seen in the AT polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号