首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sudden-death disease of the clove tree is invariably associated with the fungus Valsa eugeniae. The pathogenicity of this fungus has been investigated experimentally, and it has been shown that it is a primary parasite on mature clove trees, that saplings are resistant to it, and that seedlings are immune. It has been experimentally demonstrated that water-borne spores of the fungus can invade the absorbing and the fibrous roots of the clove tree. The slow-decline disease, which affects clove saplings only, is associated with a slow and progressive root-rot over a period of many years. Valsa is also invariably associated with this disease, which occurs only in areas which have been replanted after the previous stand has been killed by sudden death. It is thought that slow decline is the symptom-expression of Valsa attack on young trees when these still retain some measure of juvenile resistance to it.  相似文献   

2.
铁皮石斛疫病及其病原菌   总被引:3,自引:0,他引:3  
铁皮石斛疫病2001年发现在浙江义乌栽培田间,是由疫霉菌引起的。在田间,疫霉菌侵染茎基部,引起当年移植苗根腐、植株枯萎和死亡,但侵染2-3年植株幼嫩顶部仅引起顶枯症状。通过对病原菌形态学、交配型的观察,以及核糖体DNAITS序列分析,侵染铁皮石斛的5个分离菌株被鉴定为烟草疫霉菌Phytophthora nicotianae。致病性试验表明,铁皮石斛是烟草疫霉菌的寄主。  相似文献   

3.
Artificial freezing caused leaf necrosis and twig die-back but did not produce cracks or cankers on living branches of three varieties of poplar. Freezing increased the damage caused by a well-established infection of the bacterial die-back and canker but checked new lesions. Freezing prior to infection has no appreciable effect on the establishment of the disease.  相似文献   

4.
A survey of die-back disease of neem was done in different agro climatic regions of Tamil Nadu, India using Global Positioning System (GARMIN 12). Twigs of Azadirachta indica (Neem) infected with die-back were collected from different regions of Tamil Nadu, India and they were further analyzed to determine the pathogen. Phomopsis azadirachtae the causal organism was isolated on malt extract agar from die-back infected neem twigs. They were identified by conventional and molecular methods. Phomopsis genus specific primers (5.8S r-DNA) were then used for the confirmation of P. azadirachtae – the causative agent of die-back of neem by Polymerase chain reaction (PCR). Studies revealed the amplification of expected 141bp DNA in P. azadirachtae isolated from the diseased trees of different regions of Tamil Nadu confirming the causal organism of die-back of neem. Studies revealed a very high incidence of die-back in most of the places of Tamil Nadu. Hand held GPS was used in the study which would help in continuous monitoring of the diseased trees.  相似文献   

5.
Cauliflower mosaic in south-west England is most prevalent where there is a sequence of brassica crops that overlap in time. Broccoli yields can be increased by using plants raised in seed-beds separated by half a mile from old infected plants. Surrounding seed-beds with crops of kale or barley decreased the incidence of mosaic even when the seed-beds were only 5 yd. from infected plants.
Most plants infected at harvest contract infection after transplanting. A plant infected in the seed-bed or early in the growing season can produce a group of infected plants immediately around it, and almost as many farther away. Spread can occur in the same pattern from these secondarily infected plants.
Loss of yield is correlated with the time plants are infected. Plants infected as seedlings produce little or no curd or seed, whereas those infected when nearing maturity yield almost as well as uninfected plants.
The movement of alate aphids is positively correlated with the numbers of infectedplants, and symptoms in field plants generally appear 8–9 weeks after infection.
Cauliflower mosaic virus occurs in strains distinguishable by the severity of symptoms they cause.  相似文献   

6.
The natural occurrence of dogwood anthracnose (Discula destructiva) on young dogwood seedlings planted in different microenvironments in the southern Appalachian Mountains provided an opportunity to examine the effects of biotic stress on phenolic defense and insect herbivory. Dogwood trees planted in forest understory, canopy gaps, and along forest edge sustained high levels of infection and mortality. In contrast, trees planted in full sun and under shade cloth in an adjacent open field sustained much lower levels of infection and no mortality. No consistant relationships were present between anthracnose infection, phenolic defenses and herbivore performance. Nevertheless, the tendency for moderately infected dogwood saplings to have higher levels of plant tannins than uninfected trees may suggest an immune response. Insect herbivory was relatively unaffected by the degree of anthracnose infection.  相似文献   

7.
Breeding for resistance to forest pests and pathogens is emerging as a promising tool for minimising the impact of the increasing biotic threats that our forests are experiencing as a consequence of global change. Efficient phenotyping protocols of resistance are urgently needed. Here we present the results of two experiments aimed to determine whether the variation in resistance to the pine weevil Hylobius abietis, a harmful pest of European conifers, can be inferred by nondestructive bioassays using excised plant material collected in forest genetic trials. Weevil damage and amount of nonvolatile resin induced by weevil feeding were assessed in young trees and in branches of adult trees using several phenotyping procedures (bioassays using either living trees, excised plant material and cut stem twigs) on four pine species (Pinus pinaster, P. radiata, P. sylvestris and P. pinea). Half of the plants were previously induced with methyl jasmonate (MJ), a treatment that is known to affect resistance to the pine weevil. In Experiment 1, living and excised plants showed parallel results: MJ treatment significantly reduced weevil damage, and saplings responded to weevil damage locally increasing the nonvolatile resin (NVR) in the stems proportionally to the damage suffered. This response was, however, slightly lower in excised than in living saplings. On the contrary, patterns of weevil feeding on stem twigs completely departed from those observed in living and excised seedlings. Moreover, cut stem twigs were unable to respond to weevil feeding increasing NVR according to the weevil damage. In Experiment 2, assessment of weevil damage on excised branches explained around 50% of variation in damage on living branches. This relationship became much more pronounced (R2 = 0.81) when explored at the mean treatment level; branch manipulation did not alter the patterns of variation in resistance across pine species or MJ treatments. Irrespective of the assessment procedure, MJ consistently decreased weevil damage in all pine species, with larger reduction in weevil damage in stone and maritime pine than in radiata and Scots pine. Radiata pine was the most resistant while Scots pine was the most susceptible to the pine weevil. Overall, results suggest that using excised plant material is an operative alternative for phenotyping weevil resistance whenever care is taken to maintain the functionality of the excised plant material. This will allow taking advantage of multiple available conifer genetic trials to deepen the ecological genetics of resistance to the pine weevil and to screen for resistance without compromising the long‐term utility of those genetic trials.  相似文献   

8.
Only a few plants in a crop are generally thought to become infected by abiotic soil transmission. In glasshouse experiments we have induced almost total infection in tomatoes growing in soil with infective debris, but levels of infection are dependent upon certain conditions. We found that as the inoculum concentration decreased (i) a greater percentage of the infections were either latent (symptomless) or restricted to roots and (ii) infection levels decreased. Thus, apparent infection (based on symptoms) of 0. 10% was in reality 0 60–70% based on enzyme-linked immunosorbent assay and immunoelectron microscopy testing of roots and leaves. This occurred whether seedlings or seed were planted into infected mix. Under conditions in which minimal root damage was caused (planting seed) or roots were mechanically inoculated only once, almost all systemically infected plants were symptomless.  相似文献   

9.
Yves Basset 《Oecologia》2001,129(2):253-260
The arthropod fauna of 25 saplings and of three conspecific mature trees of Pourouma bicolor (Cecropiaceae) was surveyed for 12 months in a tropical wet forest in Panama, with particular reference to insect herbivores. A construction crane erected at the study site provided access to tree foliage in the upper canopy. A similar area of foliage (ca. 370 m2) was surveyed from both saplings and trees, but samples obtained from the latter included 3 times as much young foliage as from the former. Arthropods, including herbivores and leaf-chewing insects with a proven ability to feed on the foliage of P. bicolor were 1.6, 2.5 and 2.9 times as abundant on the foliage of trees as on that of saplings. The species richness of herbivores and proven chewers were 1.5 (n=145 species) and 3.5 (n=21) times higher on trees than on saplings, respectively. Many herbivore species preferred or were restricted to one or other of the host stages. Host stage and young foliage area in the samples explained 52% of the explained variance in the spatial distribution of herbivore species. Pseudo-replication in the two sampling universes, the saplings and trees studied, most likely decreased the magnitude of differences apparent between host stages in this forest. The higher availability of food resources, such as young foliage, in the canopy than in the understorey, perhaps combined with other factors such as resource quality and enemy-free space, may generate complex gradients of abundance and species richness of insect herbivores in wet closed tropical forests.  相似文献   

10.
Forests on the Haida Gwaii (HG) archipelago (British Columbia, Canada) evolved for about 10,000 years in the absence of large-mammal browsing. The introduction of black-tailed deer (Odocoileus hemionus sitkensis) from the mainland prior to 1901 provides an opportunity to evaluate changes in the adaptive defensive responses of plants to herbivory. We compared (1) food choice by deer and (2) chemical defence (terpene concentrations) between HG and mainland red cedars (Thuja plicata) using (1) nursery-grown seedlings never exposed to deer, (2) branches from trees that grew before the introduction of deer ("old trees") and (3) saplings exposed to deer herbivory on the mainland and on HG. We used the first two plant categories to test the hypothesis that plants that evolve under low herbivory levels have lower anti-herbivore defences. We used saplings to study the consequences of the dramatic increase in browsing on HG. During food experiments, deer preferred HG seedlings and old tree branches compared to those from the mainland. Total monoterpene concentrations were much higher than diterpene concentrations in all plant categories. Within plant categories, multivariate analysis showed that terpene profiles differed significantly between HG and mainland red cedars: HG seedlings and old trees had lower monoterpene levels. These results suggest that some monoterpenes may be determinants of deer food choice and that the defences of HG plants are less effective than those of mainland plants. The deer used branches from HG and mainland saplings indiscriminately. However, terpene profiles differed significantly between HG and mainland saplings, with multivariate analysis suggesting a higher defensive response in browsed HG saplings. Monoterpene profiles were different in lightly and heavily browsed saplings from HG, suggesting that under the current browsing regime, individuals with the greatest constitutive defences, or with greatest potential for induced defences, grow better and are selected on HG.  相似文献   

11.
Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning‐caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera‐based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3‐year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground‐based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground‐based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning‐damaged temperate trees were never observed in this study. Given the prevalence of communications towers worldwide, the lightning detection system described here could be implemented in diverse forest types. Data from multiple systems would provide an outstanding opportunity for comparative research on the ecological effects of lightning. Such comparative data are increasingly important given expected increases in lightning frequency with climatic change.  相似文献   

12.
Abstract.
  • 1 Bioassays were carried out to examine differences in the feeding of a folivorous weevil, Stereonychus fraxini De Geer, on leaves from ash saplings with undamaged roots, and those with damaged roots. Beetles ate significantly more of the leaves of root-damaged saplings in a choice experiment.
  • 2 A separate study of the effect of root damage on leaf toughness was carried out on a second group of ash saplings. Saplings with damaged roots had less tough leaves than control saplings. Decreased leaf toughness in hypothesized as a mechanism to explain the preference of weevils for leaves from damaged trees.
  • 3 Both chemical and physical changes may occur in the tissues of ash trees in response to environmental stress such as drought and root damage.
  • 4 Root damage caused by agricultural disturbance is hypothesized as a mechanism making mature ash trees in hedgerow ecosystems more susceptible to insect herbivores.
  相似文献   

13.
Abstract: In this contribution, we compare the influence of four different Phytophthora species on root development, net CO2 assimilation and transpiration of beech seedlings and saplings. Some few days after inoculation, photosynthesis and transpiration of seedlings infected with either P. citricola or P. cambivora were strongly reduced. In parallel, about 60 % of their root systems was destroyed compared to control plants. Three weeks after infection, all seedlings were dead, showing severe wilt symptoms on leaves. Remarkably, P. syringae and P. undulata infected seedlings and older beech plants did not differ from controls regarding photosynthesis and transpiration, although the root systems were damaged. However, a significant influence on net CO2 assimilation and transpiration of P. citricola infected beech saplings was visible after bud break in the following year. Some days before plants started to wilt, photosynthesis and transpiration were reduced to almost zero. Water use efficiency data (WUE) clearly indicated that infected plants suffered from severe drought.  相似文献   

14.
The phylogeny of Cryptosporella is revised to include recently discovered species. Eight species new to science are described and two new combinations are proposed, raising the total number of species accepted in Cryptosporella to 19. The species delimitation and phylogeny for Cryptosporella are determined based on analyses of DNA sequences from three genes (β-tubulin, ITS and tef1-α), comparative morphology of sexual structures on their host substrate, and host associations. The inferred phylogeny suggests that Cryptosporella has speciated primarily on Betulaceae with 16 species occurring on hosts in that plant family. The host range of most species seems to be narrow with nine species reported from a single host species or subspecies and seven species occurring on plants within a single host genus. A key to species is provided. The known distribution of Cryptosporella is expanded to mountain cloud forests of the provinces of Chiriquí in Panama and Tucumán in Argentina.  相似文献   

15.
Cacao virus iA, the most important and prevalent of the viruses that attack cacao in the Gold Coast, occurs in strains that differ widely in their virulence towards cacao. Outbreaks usually contain trees infected with different strains and individual trees are often infected simultaneously with more than one strain; this can be demonstrated by coppicing the trees, and by inoculating sets of test plants with grafts from different parts of one tree. Neither mild nor virulent strains seemed to be consistently dominant in roots or in other parts of cacao trees.
Cacao plants infected with mild strains were nearly always protected against the effects of infection by virulent strains; however, virulent strains entered hosts already infected with mild strains, but usually without causing any symptoms unless the plants were coppiced. The severe symptoms that developed on new growth from such coppiced plants were seldom repeated in later growth. Mealybugs transmitted the virulent strains from leaves with symptoms characteristic of infection by the latter, but not from leaves free from such symptoms. These results suggest that the multiplication of a virulent strain is impeded in plants infected with a mild strain.
In the field, infection with a mild strain protected mature trees against the effects of virulent strains spread by mealybugs. During 3 years in which 273 out of 387 previously uninfected trees became severely diseased, only 35 out of 416 infected with themildstrain developed symptoms of infectionwiththevirulent strain. Five years after infection with the mild strain, trees were yielding I pod per tree more than in the year they were infected, whereas the decrease on trees infected with the virulent strain was 16 pods per tree. Some limitations in the practical application of protection by mild strains, and objections to its use as a control measure, are discussed.  相似文献   

16.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

17.
In their native riparian zones (floodplains), Populus deltoides (prairie cottonwood) and P. fremontii (Fremont cottonwood) commonly experience substantial branch die-back. These trees occur in semi-arid areas of North America and unexpectedly given the dry regions, they are exceptionally vulnerable to xylem cavitation, drought-induced air embolism of xylem vessels. We propose that the vulnerability to cavitation and branch die-back are physiologically linked; drought-induced cavitation underlies branch die-back that reduces transpirational demand enabling the remaining shoot to maintain a favorable water balance. This proposal follows field observation along various western North American rivers as precocious branch senescence, the yellowing and death of leaves on particular branches during mid- to late summer, was common for P. deltoides and P. fremontii during hot and dry periods of low stream-flow. Branches displaying precocious senescence were subsequently dead the following year. The proposed association between cavitation, precocious senescence and branch die-back is also supported by experiments involving external pressurization of branches to about 2.5 MPa with a branch collar or through an adjacent cut-branch. The treatments induced xylem cavitation and increased leaf diffusive resistance (stomatal closure) that was followed by leaf senescence and branch death of P. deltoides. P. trichocarpa (black cottonwood) appeared to be less affected by the pressurization treatment and this species as well P. angustifolia (narrowleaf cottonwood) and P. balsamifera (balsam poplar) seldom display the patchy summer branch senescence typical of P. deltoides and P. fremontii. ’Branch sacrifice’ describes this cavitation-associated senescence and branch die-back that may provide a drought adaptation for the prairie and Fremont cottonwoods. Received: 13 May 1999 / Accepted: 4 November 1999  相似文献   

18.
Ontogenetic changes in architecture, carbohydrate reserves, and resource allocation can constrain the ability of plants to compensate for herbivore damage. To evaluate ontogenetic changes in compensation, saplings and reproductive individuals of the tropical tree Casearia nitida were subjected to three levels of defoliation (0, 25, and 75% leaf area removed) and regrowth was quantified. The impact of defoliation on fruit production was evaluated in reproductive trees. In addition, the influence of defoliation on carbohydrate reserves and on the production of phenolic compounds was assessed. Plants at both stages were able to compensate for 25% leaf area loss, but only saplings were able to compensate at the 75% defoliation level. Negative impacts of defoliation on reproductive trees were also suggested by their tendency to produce fewer fruits when defoliated. The concentration of nonstructural carbohydrates decreased with damage in saplings but not in reproductive trees, suggesting an ontogenetic stage-dependent impact of defoliation on carbohydrate reserves. The concentration of phenolic compounds in leaves decreased with increasing leaf damage in both ontogenetic stages. This suggests a resource based trade-off between defense and compensation. The results from this study suggest that ontogeny needs to be considered when assessing plant responses to herbivore damage.  相似文献   

19.
Bottom‐up and top‐down impacts on herbivores can be influenced by plant productivity, structural complexity, vigor and size. Although these traits are likely to vary with plant development, the influence of plant ontogeny on the relative importance of plant quality (i.e. bottom‐up forces) and predation risk (i.e. top‐down forces) has been the focus of little previous investigation. We evaluated the role of plant ontogeny for the relative importance of bottom‐up and top‐down forces on insect herbivore abundance, species richness, and species diversity attacking the tropical tree Casearia nitida. We also quantified the cascading effects on herbivory, growth and reproduction of this plant species. Plant quality traits (nitrogen and phenolic compounds) were assessed in saplings and reproductive trees. Bottom‐up forces were manipulated by fertilizing plants from both ontogenetic stages. Top‐down forces were manipulated by excluding insectivorous birds from saplings and reproductive trees. Plant ontogeny influenced foliage quality in terms of total phenolics, which were in greater concentration in reproductive trees than in saplings; however, it did not influence bottom‐up forces as modified by fertilization. Bird exclusion increased herbivore density with the same magnitude on both stages. Ontogeny influenced species diversity, which was greater in reproductive trees than in saplings, and also influenced treatment impacts on species richness and diversity. Although top‐down forces increased herbivory equally on plants of each ontogenetic stage, the two stages showed different overcompensation responses to increased damage: caged saplings produced greater leaf biomass than non‐caged saplings, whereas caged trees increased in height proportionally more than non‐caged trees. In sum, plant ontogeny influenced the impact of bird predation on herbivore density, species richness, and species diversity, and the growth variables affected by increased damage in caged plants. We suggest that plant ontogeny can contribute to some extent to the influence of plant quality and the third trophic level on herbivores in this system.  相似文献   

20.
Enzyme-linked immunosorbent assay (ELISA) was used to test plum trees for prune dwarf (PDV), Prunus necrotic ringspot (NRSV) and apple mosaic (ApMV) viruses, cherry trees for PDV and NRSV, and apple trees for ApMV. Optimum conditions were determined for sampling in large-scale surveys for these viruses. All three viruses were detected throughout the growing season in individual samples of young leaves, or twigs with newly formed buds. However, when single infected leaves were combined with different numbers of healthy leaves, tests were most successful for all three viruses early in the growing season. PDV was detected in 1/40 (infected/total leaves) cherry leaves in April and May and 1/40 plum leaves until July, whereas NRSV was detected in 1/20 cherry leaves until July and 1/20 plum leaves until May. ApMV was detected in 1/20 apple or plum leaves until June but was detected less readily in mature leaves after June than either NRSV or PDV. There was no evidence of uneven distribution of virus infection in the trees. The viruses were detected in leaf samples kept for 8 wk at 3°C but freezing was less reliable for storage especially with ApMV. ApMV was detected in tests on plants held for several weeks at 25°C, and PDV and NRSV in plants held at 30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号