首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Lysophosphatidic acid (LPA) is a potent lipid mediator that evokes a variety of biological responses in many cell types via its specific G protein-coupled receptors. In particular, LPA affects cell morphology, cell survival, and cell cycle progression in neuronal cells. Recently, we identified p2y(9)/GPR23 as a novel fourth LPA receptor, LPA(4) (Noguchi, K., Ishii, S., and Shimizu, T. (2003) J. Biol. Chem. 278, 25600-25606). To assess the functions of LPA(4) in neuronal cells, we used rat neuroblastoma B103 cells that lack endogenous responses to LPA. In B103 cells stably expressing LPA(4), we observed G(q/11)-dependent calcium mobilization, but LPA did not affect adenylyl cyclase activity. In LPA(4) transfectants, LPA induced dramatic morphological changes, i.e. neurite retraction, cell aggregation, and cadherin-dependent cell adhesion, which involved Rho-mediated signaling pathways. Thus, our results demonstrated that LPA(4) as well as LPA(1) couple to G(q/11) and G(12/13), whereas LPA(4) differs from LPA(1) in that it does not couple to G(i/o). Through neurite retraction and cell aggregation, LPA(4) may play a role in neuronal development such as neurogenesis and neuronal migration.  相似文献   

2.
Lysophosphatidic acid (LPA) is a bioactive lipid mediator with diverse physiological and pathological actions on many types of cells. LPA has been widely considered to elicit its biological functions through three types of G protein-coupled receptors, Edg-2 (endothelial cell differentiation gene-2)/LPA1/vzg-1 (ventricular zone gene-1), Edg-4/LPA2, and Edg-7/LPA3. We identified an orphan G protein-coupled receptor, p2y9/GPR23, as the fourth LPA receptor (LPA4). Membrane fractions of RH7777 cells transiently expressing p2y9/GPR23 displayed a specific binding for 1-oleoyl-LPA with a Kd value of around 45 nm. Competition binding and reporter gene assays showed that p2y9/GPR23 preferred structural analogs of LPA with a rank order of 1-oleoyl- > 1-stearoyl- > 1-palmitoyl- > 1-myristoyl- > 1-alkyl- > 1-alkenyl-LPA. In Chinese hamster ovary cells expressing p2y9/GPR23, 1-oleoyl-LPA induced an increase in intracellular Ca2+ concentration and stimulated adenylyl cyclase activity. Quantitative real-time PCR demonstrated that mRNA of p2y9/GPR23 was significantly abundant in ovary compared with other tissues. Interestingly, p2y9/GPR23 shares only 20-24% amino acid identities with Edg-2/LPA1, Edg-4/LPA2, and Edg-7/LPA3, and phylogenetic analysis also shows that p2y9/GPR23 is far distant from the Edg family. These facts suggest that p2y9/GPR23 has evolved from different ancestor sequences from the Edg family.  相似文献   

3.
p2y5 is an orphan G protein-coupled receptor that is closely related to the fourth lysophosphatidic acid (LPA) receptor, LPA4. Here we report that p2y5 is a novel LPA receptor coupling to the G13-Rho signaling pathway. “LPA receptor-null” RH7777 and B103 cells exogenously expressing p2y5 showed [3H]LPA binding, LPA-induced [35S]guanosine 5′-3-O-(thio)triphosphate binding, Rho-dependent alternation of cellular morphology, and Gs/13 chimeric protein-mediated cAMP accumulation. LPA-induced contraction of human umbilical vein endothelial cells was suppressed by small interfering RNA knockdown of endogenously expressed p2y5. We also found that 2-acyl-LPA had higher activity to p2y5 than 1-acyl-LPA. A recent study has suggested that p2y5 is an LPA receptor essential for human hair growth. We confirmed that p2y5 is a functional LPA receptor and propose to designate this receptor LPA6.  相似文献   

4.
5.
6.
G protein coupled receptors (GPCRs) form homo- and hetero-dimers or -oligomers, which are functionally important. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophopholipids involved in diverse biological processes. We have examined homo- and hetero-dimerization among three major LPA receptors (LPA(1-3)), three major S1P receptors (S1P(1-3)), as well as OGR1 and GPR4. Using LacZ complementation assays, we have shown that LPA receptors form homo- and hetero-dimers within the LPA receptor subgroup and hetero-dimers with other receptors (S1P(1-3) and GPR4). In addition, we have found that although GPR4 and OGR1 share more than 50% homology, GPR4 forms strong homo- and hetero-dimers with LPA and S1P receptors, but OGR1 forms very weak homo-dimer and relatively weak hetero-dimers with other receptors. Using chimeric receptors between GPR4 and OGR1, we have shown that different domains of GPR4 receptor are involved in its dimerization with different GPCRs and more than one domain may be involved in some of the complex formation. Our results suggest that when studying a signal transduction induced by a stimulus, not only is the expression and activation of its own receptor(s), but also the status of the interacting receptors should be taken into consideration.  相似文献   

7.
8.
p62 is a multifunctional adaptor protein implicated in various cellular processes. It has been found to regulate selective autophagy, cell survival, cell death, oxidative stress, DNA repair and inflammation, and to play a role in a number of diseases, such as tumourigenesis, Paget’s disease of bone, neurodegenerative disease, diabetes, and obesity. Cell death induction is an important cellular process. The dysregulation of cell death induction is involved in the pathogenesis of various diseases, such as cancer, neurodegeneration diseases, and diabetes. In this review, we discuss the functional role of p62 in inducing cell death in response to multiple stimuli, and we summarize the potential signaling pathways that contribute to this regulation. Given the important role of p62 in regulating cell death, p62 is considered to be a reasonable target for managing cell death dysregulation-related pathogenic conditions. A better understanding of the role of p62 and its related mechanisms in regulating cell death is necessary for the more precise utilization of p62 as a target for treating relevant diseases.  相似文献   

9.
10.
In motile fibroblasts, stable microtubules (MTs) are oriented toward the leading edge of cells. How these polarized MT arrays are established and maintained, and the cellular processes they control, have been the subject of many investigations. Several MT "plus-end-tracking proteins," or +TIPs, have been proposed to regulate selective MT stabilization, including the CLASPs, a complex of CLIP-170, IQGAP1, activated Cdc42 or Rac1, a complex of APC, EB1, and mDia1, and the actin-MT crosslinking factor ACF7. By using mouse embryonic fibroblasts (MEFs) in a wound-healing assay, we show here that CLASP2 is required for the formation of a stable, polarized MT array but that CLIP-170 and an APC-EB1 interaction are not essential. Persistent motility is also hampered in CLASP2-deficient MEFs. We find that ACF7 regulates cortical CLASP localization in HeLa cells, indicating it acts upstream of CLASP2. Fluorescence-based approaches show that GFP-CLASP2 is immobilized in a bimodal manner in regions near cell edges. Our results suggest that the regional immobilization of CLASP2 allows MT stabilization and promotes directionally persistent motility in fibroblasts.  相似文献   

11.
12.
13.
During epithelial tumor progression, the loss of E-cadherin expression and inappropriate expression of mesenchymal cadherins coincide with increased invasiveness. Reexpression experiments have established E-cadherin as an invasion suppressor. However, the mechanism by which E-cadherin suppresses invasiveness and the role of mesenchymal cadherins are poorly understood. We show that both p120 catenin and mesenchymal cadherins are required for the invasiveness of E-cadherin-deficient cells. p120 binding promotes the up-regulation of mesenchymal cadherins and the activation of Rac1, which are essential for cell migration and invasiveness. p120 also promotes invasiveness by inhibiting RhoA activity, independently of cadherin association. Furthermore, association of endogenous p120 with E-cadherin is required for E-cadherin-mediated suppression of invasiveness and is accompanied by a reduction in mesenchymal cadherin levels. The data indicate that p120 acts as a rheostat, promoting a sessile cellular phenotype when associated with E-cadherin or a motile phenotype when associated with mesenchymal cadherins.  相似文献   

14.
15.
The Bcl-2 family members are evolutionally conserved and crucial regulators of apoptosis. Diva (Boo), an ortholog of Bcl2L10 or Bcl-B, is a member of the Bcl-2 family that has contradictory functions in apoptosis. To understand the signaling mechanisms of Diva, we searched for proteins that interact with Diva using the yeast two-hybrid system. We identified a nucleoside diphosphate kinase isoform, NM23-H2. Here, we show that Diva bound to NM23-H2 in cells in which the transmembrane domain of Diva was required, and both proteins were colocalized in cytoplasm. Of interest, Diva protein level was significantly down-regulated by NM23-H2 as knock down of NM23-H2 restored Diva expression. Overexpression of NM23-H2 induced apoptosis, and the depletion of NM23-H2 led to the increase of Diva's apoptotic activity. Thus, these results indicate the existence of a previously undiscovered mechanism by which NM23-H2 involves in the regulation of Diva-mediated apoptosis.  相似文献   

16.
Lysophosphatidic acid (LPA) mediates a variety of biological functions via the binding of G protein-coupled LPA receptors (LPA receptor-1 (LPA1) to LPA6). This study aimed to investigate the roles of LPA2 and LPA3 in the modulation of chemoresistance to anticancer drug in lung cancer A549 cells. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 2 days. The cell survival rate to CDDP of A549 cells was significantly elevated by an LPA2 agonist, GRI-977143. To evaluate the roles of LPA2-mediated signaling in cell survival during tumor progression, highly migratory (A549-R10) cells were generated from A549 cells. In the presence of GRI-977143, the cell survival rate to CDDP of A549-R10 cells were markedly higher than that of A549 cells, correlating with LPAR2 expression level. Moreover, to assess the effects of long-term anticancer drug treatment on cell survival, the long-term CDDP treated (A549-CDDP) cells were established from A549 cells. The cell survival rate to CDDP of A549-CDDP cells was elevated by GRI-977143. Since LPAR3 expression level was significantly higher in A549-CDDP cells than in A549 cells, we investigated the roles of LPA3 in the cell survival to CDDP of A549 cells, using an LPA3 agonist, 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate ((2S)-OMPT). The cell survival rate to CDDP of A549 cells was significantly reduced by (2S)-OMPT treatment. In the presence of (2S)-OMPT, the cell survival rate to CDDP of A549 cells was elevated by LPA3 knockdown. These results suggest that LPA signaling via LPA2 and LPA3 is involved in the regulation of chemoresistance in A549 cells treated with CDDP.  相似文献   

17.
18.
Testicular germ cell tumors (TGCT) are unique in their excellent response to DNA-damaging chemotherapy. Mutation of p53 is rare in both untreated and relapsed TGCTs, suggesting that p53 fails to respond effectively against malignant transformation in germ cells. Previous studies implicated the presence of a poorly defined TGCT-specific mechanism of p53 inactivation. Here we show that disruption of p53-MDM2 binding using the MDM2-specific inhibitor Nutlin activates p53 in TGCT cells and is sufficient to induce strong apoptosis. Knockdown of MDMX cooperates with Nutlin to activate p53. Surprisingly, we found that p53 activation induced a two-fold increase in MDMX mRNA and protein expression in TGCT cells. A p53-responsive promoter is identified in MDMX intron 1 that contains a functional p53-binding site, suggesting that MDMX also functions as a negative feedback regulator of p53 in a cell line-dependent fashion. These findings suggest that MDM2 and MDMX are responsible for the functional inactivation of p53 in TGCT. Furthermore, TGCT cells are unique in having a strong apoptosis response to p53. Direct activation of p53 by targeting MDM2 and MDMX may provide a backup approach for the treatment of TGCTs resistant to DNA-damaging drugs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号