首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The mechanism(s) by which localized vascular permeability and angiogenesis occur at the sites of implantation is not clearly understood. Vascular endothelial growth factor (VEGF) is a key regulator of vasculogenesis during embryogenesis and angiogenesis in adult tissues. VEGF is also a vascular permeability factor. VEGF acts via two tyrosine kinase family receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). Recent evidence suggests that neuropilin-1 (NRP1), a receptor involved in neuronal cell guidance, is expressed in endothelial cells, binds to VEGF(165) and enhances the binding of VEGF(165) to VEGFR2. We examined the spatiotemporal expression of vegf isoforms, nrp1 and vegfr2 as well as their interactions in the periimplantation mouse uterus. We observed that vegf(164) is the predominant isoform in the mouse uterus. vegf(164) mRNA accumulation primarily occurred in epithelial cells on days 1 and 2 of pregnancy. On days 3 and 4, the subepithelial stroma in addition to epithelial cells exhibited accumulation of this mRNA. After the initial attachment reaction on day 5, luminal epithelial and stromal cells immediately surrounding the blastocyst exhibited distinct accumulation of vegf(164) mRNA. On days 6-8, the accumulation of this mRNA occurred in both mesometrial and antimesometrial decidual cells. These results suggest that VEGF(164) is available in mediating vascular changes and angiogenesis in the uterus during implantation and decidualization. This is consistent with coordinate expression of vegfr2, and nrp1, a VEGF(164)-specific receptor, in uterine endothelial cells. Their expression was low during the first 2 days of pregnancy followed by increases thereafter. With the initiation and progression of implantation (days 5-8), these genes were distinctly expressed in endothelial cells of the decidualizing stroma. Expression was more intense on days 6-8 at the mesometrial pole, the presumptive site of heightened angiogenesis and placentation. However, the expression was absent in the avascular primary decidual zone immediately surrounding the implanting embryo. Crosslinking experiments showed that (125)I-VEGF(165) binds to both NRP1 and VEGFR2 present in decidual endothelial cells. These results suggest that VEGF(164), NRP1 and VEGFR2 play a role in VEGF-induced vascular permeability and angiogenesis in the uterus required for implantation. genesis 26:213-224, 2000.  相似文献   

2.
The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.  相似文献   

3.
VEGF is a key promoter of angiogenesis and a major target of proangiogenic therapy for peripheral arterial disease (PAD). Greater understanding of VEGF angiogenic signaling and guidance by gradients for new capillaries will aid in developing new proangiogenic therapies and improving existing treatments. However, in vivo measurements of VEGF concentration gradients at the cell scale are currently impossible. We have developed a computational model to quantify VEGF distribution in extensor digitorum longus skeletal muscle using measurements of VEGF, VEGF receptor (VEGFR), and neuropilin-1 (NRP1) expression in an experimental model of rat PAD. VEGF is secreted by myocytes, diffuses through and interacts with extracellular matrix and basement membranes, and binds VEGFRs and NRP1 on endothelial cell surfaces of blood vessels. We simulate the effects of increased NRP1 expression and of therapeutic exercise training on VEGF gradients, receptor signaling, and angiogenesis. Our study predicts that angiogenic therapy for PAD may be achieved not only through VEGF upregulation but also through modulation of VEGFRs and NRP1. We predict that expression of 10(4) NRP1/cell can increase VEGF binding to receptors by 1.7-fold (vs. no NRP1); in nonexercise-trained muscle with PAD, angiogenesis is hindered due to limited VEGF upregulation, signaling, and gradients; in exercise-trained muscle, VEGF signaling is enhanced by upregulation of VEGFRs and NRP1, and VEGF signaling is strongest within the first week of exercise therapy; and hypoxia-induced VEGF release is important to direct angiogenesis towards unperfused tissue.  相似文献   

4.
Neuropilin-1 (NRP1) is a receptor for vascular endothelial growth factor (VEGF) and plays an important role in mediating cell motility. However, the NRP1 signaling pathways important for cell motility are poorly understood. Here we report that p130(Cas) tyrosine phosphorylation is stimulated by hepatocyte growth factor and platelet-derived growth factor in U87MG glioma cells and VEGF in endothelial cells and is dependent on NRP1 via its intracellular domain. In endothelial cells, NRP1 silencing reduced, but did not prevent, VEGF receptor 2 (VEGFR2) phosphorylation, while expression of a mutant form of NRP1 lacking the intracellular domain (NRP1ΔC) did not affect receptor phosphorylation in U87MG cells or human umbilical vein endothelial cells (HUVECs). In HUVECs, NRP1 was also required for VEGF-induced phosphorylation of proline-rich tyrosine kinase 2, which was necessary for p130(Cas) phosphorylation. Importantly, knockdown of NRP1 or p130(Cas) or expression of either NRP1ΔC or a non-tyrosine-phosphorylatable substrate domain mutant protein (p130(Cas15F)) was sufficient to inhibit growth factor-mediated migration of glioma and endothelial cells. These data demonstrate for the first time the importance of the NRP1 intracellular domain in mediating a specific signaling pathway downstream of several receptor tyrosine kinases and identify a critical role for a novel NRP1-p130(Cas) pathway in the regulation of chemotaxis.  相似文献   

5.
In endothelial cells, neuropilin-1 (NRP1) binds vascular endothelial growth factor (VEGF)-A and is thought to act as a coreceptor for kinase insert domain-containing receptor (KDR) by associating with KDR and enhancing VEGF signaling. Here we report mutations in the NRP1 b1 domain (Y297A and D320A), which result in complete loss of VEGF binding. Overexpression of Y297A and D320A NRP1 in human umbilical vein endothelial cells reduced high-affinity VEGF binding and migration toward a VEGF gradient, and markedly inhibited VEGF-induced angiogenesis in a coculture cell model. The Y297A NRP1 mutant also disrupted complexation between NRP1 and KDR and decreased VEGF-dependent phosphorylation of focal adhesion kinase at Tyr407, but had little effect on other signaling pathways. Y297A NRP1, however, heterodimerized with wild-type NRP1 and NRP2 indicating that nonbinding NRP1 mutants can act in a dominant-negative manner through formation of NRP1 dimers with reduced binding affinity for VEGF. These findings indicate that VEGF binding to NRP1 has specific effects on endothelial cell signaling and is important for endothelial cell migration and angiogenesis mediated via complex formation between NRP1 and KDR and increased signaling to focal adhesions. Identification of key residues essential for VEGF binding and biological functions provides the basis for a rational design of antagonists of VEGF binding to NRP1.  相似文献   

6.
Angiogenesis, a formation of neo-vessels from pre-existing ones, is regulated by the local balance between its stimulators and inhibitors. Vasohibin-1 (VASH1) was originally identified as an endothelium-derived vascular endothelial growth factor (VEGF)-inducible angiogenesis inhibitor that acts in a negative feedback manner. The expression of VASH1 has been shown in endothelial cells (ECs) in both physiological and pathological conditions associated with angiogenesis. However, recent reports indicate that VASH1 is expressed not only in ECs but also in other cell types including haematopoietic cells. The function of VASH1 may not be restricted to angiogenesis inhibition.  相似文献   

7.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to VEGF receptor 2 (VEGFR2) on endothelial cells (ECs). Downstream activation of the extracellular related kinases 1/2 (ERK1/2) is important for angiogenesis to proceed. Receptor internalization has been implicated in VEGFR2 signaling, but its role in the activation of ERK1/2 is unclear. To explore this question we utilized pitstop and dynasore, two small molecule inhibitors of endocytosis. First, we confirmed that both inhibitors block the internalization of VEGFR2 in ECs. We then stimulated ECs with VEGF in the presence and absence of the inhibitors and examined VEGFR2 signaling to ERK1/2. Activation of VEGFR2 and C-Raf still occurred in the presence of the inhibitors, whereas the activation of MEK1/2 and ERK1/2 was abrogated. Therefore, although internalization is not required for activation of either VEGFR2 or C-Raf in ECs stimulated with VEGF, internalization is necessary to activate the more distal kinases in the cascade. Importantly, inhibition of internalization also prevented activation of ERK1/2 when ECs were stimulated with other pro-angiogenic growth factors, namely fibroblast growth factor 2 and hepatocyte growth factor. In contrast, the same inhibitors did not block ERK1/2 activation in fibroblasts or cancer cells stimulated with growth factors. Finally, we show that these small molecule inhibitors of endocytosis block angiogenesis in vitro and in vivo. Therefore, receptor internalization may be a generic requirement for pro-angiogenic growth factors to activate ERK1/2 signaling in human ECs, and targeting receptor trafficking may present a therapeutic opportunity to block tumor angiogenesis.  相似文献   

8.
Both vascular endothelial growth factor receptors (VEGFR) and integrins are major regulators of VEGF-induced angiogenesis. Previous work has shown that β3 integrin can regulate negatively VEGFR2 expression. Here we show that β3 integrin can regulate negatively VEGF-mediated angiogenesis by limiting the interaction of the co-receptor NRP1 (neuropilin-1) with VEGFR2. In the presence of αvβ3 integrin, NRP1 contributed minimally to VEGF-induced angiogenic processes in vivo, ex vivo, and in vitro. Conversely, when β3 integrin expression is absent or low or its function is blocked with RGD-mimetic inhibitors, VEGF-mediated responses became NRP1-dependent. Indeed, combined inhibition of β3 integrin and NRP1 decreased VEGF-mediated angiogenic responses further than individual inhibition of these receptors. We also show that αvβ3 integrin can associate with NRP1 in a VEGF-dependent fashion. Our data suggest that β3 integrin may, in part, negatively regulate VEGF signaling by sequestering NRP1 and preventing it from interacting with VEGFR2.  相似文献   

9.
Cheng JJ  Huang NK  Chang TT  Wang DL  Lu MK 《Life sciences》2005,76(26):3029-3042
The main purposes of this study were to investigate the regulation of polysaccharides isolated from A. cinnamomea on vascular endothelial growth factor (VEGF)-induced cyclin D1 expression and down stream signaling pathway that may correlate with their anti-angiogenc effects in endothelial cells (ECs). Crude and fractionated polysaccharides (Fra-1 to Fra-4) of A. cinnamomea showed slightly toxicity to ECs as compared with their inhibition concentration on angiogenic-related gene expression. The crude extract and fractionated fractions, except for Fra-2, of A. cinnamomea polysaccharides significantly decreased VEGFR2 phosphorylation on tyrosine 1054/1059, cyclin D1 promotor activity, and protein expression induced by VEGF. Crude extract of A. cinnamomea polysaccharides inhibited the binding of VEGF to KDR/flk-1 in a dose-dependent manner. These results indicated that inhibition of VEGF interaction with VEGF receptor 2 is the mechanism serves A. cinnamomea as a protective mechanism composing the anti-angiogenesis function. Furthermore, A. cinnamomea polysaccharides also blocked VEGF-induced migration and capillary-like tube formation of ECs on Matrigel. Taken together, these results indicate that A. cinnamomea polysaccharides inhibit cyclin D1 expression through inhibition of VEGF receptor signaling, leading to the suppression of angiogenesis.  相似文献   

10.
The redox state of the endothelial cells plays a key role in the regulation of the angiogenic process. The modulation of the redox state of endothelial cells (ECs) could be a viable target to alter angiogenic response. In the present work, we synthesized a redox modulator by caging 5-hydroxy 2-methyl 1, 4-napthoquinone (Plumbagin) on silver nano framework (PCSN) for tunable reactive oxygen species (ROS) inductive property and tested its role in ECs during angiogenic response in physiological and stimulated conditions. In physiological conditions, the redox modulators induced the angiogenic response by establishing ECs cell–cell contact in tube formation model, chorio allontoic membrane, and aortic ring model. The molecular mechanism of angiogenic response was induced by vascular endothelial growth factor receptor 2 (VEGFR2)/p42-mitogen-activated protein kinase signaling pathway. Under stimulation, by mimicking tumor angiogenic conditions it induced cytotoxicity by generation of excessive ROS and inhibited the angiogenic response by the loss of spatiotemporal regulation of matrix metalloproteases, which prevents the tubular network formation in ECs and poly-ADP ribose modification of VEGF. The mechanism of opposing effects of PCSN was due to modulation of PKM2 enzyme activity, which increased the EC sensitivity to ROS and inhibited EC survival in stimulated condition. In normal conditions, the endogenous reactive states of NOX4 enzyme helped the EC survival. The results indicated that a threshold ROS level exists in ECs that promote angiogenesis and any significant enhancement in its level by redox modulator inhibits angiogenesis. The study provides the cues for the development of redox-based therapeutic molecules to cure the disease-associated aberrant angiogenesis.  相似文献   

11.
12.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-β secretion, particularly TGF-β2. However, it is largely unclear whether and how TGF-β2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-β2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-β2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-β2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-β2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-β2 expression in RPE cells under pathologic conditions.  相似文献   

13.
14.
15.
Inducing of dental pulp stem cells (DPSCs) into endothelial cells (ECs) to prevascularize pulp tissue constructs may offer a novel and viable approach for enhancing pulp regeneration. However, there are numerous challenges in current methods for the acquisition of sufficient translational ECs. It was known that Sema4D/PlexinB1 signaling exerts profound effects on enhancing vascular endothelial growth factor (VEGF) secretion and angiogenesis. Whether Sema4D/PlexinB1 could regulate endothelial differentiation of DPSCs is not yet investigated. In this study, when DPSCs were treated with Sema4D (2 μg/mL), ECs-specific (VEGFR1, VEGFR2, CD31, and vWF), and angiogenic genes and proteins were significantly upregulated. The induced ECs exhibited similar endothelial vessel formation ability to that of human umbilical vein endothelial cells (HUVECs). Furthermore, phosphorylation of AKT increased dramatically within 5 minutes (from 0.93 to 21.8), while p-ERK1/2 was moderately elevated (from 0.94 to 2.65). In summary, our results demonstrated that Sema4D/PlexinB1 signaling induces endothelial differentiation of DPSCs. The interactions of Sema4D, VEGF, ANGPTL4, ANG1, and HIF-1α may play a crucial role in mediating the differentiation process.  相似文献   

16.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF(165). Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF(165) binding to NRP1, surprisingly reduces VEGF(121)-induced migration and sprout formation of endothelial cells. Intrigued by this observation, direct binding studies of NRP1 to various VEGF isoforms were performed. We show that VEGF(121) binds directly to NRP1; however, unlike VEGF(165), VEGF(121) is not sufficient to bridge the NRP1.VEGFR2 complex. Additionally, we show that VEGFR2 enhances VEGF(165), but not VEGF(121) binding to NRP1. We propose a new model for NRP1 interactions with various VEGF isoforms.  相似文献   

17.
18.
Protein tyrosine phosphorylation is a fundamental mechanism for diverse physiological processes, which is regulated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). In this study, we searched for protein substrates of PTP-MEG2 (also called PTPN9), a nonreceptor PTP, and investigated its function in endothelial cells (ECs). By using a PTP-MEG2 substrate-trapping DA mutant, we found that a couple of tyrosine-phosphorylated proteins were associated with the DA mutant but not wild-type PTP-MEG2 and that the association was enhanced by vascular endothelial growth factor (VEGF) in ECs. We further found that VEGF receptor 2 (VEGFR2) was coimmunopricipitated with the DA mutant but not wild-type PTP-MEG2. The VEGF-induced phosphorylation of VEGFR2 on Tyr1175, a critical autophosphorylation site for VEGFR2 signaling, was inhibited 70% by overexpression of wild-type PTP-MEG2 but was enhanced (2.2-fold) by the DA mutant of PTP-MEG2. We also found that PTP-MEG2 DA mutant preferentially associated with Janus kinase 1 (JAK1) but not with other JAK kinases (Tyk2 and JAK2) present in ECs and regulated JAK1 tyrosine phosphorylation. Lastly, the VEGF-induced signal transduction and the production of interleukin (IL)-6 were significantly enhanced by PTP-MEG2 knockdown in ECs, whereas the VEGF-induced IL-6 production was inhibited 50% by PTP-MEG2 overexpression. Thus we have indentified VEGFR2 as a PTP-MEG2 substrate, and our findings indicate that PTP-MEG2 is a negative regulator of VEGFR2 signaling and function in ECs.  相似文献   

19.
Angiogenesis (neovascularization) plays a crucial role in a variety of physiological and pathological conditions including cancer, cardiovascular disease, and wound healing. Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis. Multiple VEGF receptors are expressed on endothelial cells, including signaling receptor tyrosine kinases (VEGFR1 and VEGFR2) and the nonsignaling co-receptor Neuropilin-1. Neuropilin-1 binds only the isoform of VEGF responsible for pathological angiogenesis (VEGF165), and is thus a potential target for inhibiting VEGF signaling. Using the first molecularly detailed computational model of VEGF and its receptors, we have shown previously that the VEGFR–Neuropilin interactions explain the observed differential effects of VEGF isoforms on VEGF signaling in vitro, and demonstrated potent VEGF inhibition by an antibody to Neuropilin-1 that does not block ligand binding but blocks subsequent receptor coupling. In the present study, we extend that computational model to simulation of in vivo VEGF transport and binding, and predict the in vivo efficacy of several Neuropilin-targeted therapies in inhibiting VEGF signaling: (a) blocking Neuropilin-1 expression; (b) blocking VEGF binding to Neuropilin-1; (c) blocking Neuropilin–VEGFR coupling. The model predicts that blockade of Neuropilin–VEGFR coupling is significantly more effective than other approaches in decreasing VEGF–VEGFR2 signaling. In addition, tumor types with different receptor expression levels respond differently to each of these treatments. In designing human therapeutics, the mechanism of attacking the target plays a significant role in the outcome: of the strategies tested here, drugs with similar properties to the Neuropilin-1 antibody are predicted to be most effective. The tumor type and the microenvironment of the target tissue are also significant in determining therapeutic efficacy of each of the treatments studied.  相似文献   

20.
The vascular endothelial growth factor receptors (VEGFR) play a significant role in angiogenesis, the formation of new blood vessels from existing vasculature. Systems biology offers promising approaches to better understand angiogenesis by computational modeling the key molecular interactions in this process. Such modeling requires quantitative knowledge of cell surface density of pro-angiogenic receptors versus anti-angiogenic receptors, their regulation, and their cell-to-cell variability. Using quantitative fluorescence, we systematically characterized the endothelial surface density of VEGFRs and neuropilin-1 (NRP1). We also determined the role of VEGF in regulating the surface density of these receptors. Applying cell-by-cell analysis revealed heterogeneity in receptor surface density and VEGF tuning of this heterogeneity. Altogether, we determine inherent differences in the surface expression levels of these receptors and the role of VEGF in regulating the balance of anti-angiogenic or modulatory (VEGFR1) and pro-angiogenic (VEGFR2) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号