首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically found in land plants and green algae. Using PsbP-RNAi tobacco, we have investigated effects of PsbP knockdown on protein supercomplex organization within the thylakoid membranes and photosynthetic properties of PSII. In PsbP-RNAi leaves, PSII dimers binding the extrinsic PsbO protein could be formed, while the light-harvesting complex II (LHCII)-PSII supercomplexes were severely decreased. Furthermore, LHCII and major PSII subunits were significantly dephosphorylated. Electron microscopic analysis showed that thylakoid grana stacking in PsbP-RNAi chloroplast was largely disordered and appeared similar to the stromally-exposed or marginal regions of wild-type thylakoids. Knockdown of PsbP modified both the donor and acceptor sides of PSII; In addition to the lower water-splitting activity, the primary quinone QA in PSII was significantly reduced even when the photosystem I reaction center (P700) was noticeably oxidized, and thermoluminescence studies suggested the stabilization of the charged pair, S2/QA. These data indicate that assembly and/or maintenance of the functional MnCa cluster is perturbed in absence of PsbP, which impairs accumulation of final active forms of PSII supercomplexes.  相似文献   

2.
In order to investigate the role and function of the hydrophilic region between transmembrane regions V and CI in the photosystem II core antenna protein CP43, we introduced eight different deletions in psbC of Synechocystis sp; PCC 6803 resulting in a loss of 7–11 codons in evolutionary conserved domains in this region. All deletions resulted in an obligate photoheterotrophic phenotype (requirement of glucose for cell growth) and the absence of any detectable oxygen evolution activity. The various deletion mutations showed a different impact on the amount of CP43 in the thylakoid, ranging from wild-type levels of (a now slightly smaller) CP43 to no detectable CP43 at all. All deletions led to a decrease in the amount of the D1 and D2 proteins in the thylakoids with a larger effect on D2 than on D1. CP47, the other major chlorophyll-binding protein, was present in reduced but significant amounts in the thylakoid. Herbicide binding (diuron) was lost in all but one mutant indicating the PSII components are not assembled into functionally intact complexes. Fluorescence-emission spectra confirmed this notion. This indicates that the large hydrophilic loop of CP43 plays an important role in photosystem II, and even though a shortened CP43 is present in thylakoids of most mutants, functional characteristics resemble that of a mutant with interrupted psbC.Abbreviations CP chlorophyll-binding protein - DCPIP 2,6-dichlorophenolindophenol - DPC diphenylcarbazide - ferricyanide K3Fe(CN)6 - HEPES N-(2-hydroxyelthyl)piperazine-N-(2-hydroxypropane sulfonic acid) - MES 2-(N-morpholino)-ethanesulfonic acid - PCC Pasteur Culture Collection - PCR polymerase chain reaction - PS photosystem - QA first quinone acceptor in PSII - QB second quinone acceptor in PSII - Z redox-active tyrosine (Y161) in D1 serving as electron carrier between the Mn cluster and P680  相似文献   

3.
Chlorophyll fluorescence is routinely taken as a quantifiable measure of the redox state of the primary quinone acceptor QA of PSII. The variable fluorescence in thylakoids increases in a single turnover flash (STF) from its low dark level F o towards a maximum F mSTF when QA becomes reduced. We found, using twin single turnover flashes (TTFs) that the fluorescence increase induced by the first twin-partner is followed by a 20–30% increase when the second partner is applied within 20–100 μs after the first one. The amplitude of the twin response shows a period-of-four oscillation associated with the 4-step oxidation of water in the Kok cycle (S states) and originates from two different trapped states with a life time of 0.2–0.4 and 2–5 ms, respectively. The oscillation is supplemented with a binary oscillation associated with the two-electron gate mechanism at the PSII acceptor side. The F(t) response in high frequency flash trains (1–4 kHz) shows (i) in the first 3–4 flashes a transient overshoot 20–30% above the F mSTF = 3*F o level reached in the 1st flash with a partial decline towards a dip D in the next 2–3 ms, independent of the flash frequency, and (ii) a frequency independent rise to F m = 5*F o in the 3–60 ms time range. The initial overshoot is interpreted to be due to electron trapping in the S0 fraction with QB-nonreducing centers and the dip to the subsequent recovery accompanying the reoxidation of the double reduced acceptor pair in these RCs after trapping. The rise after the overshoot is, in agreement with earlier findings, interpreted to indicate a photo-electrochemical control of the chlorophyll fluorescence yield of PSII. It is anticipated that the double exciton and electron trapping property of PSII is advantageous for the plant. It serves to alleviate the depression of electron transport in single reduced QB-nonreducing RCs, associated with electrochemically coupled proton transport, by an increased electron trapping efficiency in these centers.  相似文献   

4.
Ryo Nagao  Sho Kitazaki  Takumi Noguchi 《BBA》2018,1859(2):129-136
Light-induced Fourier transformed infrared (FTIR) difference spectroscopy is a powerful method to study the structures and reactions of redox cofactors involved in the photosynthetic electron transport chain. So far, most of the FTIR studies of the reactions of oxygenic photosynthesis have been performed using isolated photosystem I (PSI) and photosystem II (PSII) preparations, which, however, could be modified during isolation procedures. In this study, we developed a methodology to evaluate the photosynthetic activities of thylakoids using FTIR spectroscopy. FTIR difference spectra upon successive flashes using thylakoids from spinach exhibited signals typical of the S-state cycle at the Mn4CaO5 cluster and QB reactions in PSII with period-four and -two oscillations, respectively. Similar measurement in the presence of an artificial quinone as an exogenous electron acceptor showed features specific to the S-state cycle. Simulations of the oscillation patterns provided the quantum efficiencies of the S-state cycle and electron transfer in PSII. Moreover, FTIR measurement under continuous illumination on thylakoids in the presence of DCMU showed signals due to QA reduction and P700 oxidation simultaneously. From the relative amplitudes of marker bands of QA? and P700+, the molar ratio of photoactive PSII and PSI centers in thylakoids was estimated. FTIR analyses of the photo-reactions in thylakoids, which are more intact than isolated photosystems, will be useful in investigations of the photosynthetic mechanism especially by genetic modification of photosystem proteins.  相似文献   

5.
To analyze the role of phosphatidylglycerol (PG) in photosynthetic membranes of cyanobacteria we used two mutants of Synechocystis sp. PCC6803: the PAL mutant which has no phycobilisomes and shows a high PSII/PSI ratio, and a mutant derived from it by inactivating its cdsA gene encoding cytidine 5'-diphosphate diacylglycerol synthase, a key enzyme in PG synthesis. In a medium supplemented with PG the PAL/ΔcdsA mutant cells grew photoautotrophically. Depletion of PG in the medium resulted (a) in an arrest of cell growth and division, (b) in a slowdown of electron transfer from the acceptor QA to QB in PSII and (c) in a modification of chlorophyll fluorescence curve. The depletion of PG affected neither the redox levels of QA nor the S2 state of the oxygen-evolving manganese complex, as indicated by thermoluminescence studies. Two-dimensional PAGE showed that in the absence of PG (a) the PSII dimer was decomposed into monomers, and (b) the CP43 protein was detached from a major part of the PSII core complex. [35S]-methionine labeling confirmed that PG depletion did not block de novo synthesis of the PSII proteins. We conclude that PG is required for the binding of CP43 within the PSII core complex.  相似文献   

6.
The recent crystallographic structure at 3.0 Å resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone QB. The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O2 evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of QA and QB were found in the crystallized PSII. We propose that the extra quinones are located in the QB cavity and serve as a PSII intrinsic pool of electron acceptors.  相似文献   

7.
The effects of Photosystem II inhibiting herbicides, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), atrazine and two novel 2-benzylamino-1,3,5-triazine compounds, on photosynthetic oxygen evolution and chlorophyll a fluorescence induction were measured in thylakoids isolated from Chenopodium album (wild type and atrazine-resistant plants) and cyanobacterial intact cells. The resistant plants have a mutation of serine for glycine at position 264 of the D1 protein. Diuron and two members of a novel class of 2-benzylamino-1,3,5-triazine compounds were almost as active in wild-type as in atrazine-resistant thylakoids, indicating that the benzylamino substitution in the novel triazines may be important for the lack of resistance in these atrazine-resistant plants. The inhibition by the herbicides of oxygen evolution in the cyanobacteria was somewhat lower than in the thylakoids of Chenopodium album wild type, probably caused by a slower uptake in the intact cells. The so-called OJIP fluorescence induction curve was measured during a one second light pulse in the absence and in the presence of high concentrations of the four herbicides. In the presence of a herbicide we observed an increase of the initial fluorescence at the origin (Fo′), a higher J level, and a decreased steady state at its P level (Fp). The increase to Fo′ and the decreased leveling Fp are discussed. After dark adaptation about 25% of the reaction centers are in the S0 state of the oxygen evolving complex with an electron on the secondary electron accepting quinone, QB. The addition of a herbicide causes a transfer of the electron on QB to the primary quinone acceptor, QA, and displacement of QB by the herbicide; the reduced QA leads to a higher Fo′. The decrease of Fp in the presence of the herbicides is suggested to be caused by inhibition of the photo-electrochemical stimulation of the fluorescence yield. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The nature of Cu2+ inhibition of photosystem II (PSII) photochemistry in pea (Pisum sativum L.) thylakoids was investigated monitoring Hill activity and light emission properties of photosystem II. In Cu2+-inhibited thylakoids, diphenyl carbazide addition does not relieve the loss of Hill activity. The maximum yield of fluorescence induction restored by hydroxylamine in Tris-inactivated thylakoids is markedly reduced by Cu2+. This suggests that Cu2+ does not act on the donor side of PSII but on the reaction center of PSII or on components beyond. Thermoluminescence and delayed luminescence studies show that charge recombination between the positively charged intermediate in water oxidation cycle (S2) and negatively charged primary quinone acceptor of pSII (QA) is largely unaffected by Cu2+. The S2QB charge recombination, however, is drastically inhibited which parallels the loss of Hill activity. This indicates that Cu2+ inhibits photosystem II photochemistry primarily affecting the function of the secondary quinone electron acceptor, QB. We suggest that Cu2+ does not block electron flow between the primary and secondary quinone acceptor but modifies the QB site in such a way that it becomes unsuitable for further photosystem II photochemistry.  相似文献   

9.
Photochemical efficiencies of photosystem I (PSI) and photosystem II (PSII) were studied in dry thalli of the lichen Hypogymnia physodes and during their re-hydration. In dry thalli, PSII reaction centers are photochemically inactive, as evidenced by the absence of variable chlorophyll (Chl) fluorescence, whereas the primary electron donor of PSI, P700, exhibits irreversible oxidation under continuous light. Upon application of multiple- and, particularly, single-turnover pulses in dry lichen, P700 oxidation partially reversed, which indicated recombination between P700+ and the reduced acceptor FX of PSI. Re-wetting of air-dried H. physodes initiated the gradual restoration of reversible light-induced redox reactions in both PSII and PSI, but the recovery was faster in PSI. Two slow components of P700+ reduction occurred after irradiation of partially and completely hydrated thalli with strong white light. In contrast, no slow component was found in the kinetics of re-oxidation of QA, the reduced primary acceptor of PSII, after exposure of such thalli to white light. This finding indicated the inability of PSII in H. physodes to provide the reduction of the plastoquinone pool to significant levels. It is concluded that slow alternative electron transport routes may contribute to the energetics of photosynthesis to a larger extent in H. physodes than in higher plants.Abbreviations A0 and A1 Primary acceptor chlorophyll and secondary electron acceptor phylloquinone - Chl a Chlorophyll a - Fm Maximal level of chlorophyll fluorescence when all PSII centers are closed - Fo Minimal level of fluorescence when all PSII centers are open after dark adaptation - FR Far-red - Fv Variable fluorescence (=FmFo) - FX, FA, and FB Iron–sulfur centers - MT pulse Multiple-turnover pulse - PS Photosystem - P700 Reaction center chlorophyll of PSI - QA Primary quinone acceptor of PSII - QB Secondary quinone acceptor of PSII - ST pulse Single-turnover pulse  相似文献   

10.
The functional state of the Photosystem (PS) II complex in Arabidopsis psbR T-DNA insertion mutant was studied. The ΔPsbR thylakoids showed about 34% less oxygen evolution than WT, which correlates with the amounts of PSII estimated from YDox radical EPR signal. The increased time constant of the slow phase of flash fluorescence (FF)-relaxation and upshift in the peak position of the main TL-bands, both in the presence and in the absence of DCMU, confirmed that the S2QA and S2QB charge recombinations were stabilized in ΔPsbR thylakoids. Furthermore, the higher amount of dark oxidized Cyt-b559 and the increased proportion of fluorescence, which did not decay during the 100s time span of the measurement thus indicating higher amount of YD+QA recombination, pointed to the donor side modifications in ΔPsbR. EPR measurements revealed that S1-to-S2-transition and S2-state multiline signal were not affected by mutation. The fast phase of the FF-relaxation in the absence of DCMU was significantly slowed down with concomitant decrease in the relative amplitude of this phase, indicating a modification in QA to QB electron transfer in ΔPsbR thylakoids. It is concluded that the lack of the PsbR protein modifies both the donor and the acceptor side of the PSII complex.  相似文献   

11.
A method to determine photosynthetic electron transport in thylakoid membranes is described for Gossypium barbadense (cv. Pima S-7) and G. hirsutum (cv. DP 5415). These cultivars differed markedly in tolerance to prometryn, a PS II inhibitor. The rates of photosynthetic electron transport obtained were 245 mole oxygen mg–1 chl h1. Plant age and leaf size influenced the activity of the thylakoid preparations. Thylakoids from leaves of plants 24 to 37 d and 50–70 mm in diameter had the highest activities; thylakoids from cotyledons, fully expanded leaves and young leaves had low activity. Thylakoids from both species had similar photosynthetic activities and I50's for prometryn, atrazine and diuron. Thus, tolerance to prometryn was not due to differential binding at D1 protein.Abbreviations PSII photosystem II - DAP day after planting - DQ duroquinone - DBMIB dibromothymoquinone - DMBQ 2,5-dimethyl-p-benzoquinone - I50 concentration to inhibit reaction by 50% - QA quinone A - QB quinone B  相似文献   

12.
The psbP gene product, the so called 23 kDa extrinsic protein, is involved in water oxidation carried out by Photosystem II. However, the protein is not absolutely required for water oxidation. Here we have studied Photosystem II mediated electron transfer in a mutant of Chlamydomonas reinhardtii, the FUD 39 mutant, that lacks the psbP protein. When grown in dim light the Photosystem II content in thylakoid membranes of FUD 39 is approximately similar to that in the wild-type. The oxygen evolution is dependent on the presence of chloride as a cofactor, which activates the water oxidation with a dissociation constant of about 4 mM. In the mutant, the oxygen evolution is very sensitive to photoinhibition when assayed at low chloride concentrations while chloride protects against photoinhibition with a dissociation constant of about 5 mM. The photoinhibition is irreversible as oxygen evolution cannot be restored by the addition of chloride to inhibited samples. In addition the inhibition seems to be targeted primarily to the Mn-cluster in Photosystem II as the electron transfer through the remaining part of Photosystem II is photoinhibited with slower kinetics. Thus, this mutant provides an experimental system in which effects of photoinhibition induced by lesions at the donor side of Photosystem II can be studied in vivo.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - DPC 2,2-diphenylcarbonic dihydrazide - HEPES 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - P680 the primary electron donor to PS II - PpBQ phenyl-p-benzoquinone - PS II Photosystem II - QA the first quinone acceptor of PS II - QB the second quinone acceptor of PS II - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - TyrD accessory electron donor on the D2-protein - TyrZ tyrosine residue, acting as electron carrier between P680 and the water oxidizing system  相似文献   

13.
Doris Godde  Monika Hefer 《Planta》1994,193(2):290-299
The function of photosystem II (PSII) and the turnover of its D1 reaction-center protein were studied in spinach (Spinacia oleracea L.) plants set under mineral stress. The mineral deficiencies were induced either by supplying the plants with an acidic nutrient solution or by strongly reducing the supply of magnesium alone or together with sulfur. After exposure for 8–10 weeks to the different media, the plants were characterized by a loss of chlorophyll and an increase in starch content, indicating a disturbance in the allocation of assimilates. Depending on the severity of the mineral deficiencies the plants lost their ability to adapt even to moderate iradiances of 400 mol photons·m–2·s–1 and became photoinhibited, as indicated by the decrease in Fv/Fm (the ratio of yield of variable fluorescence to yield of maximal fluorescence when all reaction centers are closed). The loss of PSII function was induced by changes on the acceptor side of PSII. Fast fluorescence decay showed a loss of PSII centers with bound QB, the secondary quinone acceptor of PSII, and a fast reoxidation kinetic of q a - , the primary quinone acceptor of PSII, in the photoinactivated plants. No appreciable change could be observed in the amount of PSII centers with unbound QB and in QB-nonreducing PSII centers. Immunological studies showed that the contents of the D1 and D2 proteins of the PSII reaction center and of the 33-kDa protein of the water-splitting complex were diminished in the photoinhibited plants, and the occurrance of a new polypetide of 14 kDa that reacted with an antibody against the C-termius of the D1 protein. As shown by pulse-labelling experiments with [14C]leucine both degradation and synthesis of the D1 protein were enhanced in the mineral-deficient plants when compared to non-deficient plants. A stimulation of D1-protein turnover was also observed in pH 3-grown plants, which were not inhibited at growth-light conditions. Obviously, stimulation of D1-protein turnover prevented photoinhibition in these plants. However, in the Mg- and Mg/S-deficient plants even a further stimulation of D1-protein turnover could not counteract the increased rate of photoinactivation.Abbreviations amp(f,m,s) amplitude of the fast, (medium and slow) exponential component of fluorescence decay - Fm yield of maximum fluorescenc when all reaction centers are closed - Fo yield of intrinsic fluorescence at open PSII reaction centers in the dark - Fv yield of variable fluorescence, (difference between Fm and Fo) - LHC light-harvesting complex - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII Dedicated to Professor Dr. Dres. hc. Achim Trebst on the occasion of his 65th birthdayThis work was supported by grants from the BMFT and the Ministerium für Umwelt, Raumordnung and Landwirtschaft, Nordrhein-Westfalen. The authors thank H. Wietoska and M. Bronzel for skilful technical assistance.  相似文献   

14.
Zhu XG  Govindjee  Baker NR  deSturler E  Ort DO  Long SP 《Planta》2005,223(1):114-133
Chlorophyll a fluorescence induction (FI) is widely used as a probe for studying photosynthesis. On illumination, fluorescence emission rises from an initial level O to a maximum P through transient steps, termed J and I. FI kinetics reflect the overall performance of photosystem II (PSII). Although FI kinetics are commonly and easily measured, there is a lack of consensus as to what controls the characteristic series of transients, partially because most of the current models of FI focus on subsets of reactions of PSII, but not the whole. Here we present a model of fluorescence induction, which includes all discrete energy and electron transfer steps in and around PSII, avoiding any assumptions about what is critical to obtaining O J I P kinetics. This model successfully simulates the observed kinetics of fluorescence induction including O J I P transients. The fluorescence emission in this model was calculated directly from the amount of excited singlet-state chlorophyll in the core and peripheral antennae of PSII. Electron and energy transfer were simulated by a series of linked differential equations. A variable step numerical integration procedure (ode15s) from MATLAB provided a computationally efficient method of solving these linked equations. This in silico representation of the complete molecular system provides an experimental workbench for testing hypotheses as to the underlying mechanism controlling the O J I P kinetics and fluorescence emission at these points. Simulations based on this model showed that J corresponds to the peak concentrations of Q A QB (QA and QB are the first and second quinone electron acceptor of PSII respectively) and Q A Q B and I to the first shoulder in the increase in concentration of Q A Q B 2− . The P peak coincides with maximum concentrations of both Q A Q B 2− and PQH2. In addition, simulations using this model suggest that different ratios of the peripheral antenna and core antenna lead to differences in fluorescence emission at O without affecting fluorescence emission at J, I and P. An increase in the concentration of QB-nonreducing PSII centers leads to higher fluorescence emission at O and correspondingly decreases the variable to maximum fluorescence ratio (F v/F m).  相似文献   

15.
Alhagi sparsifolia Shap. is exposed to a high-irradiance environment as the main vegetation found in the forelands of the Taklamakan Desert. We investigated chlorophyll a fluorescence emission of A. sparsifolia seedlings grown under ambient (HL) and shade (LL) conditions. Our results indicated that the fluorescence intensity in the leaves was significantly higher for LL-grown plants than that under HL. High values of the maximum quantum yield of PSII for primary photochemistry (φPo) and the quantum yield that an electron moves further than QA - (φEo) in the plants under LL conditions suggested that the electron flow from QA - (primary quinone electron acceptors of PSII) to QB (secondary quinone acceptor of PSII) or QB - was enhanced at LL compared to natural HL conditions. The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side and the quantum yield for the reduction of end electron acceptors at the PSI acceptor side were opposite to φPo, and φEo. Thus, we concluded that the electron transport on the donor side of PSII was blocked under LL conditions, while acceptor side was inhibited at the HL conditions. The PSII activity of electron transport in the plants grown in shade was enhanced, while the energy transport from PSII to PSI was blocked compared to the plants grown at HL conditions. Furthermore, PSII activity under HL was seriously affected in midday, while the plants grown in shade enhanced their energy transport.  相似文献   

16.
In this article, the three-dimensional structures of photosynthetic reaction centers (RCs) are presented mainly on the basis of the X-ray crystal structures of the RCs from the purple bacteria Rhodopseudomonas (Rp.) viridis and Rhodobacter (Rb.) sphaeroides. In contrast to earlier comparisons and on the basis of the best-defined Rb. sphaeroides structure, a number of the reported differences between the structures cannot be confirmed. However, there are small conformational differences which might provide a basis for the explanation of observed spectral and functional discrepancies between the two species.A particular focus in this review is on the binding site of the secondary quinone (QB), where electron transfer is coupled to the uptake of protons from the cytoplasm. For the discussion of the QB site, a number of newlydetermined coordinate sets of Rp. viridis RCs modified at the QB site have been included. In addition, chains of ordered water molecules are found leading from the cytoplasm to the QB site in the best-defined structures of both Rp. viridis and Rb. sphaeroides RCs.Abbreviations BA accessory bacteriochlorophyll in the active branch - BB accessory bacteriochlorophyll in the inactive branch - D primary electron donor (special pair) - DL special pair bacteriochorophyll bound by the L subunit - DM special pair bacteriochorophyll bound by the M subunit - QA primary electron acceptor quinone - QB secondary electron acceptor quinone - RC reaction center - Rb. Rhodobacter - Rp. Rhodopseudomonas - A bacteriopheophytin in the active branch - B bacteriopheophytin in the inactive branch  相似文献   

17.
In leaves of an atrazine-resistant mutant ofSenecio vulgaris the quantum efficiency of CO2 assimilation was reduced by 21% compared to the atrazine-susceptible wild type, and at a light level twice that required to saturate photosynthesis in the wild type the CO2 fixation rate in the mutant was decreased by 15%. In leaves at steady-state photosynthesis there was a measurable increase in the reduction state of the photosystem II (PSII) primary quinone acceptor,Q A. Although this would lead to a decreased rate of PSII electron transport and may thus explain the decrease in quantum efficiency, this cannot account for the fall in the maximum rate of CO2 fixation. The atrazine-resistant mutant showed an appreciably longer photosynthetic induction time which indicates an effect on carbon metabolism; however, the response of CO2-fixation rate to intercellular CO2 concentration revealed no differences in carboxylation efficiency. There were also no differences in the ability to perform a State 1–State 2 transition between the atrazine-resistant and susceptible biotypes and no difference in the profiles of phosphorylated thylakoid polypeptides. It is concluded that the alteration of the redox equilibrium between PSII quinone electron acceptors in the atrazine-resistant biotype limits appreciably the photosynthetic efficiency in non-saturating light. Additionally, there is a further, as yet unidentified, limitation which decreases photosynthesis in the resistant mutant under light-saturating conditions.Abbreviations and symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F max maximum fluorescence emission - F o2 minimal fluorescence emission upon exposure to saturating light flash - F v variable fluorescence emission - F v2 variable fluorescence emission upon exposure to saturating light flash - kDa kilodalton - PSI, II photosystems I, II - Q A primary quinone acceptor of PSH - Q B secondary quinone acceptor of PSII - RuBP ribulose-1,5-bisphosphate  相似文献   

18.
Incubation of the alga Chlorella pyrenoidosa Chick in darkness (at 37°C) for 24 h did not change the initial (F 0) and maximum (F m) yield of chlorophyll fluorescence in diuron-treated cells. In dark-incubated alga, the contribution of the slow (rise time 10–15 min) phases to the kinetics of F m rise and, correspondingly, to variable fluorescence F v (where F v = F mF 0) increased twofold. In addition, F m was attained at higher concentrations of diuron, which inhibits electron transfer between the primary (Q A) and secondary (Q B) quinone acceptors of electron in the PSII. Inhibition of photosynthetic electron transfer with o-phenanthroline, which, at high concentrations, competitively replaces both Q B and Q A, decreased F m yield due to selective suppression of the slow phase of fluorescence rise. It was assumed that the slow phase in the kinetics of F m rise reflects the functioning of PSII complexes with destabilized Q A. Such destabilization can result from the modification of the major PSII proteins (D1 and D2) in dark-adapted Chlorella cells.  相似文献   

19.
Rémy Beauchemin 《BBA》2007,1767(7):905-912
Polyamines are implicated in plant growth and stress response. However, the polyamines spermine and spermidine were shown to elicit strong inhibitory effects in photosystem II (PSII) submembrane fractions. We have studied the mechanism of this inhibitory action in detail. The inhibition of electron transport in PSII submembrane fractions treated with millimolar concentrations of spermine or spermidine led to the decline of plastoquinone reduction, which was reversed by the artificial electron donor diphenylcarbazide. The above inhibition was due to the loss of the extrinsic polypeptides associated with the oxygen evolving complex. Thermoluminescence measurements revealed that charge recombination between the quinone acceptors of PSII, QA and QB, and the S2 state of the Mn-cluster was abolished. Also, the dark decay of chlorophyll fluorescence after a single turn-over white flash was greatly retarded indicating a slower rate of QA reoxidation.  相似文献   

20.
The dark-relaxation kinetics of variable fluorescence, Fv, in intact green leaves of Pisum stativum L. and Dolichos lablab L. were analyzed using modulated fluorometers. Fast (t1/2 = 1 s) and slow (t1/2 = 7–8 s) phases in fv dark-decay kinetics were observed; the rate and the relative contribution of each phase in total relaxation depended upon the fluence rate of the actinic light and the point in the induction curve at which the actinic light was switched off. The rate of the slow phase was accelerated markedly by illumination with far-red light; the slow phase was abolished by methyl viologen. The halftime of the fast phase of Fv dark decay decreased from 250 ms in dark-adapted leaves to 12–15 ms upon adaptation to red light which is absorbed by PSII. The analysis of the effect of far-red light, which is absorbed mainly by PSI, on Fv dark decay indicates that the slow phase develops when a fraction of QA (the primary stable electron acceptor of PSII) cannot transfer electrons to PSI because of limitation on the availability of P700+ (the primary electron donor of PSI). After prolonged illumination of dark-adapted leaves in red (PSII-absorbed) light, a transient. Fv rise appears which is prevented by far-red (PSI-absorbed) light. This transient fv rise reflects the accumulation of QA in the dark. The observation of this transient Fv rise even in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) indicates that a mechanism other than ATP-driven back-transfer of electrons to QA may be responsible for the phenomenon. It is suggested that the fast phase in Fv dark-decay kinetics represents the reoxidation of QA by the electron-transport chain to PSI, whereas the slow phase is likely to be related to the interaction of QA with the donor side of PSII.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - FO initial fluorescence level - Fv variable fluorescence - P700 primary electron donor of PSI - PSI, II photosystem I, II - QA (QA ) QB (QB ) primary and secondary stable electron acceptor of PSII in oxidized (reduced) state Supported by grant B6.1/88 DST, Govt. of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号