首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The novel ether phospholipid, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC), isometrically contracted helically cut rat ileal smooth muscle strips in a dose- and time-dependent manner. Utilizing an enriched plasma membrane vesicular preparation from rat ileal longitudinal smooth muscle, AGEPC specifically stimulated Na+-Ca2+ exchange in a dose- and time-dependent manner. Concomitant with the AGEPC stimulation of Na+-dependent Ca2+ influx in plasma membrane vesicles is an enhanced turnover of the polyphosphoinositides, an elevated concentration of phosphatidic acid and also an enhanced phosphorylation of an Mr 40,000 plasmalemmal protein. The mechanisms by which AGEPC may regulate ileal plasmalemmal Ca2+ flux and contractility are considered.  相似文献   

2.
The beta-adrenergic agonist isoproterenol inhibited the glycogenolytic response of platelet-activating factor (AGEPC, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) in perfused livers derived from fed rats. AGEPC-stimulated hepatic vasoconstriction, measured by increases in portal vein pressure, also was inhibited by prior isoproterenol infusion. Isoproterenol-mediated inhibition of these hepatic responses to AGEPC was not apparent when isoproterenol (10 microM) was coinfused with the beta-receptor antagonist propranolol (75 microM) or when isoproterenol was replaced with the alpha-adrenergic agonist phenylephrine (10 microM). alpha-Agonist-induced glycogenolysis and vasoconstriction in the perfused liver was unaffected by isoproterenol infusion. Glucagon (2.3 nM) had no effect on the glycogenolytic or vasoconstrictive responses of the liver to AGEPC despite the fact that glucagon increased hepatic cAMP levels to a far greater extent than isoproterenol. Additionally, inhibition of the hepatic responses to AGEPC by isoproterenol occurred in perfused livers from mature rats (i.e. greater than 300 g) in which liver parenchymal cells lack functional beta-adrenergic receptors. The data presented in this study illustrate a specific inhibition of AGEPC-induced hepatic glycogenolysis and vasoconstriction by beta-adrenergic stimulation of the perfused liver. This inhibition appears to be mediated by interaction of isoproterenol with nonparenchymal cells within the liver. These findings are consistent with the concept that AGEPC stimulates hepatic glycogenolysis by an indirect mechanism involving hepatic vasoconstriction.  相似文献   

3.
K+ efflux in mouse macrophages exhibited a rate constant (kK) of 0.67 +/- 0.04 (h)-1 (mean +/- SEM of 16 experiments). This was strongly stimulated by increasing concentrations of the Ca2+ ionophore A23187 up to a maximal value of 4.01 +/- 0.25 (h)-1 with an IC50 of 7.6 +/- 1.9 microM (mean +/- SEM of 6 experiments). Similar results were obtained with the Ca2+ ionophore ionomycin. Binding experiments with 3H-dihydroalprenolol revealed a high density of beta-adrenergic receptors (97.5 +/- 5.2 fmol/mg protein) with apparent dissociation constant of 2.03 +/- 0.06 nM. Isoproterenol at a concentration of 10(-6)-10(-5) M induced a two- to threefold stimulation of endogenous levels of cyclic AMP (cAMP). A23187-stimulated K+ efflux was partially inhibited by stimulation of adenylate cyclase with isoproterenol, forskolin or, PGE1; exogenous cAMP; and inhibition of phosphodiesterase with MIX (1-methyl-3-isobutylxanthine). Maximal inhibition of K+ efflux was obtained by simultaneous addition of isoproterenol and MIX. In dose-response curves, the isoproterenol-sensitive K+ efflux was half-maximally inhibited (IC50) with 2-5 X 10(-10) M of isoproterenol concentration. Propranolol was able to completely block the effect of isoproterenol, with an IC50 of about 1-2 X 10(-7) M. Isoproterenol and MIX were also able to partially inhibit ionomycin-stimulated K+ efflux. Isoproterenol and MIX did not inhibit A23187-stimulated K+ efflux in an incubation medium where NaCl was replaced by sucrose (or choline), suggesting the involvement of an Na+:Ca2+ exchange mechanism. Our results show that stimulation of beta-adrenoceptors in mouse macrophages counterbalances the opening of K+ channels induced by the calcium ionophore A23187. This likely reflects a decrease in cytosolic free calcium content via a cAMP-mediated stimulation of Na+:Ca2+ exchange.  相似文献   

4.
The potential involvement of vicinal dithiols in the expression of platelet-activating factor (AGEPC)- and A23187-induced alterations in rabbit platelets was explored through the use of phenylarsine oxide (PhAsO) and certain analogous derivatives. PhAsO (As3+) but not phenylarsonic acid (As5+) inhibited markedly at 1 microM concentration the release of arachidonic acid initiated by AGEPC and the ionophore A23187. In contrast, AGEPC-induced phosphatidic acid formation, phosphorylation of 40- and 20-kDa proteins, and Ca2+ uptake from external medium were not inhibited substantially by 1 microM PhAsO. However, these latter metabolic responses to AGEPC were inhibited by PhAsO at higher doses (10 microM). AGEPC- and thrombin-induced platelet aggregation and serotonin secretion also were prevented by PhAsO. The IC50 value of PhAsO was 2.7 +/- 1.2 microM toward AGEPC (5 X 10(-10) M)-induced serotonin release. Further, ATP and cAMP levels in PhAsO-treated platelets were not changed from controls. Interestingly, addition of Ca2+ to platelet sonicates (prepared in EDTA) caused diacylglycerol production and free arachidonic acid formation, even in the presence of 133 microM PhAsO. This would suggest that in the intact platelets PhAsO acted indirectly on phospholipase A2 and/or phospholipase C activities. Finally, a dithiol compound, 2,3-dimercaptopropanol, reversed the inhibition of platelet aggregation and arachidonic acid release effected by PhAsO. On the other hand, a monothiol compound, 2-mercaptoethanol, was not effective in preventing or in reversing the action of PhAsO. These observations suggest that vicinal sulfhydryl residues may be involved in stimulus-induced platelet activation.  相似文献   

5.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

6.
The calcium-sensitive, fluorescent dye Quin 2 was used to quantitate changes in free intracellular calcium [( Ca2+]i) induced in platelets by the phospholipid platelet-activating factor 1-O-alkyl-2-acetyl-SN-glycero-3-phosphorylcholine (AGEPC). The Ca2+]i of unstimulated platelets was 91 +/- 18 nM (mean +/- SD, n = 8), and treatment with 1 to 16 nM AGEPC increased [Ca2+]i in a dose-related manner, with 16 nM AGEPC increasing [Ca2+]i by 102 +/- 20 nM. [Ca2+]i was not increased by analogs of AGEPC which do not activate platelets including the lysophospholipid precursor of AGEPC, the optical isomer, and a C-2 benzoyl analog. The capacity of AGEPC to increase [Ca2+]i exceeded that required to induce maximal platelet aggregation. In four experiments, 100% platelet aggregation was induced by 4.5 +/- 2.4 nM AGEPC (mean +/- SD) and was associated with a submaximal increase in [Ca2+]i of 56 +/- 22 nM. Pretreatment of platelets with AGEPC rendered the platelets specifically unresponsive to repeat stimulation with AGEPC in terms of both platelet aggregation and increased [Ca2+]i, whereas the platelet response to thrombin was undiminished by pretreatment with AGEPC. In contrast, the platelet response to 0.5 microM calcium ionophore A23187 was undiminished by pretreatment with the same concentration of ionophore, suggesting that AGEPC does not activate platelets by an ionophore-like mechanism. IgG aggregates and AGEPC in combination activate platelets synergistically, as shown by the observation that a 1-min exposure of platelets to 60 micrograms/ml of IgG aggregates increased the platelet aggregation response to 2 nM AGEPC from 44 to 100%. In contrast, sequential exposure of platelets to IgG aggregates and AGEPC increased [Ca2+]i additively, suggesting that increased [Ca2+]i contributes to but does not fully mediate synergistic platelet activation by IgG aggregates and AGEPC. Quantitation of free intracellular calcium with the fluorescent dye Quin 2 is a highly sensitive technique for delineating the role of calcium in mediating platelet activation.  相似文献   

7.
Plasma membrane vesicles from a glucose-responsive insulinoma exhibited properties consistent with the presence of a membrane Na+/Ca2+ exchange. The exchange was rapid, reversible, and was dependent on the external Ca2+ concentration (Km = 4.1 +/- 1.1 microM). External Na+ inhibited the uptake in a dose-dependent manner (IC50 = 15 mM). Dissipation of the Na+ gradient by 10 microM monensin decreased Na+/Ca2+ exchange from 0.74 +/- 0.17 nmoles/mg protein/s to 0.11 +/- 0.05 nmoles/mg protein/s. Exchange was not influenced by veratridine, tetrodotoxin and ouabain, or by modifiers of cAMP. No effect was seen using the calcium channel blockers, nitrendipine or nifedipine. Glucose had no direct effect on Na+/Ca2+ exchange, while glyceraldehyde, glyceraldehyde-3-phosphate and dihydroxyacetone inhibited the exchange. Na+ induced efflux of calcium was seen in Ca2+ loaded vesicles and was half maximal at [Na+] of 11.1 +/- 0.75 mM. Ca2+ efflux was dependent on [Na+], with a Hill coefficient of 2.7 +/- 0.07 indicating that activation of Ca2+ release involves a minimum of three sites. The electrogenicity of this exchange was demonstrated using the lipophilic cation tetraphenylphosphonium [( 3H]-TPP), a membrane potential sensitive probe. [3H]-TPP uptake increased transiently during Na+/Ca2+ exchange indicating that the exchange generated a membrane potential. These results show that Na+/Ca2+ exchange operates in the beta cell and may be an important regulator of intracellular free Ca2+ concentrations.  相似文献   

8.
Recently it has been suggested [(1987) Nature 325, 456-458; (1987) FEBS Lett. 212, 123-126] that the activation of Na+/H+ exchange is a prerequisite for platelet aggregation and the development of the Ca2+ signal. As direct evidence for the role of the Na+/H+-exchange pathway the inhibition of the Ca2+ signal by EIPA, a specific inhibitor of Na+/H+ exchange, was offered. Here we demonstrate that low concentrations of EIPA (below 1 microM) completely block Na+/H+ exchange while EIPA inhibits aggregation or Ca2+ mobilization only in concentrations 100-times greater than 1 microM. Moreover, another amiloride analogue, CBDMB, developed to act predominantly on Na+/Ca2+ exchange, does not affect Na+/H+ exchange in platelets but blocks aggregation and Ca2+ mobilization. We conclude that while Na+/H+ exchange has a fundamental role in platelet functions it is not prerequisite for the development of Ca2+ signal and aggregation.  相似文献   

9.
According to recent observations ADP stimulates platelets via activation of Na+/H+ exchange which increases cytosolic pH (pHi). This event initiates formation of thromboxane A2 (via phospholipase A2) and, thereafter, inositol 1,4,5-trisphosphate (via phospholipase C) which is known to mobilize Ca2+ from intracellular storage sites. We investigated changes in pHi and cytosolic free Ca2+, [Ca2+]i, activating platelets with ADP and the thromboxane mimetic U 46619. We found that ADP (5 microM) increased pHi from 7.15 +/- 0.08 to 7.35 +/- 0.04 (n = 8) in 2'-7'-bis-(carboxyethyl)-5,6-carboxyfluorescein-loaded platelets, whereas thromboxane A2 formation was inhibited by indomethacin. ADP also induced a dose-dependent Ca2+ mobilization in fura2-loaded platelets which again was not affected by indomethacin. [Ca2+]i increased by 54 +/- 10 nM (n = 8) at 1 microM and by 170 +/- 40 nM (n = 7) at 10 microM ADP above the resting value of 76 +/- 12 nM (n = 47). Inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA) reduced ADP-induced Ca2+ mobilization by more than 65% in indomethacin-treated platelets. This inhibition could be completely overcome by artificially raising pHi using either NH4Cl or the Na+/H+ ionophore monensin. We found that U 46619 increased pHi by 0.18 +/- 0.05 at 0.1 microM and by 0.29 +/- 0.07 (n = 7) at 1.0 microM above the resting value via an EIPA-sensitive mechanism. In conflict with the proposed role of the Na+/H+ exchange we found that U 46619 raised [Ca2+]i via a mechanism that for more than 50% depended on intact Na+/H+ exchange. Again, artificially elevating pHi restored U 46619-induced Ca2+ mobilization despite the presence of EIPA. Thus, our data show that Na+/H+ exchange is a common step in platelet activation by prostaglandin endoperoxides/thromboxane A2 and ADP and enhances Ca2+ mobilization independently of phospholipase A2 activity.  相似文献   

10.
Cardiac cells in culture (from rat and chick heart) have a membrane Na+/H+ exchange system that is inhibited by amiloride (K0.5 = 5 microM) and by its more potent N-5-disubstituted derivatives dimethylamiloride (K0.5 = 300 nM) and ethylisopropylamiloride (K0.5 = 30 nM). The properties of the cardiac Na+/H+ exchange system are similar to those found for the Na+/H+ exchanger in other cellular types. The Na+/H+ exchange system is a major pathway for Na+ uptake by cardiac cells. Ouabain which inhibits the (Na+,K+)-ATPase, a major pathway for Na+ efflux, is known to provoke Na+ accumulation and to stimulate 45Ca2+ entry via the Na+/Ca2+ exchange mechanism, thereby producing an inotropic effect. N-5-Disubstituted amiloride derivatives, by blocking Na+ entry into cardiac cells, antagonize both ouabain-induced intracellular Na+ accumulation and the ouabain-induced acceleration of 45Ca2+ uptake.  相似文献   

11.
When myo-2-[3H]inositol-labeled rabbit platelets were stimulated with 1 X 10(-9)M sn-3-AGEPC (platelet activating factor) for 5 s, the levels of [3H]inositol monophosphate (IP), [3H]inositol diphosphate (IP2), and [3H]inositol triphosphate (IP3) increased about 1.5-, 3-, and 5-fold, respectively. Formation of these inositol polyphosphates was strikingly independent of extracellular Ca2+. Inactive analogs of sn-3-AGEPC, i.e., lysoGEPC and stereoisomer sn-1-AGEPC, did not cause production of any inositol polyphosphate. Pretreatment of platelets with indomethacin (5 microM) had little effect on this phenomenon. On the other hand, a platelet activating factor antagonist, CV-3988, blocked the AGEPC-stimulated production of radioactive IP, IP2, and IP3. Similarly forskolin, an activator of adenylate cyclase, at 5 microM or above completely abolished AGEPC-induced aggregation, [3H]serotonin secretion, and formation of [3H]inositol polyphosphates. In the light of the emerging role of AGEPC in inflammation, hypotension, and other cardiovascular processes, studies with platelets reported here indicate that forskolin could be a useful tool for manipulating AGEPC responses. It is further concluded that AGEPC-induced formation of inositol polyphosphate is an early response "specific" to AGEPC, mediated via extracellular Ca2+-independent phosphoinositide phosphodiesterase, and could play a role in intracellular Ca2+ mobilization and platelet shape change.  相似文献   

12.
1. The effect of nitroprusside on cGMP concn., cAMP concn., shape change, aggregation, intracellular free Ca2+ concn. (by quin-2 fluorescence) and Mn2+ entry (by quenching of quin-2) was investigated in human platelets incubated with 1 mM-Ca2+ or 1 mM-EGTA. 2. Nitroprusside (10 nM-10 microM) caused similar concentration-dependent increases in platelet cGMP concn. and was without effect on cAMP concn. in the presence of extracellular Ca2+ or EGTA. 3. In ADP (3-6 microM)-stimulated platelets, nitroprusside caused 50% inhibition of shape change at 0.4 microM (+Ca2+) or 1.3 microM (+EGTA), aggregation at 0.09 microM (+Ca2+) and of increased intracellular Ca2+ at 0.02 microM (+Ca2+) or 2.1 microM (+EGTA). Entry of 1 mM-Mn2+ (-Ca2+) was inhibited by 80% by 5 microM-nitroprusside. 4. In ionomycin (20-500 nM)-stimulated platelets, nitroprusside (10 nM-100 microM) did not inhibit shape change or intracellular-Ca2+-increase responses, and only partially inhibited aggregation. 5. In phorbol myristate acetate (10 nM)-stimulated platelets, neither shape change nor aggregation was inhibited by 5 microM-nitroprusside. 6. The data demonstrate that nitroprusside inhibits ADP-mediated Ca2+ influx more potently than Ca2+ mobilization. Nitroprusside appears not to influence Ca2+ efflux or sequestration and not to affect the sensitivity of the activation mechanism to intracellular Ca2+ concn. or activation of protein kinase C.  相似文献   

13.
Sarcoplasmic reticulum (SR) Ca2+ release and plasma membrane Ca2+ influx are key to intracellular Ca2+ ([Ca2+]i) regulation in airway smooth muscle (ASM). SR Ca2+ depletion triggers influx via store-operated Ca2+ channels (SOCC) for SR replenishment. Several clinically relevant bronchodilators mediate their effect via cyclic nucleotides (cAMP, cGMP). We examined the effect of cyclic nucleotides on SOCC-mediated Ca2+ influx in enzymatically dissociated porcine ASM cells. SR Ca2+ was depleted by 1 microM cyclopiazonic acid in 0 extracellular Ca2+ ([Ca2+]o), nifedipine, and KCl (preventing Ca2+ influx through L-type and SOCC channels). SOCC was then activated by reintroduction of [Ca2+]o and characterized by several techniques. We examined cAMP effects on SOCC by activating SOCC in the presence of 1 microM isoproterenol or 100 microM dibutryl cAMP (cell-permeant cAMP analog), whereas we examined cGMP effects using 1 microM (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO nitric oxide donor) or 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (cell-permeant cGMP analog). The role of protein kinases A and G was examined by preexposure to 100 nM KT-5720 and 500 nM KT-5823, respectively. SOCC-mediated Ca2+ influx was dependent on the extent of SR Ca2+ depletion, sensitive to Ni2+ and La3+, but not inhibitors of voltage-gated influx channels. cAMP as well as cGMP potently inhibited Ca2+ influx, predominantly via their respective protein kinases. Additionally, cAMP cross-activation of protein kinase G contributed to SOCC inhibition. These data demonstrate that a Ni2+/La3+-sensitive Ca2+ influx in ASM triggered by SR Ca2+ depletion is inhibited by cAMP and cGMP via a protein kinase mechanism. Such inhibition may play a role in the bronchodilatory response of ASM to clinically relevant drugs (e.g., beta-agonists vs. nitric oxide).  相似文献   

14.
The influence of variation in the extracellular concentrations of Na+, Mg2+, and Ca2+ in the depolarizing medium on isoproterenol-induced increases in cAMP levels and relaxation was studied in rat uterus. Isoproterenol (10(-8) M) failed to increase cAMP levels in the high-K+ medium containing no Na+. When 80 mM Na+ was present in the medium, isoproterenol caused increases in cAMP levels similar to those observed in nondepolarized uterus. A similar effect of 2.5 mM Mg2+ was observed on the cAMP response. These effects of Na+ and Mg2+ were antagonized by increasing the extracellular concentration of Ca2+. The simultaneous presence of 80 mM Na+ and 2.5 mM Mg2+ did not produce an additive effect on the cAMP responses.  相似文献   

15.
Ca(2+)-dependent activation of citric acid cycle enzymes has been demonstrated in isolated cardiac mitochondria. These observations led to the hypothesis that Ca2+ is the signal coupling myofibrillar energy use to mitochondrial energy production in vivo. To test this hypothesis we have measured mitochondrial Ca2+ content during increased energy demand, using electron probe microanalysis. Mitochondrial Ca2+ was measured in hamster papillary muscles rapidly frozen at the peak rate of tension rise under control conditions and after stimulation with the beta-adrenergic agonist isoproterenol (10(-6) M). A third group of muscles was frozen after incubation in low (46.5 mM) Na+ solution to Ca2+ load the cells. Pyruvate dehydrogenase activity was measured in each of the muscles. Isoproterenol caused a 39% increase in force and a 43% increase in pyruvate dehydrogenase activity but no change in mitochondrial Ca2+ (0.46 +/- 0.19 (S.E.) mmol of Ca2+/kg, dry weight) compared with control (0.54 +/- 0.12). In contrast, low Na+ increased pyruvate dehydrogenase activity by 56% and also elevated mitochondrial Ca2+ to 1.28 +/- 0.31 (p less than 0.02). These results demonstrate that mitochondrial Ca2+ is not elevated after inotropic stimulation of cardiac muscle by beta-adrenergic agonists although pyruvate dehydrogenase activity is increased. We conclude that Ca2+ uptake by mitochondria is not a requirement for activation of mitochondrial respiration after increased energy demand.  相似文献   

16.
The effect of cAMP on active Ca2+ extrusion across the plasma membrane of intact human platelets was studied using quin2, a fluorimetric indicator of free Ca2+ in the cytoplasmic compartment ([Ca2+]cyt). Elevations of cAMP were achieved by incubation with dibutyryl-cAMP or by forskolin, which was found to selectively elevate cAMP without affecting cGMP levels. Progress curves of Ca2+ extrusion from quin2-overloaded platelets were measured. The rate vs. [Ca2+]cyt characteristic was calculated as previously described (Johansson, J.S. and Haynes, D.H. (1988) J. Membr. Biol. 104, 147-163). Forskolin, at a maximally effective concentration of 10 microM, was shown to stimulate Ca2+ extrusion by increasing by a factor of 1.6 +/- 0.5 the Vm of a saturable component, previously identified with a Ca(2+)-Mg(2+)-ATPase located in the plasma membrane. Neither the Km (80 nM) or Hill coefficient (1.7 +/- 0.3) of the Ca(2+)-ATPase was affected. Forskolin had no effect on the linear, non-saturable component of extrusion (previously identified with a Na+/Ca2+ exchanger) over the [Ca2+]cyt range examined (50-1500 nM). Dibutyryl-cAMP (Bt2-cAMP, 1 mM) stimulated the Ca(2+)-Mg(2+)-ATPase component of Ca2+ extrusion by a factor of 2.0 +/- 0.6. Separate experiments showed that 10 microM forskolin reduces the resting [Ca2+]cyt from 112 nM to 96 nM. Mathematical analysis showed that this can be accounted for by the above-mentioned increase in Vm of the pump, countered by a 37-74% increase in the rate constant for passive Ca2+ leakage across the plasma membrane. The results suggest two mechanisms by which prostacyclin-induced elevation of cAMP inhibits platelet aggregation: (a) lowering of resting [Ca2+]cyt and (b) increasing the rate of Ca2+ extrusion after the initial influx or triggered release event.  相似文献   

17.
In the present study, effects of the alpha(2)- and beta-adrenoceptor agonists clonidine and isoproterenol on astrocytes in astroglial/neuronal cocultures from rat cerebral cortex were evaluated. The calcium- and potassium-sensitive dyes fura-2 and potassium-binding benzofuran isophtalate (PBFI) were used to study alterations in intracellular concentrations of calcium ([Ca(2+)](i)) and potassium ([K(+)](i)), respectively, while the perforated patch clamp technique was used to analyze transmembrane currents. Exposure to isoproterenol or clonidine elicited an immediate increase in [Ca(2+)](i) that was totally abolished in calcium-free extracellular media. Isoproterenol also decreased [K(+)](i), but clonidine did not. The reduction in [K(+)](i) was inhibited in Ca(2+)-free media. As evaluated with the perforated patch technique, isoproterenol (10(-6)-10(-4) M) induced a slowly developing and long lasting outward current that also was totally abolished in calcium-free buffer. This current was blocked by external tetraethylammonium (TEA, 10 mM) and charybdotoxin (ChTX, 10 nM), but was not affected by apamin (50 nM). The current-to-voltage (I-V) relationships for the isoproterenol-induced currents showed a markedly negative reversal potential, -96 mV+/-7, (mean+/-S.D., n=5). These results suggest that the stimulation of astroglial beta-adrenoceptors by isoproterenol opens calcium-activated potassium channels (K((Ca))). Preincubation with forskolin significantly increased the isoproterenol-induced currents compared with controls, indicating that the opening of astroglial K((Ca)) channels after beta-adrenergic stimulation not only depends on [Ca(2+)](i) but also synergistically involves the cAMP transduction system to which beta-adrenoceptors are known to be positively coupled.  相似文献   

18.
We studied the effect of adenosine on Na+/Ca2+ exchange activity in ewe heart ventricular sarcolemmal vesicles. Adenosine was found to stimulate Na+/Ca2+ exchange activity in a dose-dependent manner from 0.1 nM to 10 microM, with maximal stimulation (40%) at 0.1 microM adenosine. The Vmax of Na+/Ca2+ exchange was increased, but the Km for Ca2+ was not altered. The effect of adenosine was specific since 1 microM adenine, inosine, and guanosine led to less than 15% stimulation, and adenosine diphosphate had no effect. Caffeine antagonized the activation of Na+/Ca2+ exchange by adenosine, and the order of potency of adenosine analogs was N6-(L-2-phenylisopropyl)adenosine = N6-cyclohexyladenosine = 5'-(N- ethylcarboxamido)adenosine much greater than N6-(D-2-phenylisopropyl)adenosine, indicating the involvement of A1 subclass receptors. The effect of adenosine was mimicked by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and blocked by pertussis toxin treatment. Taken together, these results suggest that A1 subclass receptors coupled to a pertussis toxin-sensitive G protein mediate the activation of Na+/Ca2+ exchange activity by adenosine. We conclude that the negative inotropic effect of adenosine in ventricular muscle, antagonistic toward cyclic AMP, may involve activation of Na+/Ca2+ exchange.  相似文献   

19.
Mechanisms by which beta-adrenergic receptor (beta AR) agonists inhibit proliferation of human airway smooth muscle (HASM) cells were investigated because of their potential relevance to smooth muscle hyperplasia in asthma. We hypothesized that beta AR agonists would inhibit mitogenesis in HASM cells via the beta 2AR, an increase in cAMP, and PKA activation. HASM cells were treated for 24 h with various agents and then analyzed for [3H]thymidine incorporation as a measure of cell proliferation. EGF stimulated proliferation by approximately 10-fold. The nonselective beta AR agonist isoproterenol and the beta 2AR-selective agonists albuterol and salmeterol inhibited EGF-stimulated proliferation by more than 50%, with half-maximal effects at 4.8 nM, 110 nM, and 6.7 nM, respectively. A beta 2AR-selective antagonist inhibited the isoproterenol effect with 100-fold greater potency than a beta 1AR-selective antagonist, confirming beta 2AR involvement in the inhibition of proliferation. The cAMP-elevating agents PGE2 and forskolin decreased EGF-induced proliferation, suggesting cAMP as the mediator. beta 2AR agonists and forskolin also inhibited proliferation stimulated by lysophosphatidic acid (LPA) as well as the synergistic proliferation stimulated by LPA+EGF. Importantly, PKA-selective cAMP analogs did not inhibit proliferation at concentrations that maximally activated PKA (10-100 microM), whereas a cAMP analog selective for the exchange protein directly activated by cAMP (EPAC), 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, maximally inhibited proliferation at a concentration that did not activate PKA (10 microM). These data show that beta 2AR agonists and other cAMP-elevating agents decrease proliferation in HASM cells via a PKA-independent mechanism, and they provide pharmacological evidence for involvement of EPAC or an EPAC-like cAMP effector protein instead.  相似文献   

20.
Secretion of beta-endorphin from mouse pituitary AtT20 cells is stimulated by a variety of compounds that raise intracellular cAMP and Ca2+. To investigate the role of cAMP-dependent protein kinases in secretion, AtT20 cells were transfected with an expression vector coding for a regulatory (R) subunit of cAMP-dependent protein kinase containing mutations in both cAMP-binding sites. Expression of the mutant regulatory subunit in stable transformants (RAB cells) results in a dominant inhibition of cAMP-dependent protein kinase activity. Isoproterenol (1 microM) or analogs of cAMP stimulated beta-endorphin secretion from AtT20 cells, but failed to stimulate secretion in RAB cells expressing the mutant R subunit. Secretion in response to CRF (100 nM) was inhibited by 80% in these mutant clones, whereas the secretory response to vasoactive intestinal peptide (VIP; 100 nM) or phorbol ester (100 nM phorbol myristate acetate) was not inhibited by the R subunit mutation. Intracellular cAMP was elevated in response to CRF (11- to 15-fold), isoproterenol (5- to 10-fold), and VIP (4- to 8-fold) in RAB cells. Similar concentrations of VIP were required to evoke beta-endorphin secretion in either RAB cells or AtT20 cells. As with most secretagogues, VIP-induced secretion was inhibited in the presence of either EGTA or a voltage-sensitive Ca2+ channel antagonist, PN200-110. The secretory response to VIP was unaffected by down-regulation of protein kinase-C. These results suggest that CRF and isoproterenol work via cAMP-dependent protein kinase to activate beta-endorphin secretion, whereas VIP can act by a different mechanism that does not involve cAMP-dependent protein kinase or protein kinase-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号