首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofilms collected on Plexiglass substrates, from a freshwater pond in northern New York State, were examined microscopically for naked amoebae densities, sizes, diversity, and estimated C‐biomass. Five samples were obtained during summer 2006 and 2007. The densities ranged from 109 to 136/cm2 biofilm surface and 285 to 550/mg biofilm dry weight. Sizes ranged from 13 to 200 μm. Diversities ranged from 4.23 to 4.55. C‐biomass ranged from 64 to 543 ng C/cm2 and 125 to 1,700 μg C/g dry weight. Thirty morphospecies were identified among the five samples, including very large amoebae in the range of 100–200 μm. Large amoebae (≥ 50 μm) accounted for the largest proportion of the C‐biomass.  相似文献   

2.
Ciliates are an important component of aquatic ecosystems, acting as predators of bacteria and protozoa and providing nutrition for organisms at higher trophic levels. Understanding of the diversity and ecological role of ciliates in stream biofilms is limited, however. Ciliate diversity in biofilm samples from four streams subject to different impacts by human activity was assessed using microscopy and terminal restriction fragment length polymorphism (T-RFLP) analysis of 18S rRNA sequences. Analysis of 3′ and 5′ terminal fragments yielded very similar estimates of ciliate diversity. The diversity detected using microscopy was consistently lower than that suggested by T-RFLP analysis, indicating the existence of genetic diversity not apparent by morphological examination. Microscopy and T-RFLP analyses revealed similar relative trends in diversity between different streams, with the lowest level of biofilm-associated ciliate diversity found in samples from the least-impacted stream and the highest diversity in samples from moderately to highly impacted streams. Multivariate analysis provided evidence of significantly different ciliate communities in biofilm samples from different streams and seasons, particularly between a highly degraded urban stream and less impacted streams. Microscopy and T-RFLP data both suggested the existence of widely distributed, resilient biofilm-associated ciliates as well as ciliate taxa restricted to sites with particular environmental conditions, with cosmopolitan taxa being more abundant than those with restricted distributions. Differences between ciliate assemblages were associated with water quality characteristics typical of urban stream degradation and may be related to factors such as nutrient availability and macroinvertebrate communities. Microscopic and molecular techniques were considered to be useful complementary approaches for investigation of biofilm ciliate communities.Heterotrophic microeukaryotes such as ciliates are thought to be of considerable importance in aquatic ecosystems, as they are major predators of bacteria and constitute a nutritional resource for other protozoa, invertebrates, and probably fish larvae (9, 22, 36, 52, 62, 63, 71). In addition, protozoan bacterivory contributes to enhanced decomposition of leaf detritus—a vital nutrient resource in streams—by increasing turnover of bacterial populations through predation (57). It is not well understood, however, how ciliate diversity and community structure in streams are affected by changing environmental conditions, or how ciliate communities affect other stream biota and processes. The effects of various physical, chemical, and biological factors on freshwater protozoan communities have been considered by a number of studies, but most of these have focused upon planktonic organisms in lentic habitats (for example, see references 2, 11, and 44). However, the complex microbial communities in biofilms have been recognized as important contributors to critical ecological processes, such as auxotrophic primary production, nitrogen fixation, and nutrient cycling, and may underpin the function of stream food webs (31, 45, 61). The few studies which have investigated benthic habitats in lotic systems have found evidence of the existence of diverse communities of abundant ciliates (3, 20, 56) and shifts in community structure in response to ecophysiological parameters (30, 42, 43). With one exception, however, these investigations were based on aquatic sediments, and the organisms within epilithic biofilms have continued to receive little attention.Most studies of ciliate diversity and ecology have utilized microscopy-based methods of identification (for example, see references 3 and 56), as ciliate cells are relatively large and morphologically diverse. Such methods demand a high level of taxonomic expertise, however, and are difficult and time-consuming—for example, many ciliates are fragile and fast moving, and they often require difficult fixing and staining protocols for reliable identification. Molecular biological tools offer the possibility of more accurate and efficient methods for protozoan study and may provide a useful complement to traditional approaches (12, 18, 28, 65), yet we know of only a few molecular studies of environmental ciliate diversity (18, 20, 37). A series of recent investigations used culture-independent analysis of 18S rRNA gene sequences to reveal the existence of diverse microeukaryote communities in assorted marine, anoxic, and extreme environments (40, 48, 66, 69, 70, 72). Furthermore, a growing body of evidence suggests the existence of significant genetic diversity among various ciliate taxa which has escaped detection by microscopy (14, 18, 23, 34, 60, 64, 78), pointing to the potential for molecular techniques to generate new insights into ciliate diversity and ecology, and suggesting a need for comparison of the effectiveness of these different techniques in environmental samples.Terminal restriction fragment length polymorphism (T-RFLP) analysis provides an efficient, inexpensive, and semiquantitative means for comparing microbial molecular diversity between different samples and has been widely used to investigate bacterial communities, although only a few studies have applied T-RFLP methods to the analysis of microeukaryote diversity (6, 16, 17). In this study, ciliate diversity and community structure were investigated in biofilm samples from streams representing a range of levels of anthropogenic degradation, with the objective of testing the null hypothesis that human impacts have no effect upon this important heterotrophic component of stream ecosystems. To achieve this, ciliate-targeted PCR primers were used in conjunction with T-RFLP and multivariate statistical analyses. Additionally, ciliate diversity measures obtained using molecular techniques were compared with those derived from microscopy-based methods in order to assess the relative effectiveness of these approaches.  相似文献   

3.
4.
Freshwater wetlands constitute important ecosystems, and their benthic, attached microbial communities, including biofilms, represent key habitats that contribute to primary productivity, nutrient cycling, and substrate stabilization. In many wetland biofilms, algae constitute significant parts of the microbial population, yet little is known about their activities in these communities. An analysis of wetland biofilms from the Adirondack region of New York (USA) was performed with special emphasis on desmids, a group of evolutionarily advanced green algae commonly found in these habitats. Desmids constituted as much as 23.7% of the total algal and cyanobacterial flora of the biofilms during the July and August study periods. These algae represented some of the first eukaryotes to colonize new substrates, and during July their numbers correlated with fluctuations in general biofilm parameters such as biofilm thickness and dry weight as well as total carbohydrate. Significant numbers of bacteria were associated with both the EPS sheaths and cell wall surfaces of the desmids. Colonization of new substrates and development of biofilms were rapid and were followed by various fluctuations in microbial community structure over the short- and long-term observations. In addition to desmids, diatoms, filamentous green algae and transient non-motile phases of flagellates represented the photosynthetic eukaryotes of these biofilms.  相似文献   

5.
6.
Biofilm formation is controlled by an array of coupled physical, chemical, and biotic processes. Despite the ecological relevance of microbial biofilms, their community formation and succession remain poorly understood. We investigated the effect of flow velocity, as the major physical force in stream ecosystems, on biofilm community succession (as continuous shifts in community composition) in microcosms under laminar, intermediate, and turbulent flow. Flow clearly shaped the development of biofilm architecture and community composition, as revealed by microscopic investigation, denaturing gradient gel electrophoresis (DGGE) analysis, and sequencing. While biofilm growth patterns were undirected under laminar flow, they were clearly directed into ridges and conspicuous streamers under turbulent flow. A total of 51 biofilm DGGE bands were detected; the average number ranged from 13 to 16. Successional trajectories diverged from an initial community that was common in all flow treatments and increasingly converged as biofilms matured. We suggest that this developmental pattern was primarily driven by algae, which, as “ecosystem engineers,” modulate their microenvironment to create similar architectures and flow conditions in all treatments and thereby reduce the physical effect of flow on biofilms. Our results thus suggest a shift from a predominantly physical control to coupled biophysical controls on bacterial community succession in stream biofilms.  相似文献   

7.
Dialysis tubing containing spent culture media, when placed in a lake, was colonized by a low diversity of bacteria, whereas abiotic controls had considerable diversity. Changes were seen in the presence and absence of acylated homoserine lactones, suggesting that these molecules and other factors may influence adherent-population composition.  相似文献   

8.
Cell counts of planctomycetes showed that there were high levels of these organisms in the summer and low levels in the winter in biofilms grown in situ in two polluted rivers, the Elbe River and the Spittelwasser River. In this study 16S rRNA-based methods were used to investigate if these changes were correlated with changes in the species composition. Planctomycete-specific clone libraries of the 16S rRNA genes found in both rivers showed that there were seven clusters, which were distantly related to the genera Pirellula, Planctomyces, and Gemmata. The majority of the sequences from the Spittelwasser River were affiliated with a cluster related to Pirellula, while the majority of the clones from the Elbe River fell into three clusters related to Planctomyces and one deeply branching cluster related to Pirellula. Some clusters also contained sequences derived from freshwater environments worldwide, and the similarities to our biofilm clones were as high as 99.8%, indicating the presence of globally distributed freshwater clusters of planctomycetes that have not been cultivated yet. Community fingerprints of planctomycete 16S rRNA genes were generated by temperature gradient gel electrophoresis from Elbe River biofilm samples collected monthly for 1 year. Sixteen bands were identified, and for the most part these bands represented organisms related to the genus Planctomyces. The fingerprints showed that there was strong seasonality of most bands and that there were clear differences in the summer and the winter. Thus, seasonal changes in the abundance of Planctomycetales in river biofilms were coupled to shifts in the community composition.  相似文献   

9.
Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50?% of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35?% of the total sequences matched at <95?% identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than previously thought.  相似文献   

10.
Current hypotheses on the distribution of freshwater microchlorophytes lead to predictions of low diversity and wide environmental tolerances. Thus, the same few species should be found worldwide in many different habitats. However, these hypotheses are based on a morphospecies concept, which precludes the possibility of numerous cryptic species among these organisms. In this study, we examined the diversity of coccoid green microalgae and chlamydomonads (Chlorophyta) isolated from sites in Minnesota and North Dakota (USA) using techniques of 18S rDNA sequence analysis. Of 93 distinct 18S rDNA sequences identified from among 273 isolates examined by molecular techniques, all but four are new to science. The spatial distribution of organisms represented by these 18S rDNA sequences was not uniform, because some lakes and ponds yielded distinct 18S rDNA types not found at other sites. In addition, organisms generally considered to be cosmopolitan, such as Chlamydomonas reinhardtii and Chlorella vulgaris, were not found. These results challenge predictions of low species number and wide environmental tolerances among these eukaryotic microorganisms.  相似文献   

11.
Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.  相似文献   

12.
Streams are highly heterogeneous ecosystems, in terms of both geomorphology and hydrodynamics. While flow is recognized to shape the physical architecture of benthic biofilms, we do not yet understand what drives community assembly and biodiversity of benthic biofilms in the heterogeneous flow landscapes of streams. Within a metacommunity ecology framework, we experimented with streambed landscapes constructed from bedforms in large-scale flumes to illuminate the role of spatial flow heterogeneity in biofilm community composition and biodiversity in streams. Our results show that the spatial variation of hydrodynamics explained a remarkable percentage (up to 47%) of the variation in community composition along bedforms. This suggests species sorting as a model of metacommunity dynamics in stream biofilms, though natural biofilm communities will clearly not conform to a single model offered by metacommunity ecology. The spatial variation induced by the hydrodynamics along the bedforms resulted in a gradient of bacterial beta diversity, measured by a range of diversity and similarity indices, that increased with bedform height and hence with spatial flow heterogeneity at the flume level. Our results underscore the necessity to maintain small-scale physical heterogeneity for community composition and biodiversity of biofilms in stream ecosystems.Biofilms (attached and matrix-enclosed microbial communities) are an important form of microbial life in streams and rivers, where they can greatly contribute to ecosystem functions and even large-scale carbon fluxes (1, 3). Streams are inherently heterogeneous and are characterized by a largely unidirectional downstream flow of water that controls the dispersal of suspended microorganisms (21), biofilm community composition (7), architecture (2), and metabolism (13), for instance. However, we do not understand how diverse microorganisms assemble into biofilm communities based on flow heterogeneity and related dispersal in these ecosystems.Dispersal, as the propagation and immigration of biota, can have important consequences for biodiversity and ecosystem functioning in heterogeneous landscapes (18, 25). Landscape topography and turbulent transport affect dispersal, a relationship that is well studied in the dispersal of plant seeds (31) but not in the microbial world. Only recently have microbial ecologists begun to understand the role of dispersal in large-scale biogeographic patterns (29) and metacommunity ecology (24, 44). This growing body of research on microbial dispersal and its consequences for spatial patterns of community assembly and composition rests entirely on free-living bacteria, while no comparable data exist for microbial biofilms. The confirmation of detachment as an intrinsic behavior in many biofilms has led to the appreciation of dispersal as an insurance policy for these microbial communities to seed new habitats during resource limitation or aging of the parental biofilm (4). However, microbial ecology lacks conceptual models to predict postemigration processes, such as cell propagation, immigration, and community assembly during colonization of new surfaces. The perception of biofilms as microbial landscapes and, at the same time, as integrated parts of the landscape they inhabit offers the possibility to test models for habitat selection by dispersal cells (4). In this study, we focused on the assembly of biofilm communities by dispersal cells in spatially variable-flow environments; we did not measure dispersal as the emigration of cells from established biofilms. We adopted metacommunity ecology as a framework that encapsulates environmental heterogeneity and dispersal (18) to illuminate the mechanisms underlying community assembly.If the effects of microbial diversity on ecosystem functions are to be understood, we need to address the proper spatial resolution at which microorganisms assemble into communities and at which their functioning becomes manifest. In streams, this is typically at the level of habitats and microhabitats ranging from meters to centimeters, where characteristic geomorphological features (e.g., bedforms) and induced hydrodynamic fields develop and where spatial variations in biofilm metabolism become apparent (13). The ensemble of these small-scale variations translates into the landscape heterogeneity of the streambed.The aim of this study was to test whether spatial flow heterogeneity generating diverse microhabitats induces spatial species turnover and increases the biodiversity of microbial biofilms. Microbial metacommunity ecology predicts mass effects rather than species sorting to drive community composition in ecosystems with low residence time, such as streams (14, 18, 24). To test this prediction, we constructed six streambed landscapes from bedforms of defined dimensions differing in height; the mean flow (at flume scale) was kept constant, whereas the spatial heterogeneity of flow increased across the gradient of the six landscapes. The inoculum (i.e., the stream water and naturally contained microorganisms) and water chemistry were equal in all flumes. This allowed us to isolate flow heterogeneity as a potential driver of biofilm community composition in a high-energy ecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA gene sequences from winter and summer communities and related bacterial community composition and microbial biomass to the hydrodynamics in representative microhabitats using causal modeling and forward selection of explanatory variables (9, 23).  相似文献   

13.
Exopolymeric substances (EPS) are important for biofilm formation and their chemical composition may influence biofilm properties. To explore these relationships the chemical composition of EPS from Bacillus subtilis NCIB 3610 biofilms grown in sucrose-rich (SYM) and sucrose-poor (MSgg and Czapek) media was studied. We observed marked differences in composition of EPS polymers isolated from all three biofilms or from spent media below the biofilms. The polysaccharide levan dominated the EPS of SYM grown biofilms, while EPS from biofilms grown in sucrose-poor media contained significant amounts of proteins and DNA in addition to polysaccharides. The EPS polymers differed also in size with very large polymers (Mw>2000 kDa) found only in biofilms, while small polymers (Mw<200 kD) dominated in the EPS isolated from spent media. Biofilms of the eps knockout were significantly thinner than those of the tasA knockout in all media. The biofilm defective phenotypes of tasA and eps mutants were, however, partially compensated in the sucrose-rich SYM medium. Sucrose supplementation of Czapek and MSgg media increased the thickness and stability of biofilms compared to non-supplemented controls. Since sucrose is essential for synthesis of levan and the presence of levan was confirmed in all biofilms grown in media containing sucrose, this study for the first time shows that levan, although not essential for biofilm formation, can be a structural and possibly stabilizing component of B. subtilis floating biofilms. In addition, we propose that this polysaccharide, when incorporated into the biofilm EPS, may also serve as a nutritional reserve.  相似文献   

14.
济南地区直翅目昆虫群落多样性   总被引:3,自引:0,他引:3  
济南地区位于鲁中丘陵山区和黄河冲积平原交接地带 ,境内生境丰富多样。研究不同生境中直翅目昆虫群落的组成及多样性既有重要的理论意义又有现实的应用价值。近来对该地区直翅目昆虫的研究成果已有报道[2 ,3 ,6 ],但有关多样性的工作还少有研究。作者于 1 994年对本地区的直翅目昆虫做了较为全面的调查 ,应用生境型的概念[9,13],将直翅目昆虫分布的 1 3种生境划分为 5个生境型[2 ]。在此基础上本文着重研究了直翅目昆虫群落的多样性及环境等因素与群落多样性的关系。1 自然条件概况济南位于山东省中部 ,整个地势南高北低。南部为鲁中丘陵…  相似文献   

15.
The microbial composition of biofilms from a beer bottling plant was analyzed by a cultivation independent analysis of the 16S rRNA genes. Clone libraries were differentiated by amplified 16S rRNA gene restriction analysis and representative clones from each group were sequenced. The diversity of the clone libraries was comparable with the diversity found for environmental samples. No evidences for the presence of strictly anaerobic taxa or important beer spoilers were found, indicating that biofilms developed for more than 6 months at the plant formed no appropriate habitat for those microorganisms. The genus Methylobacterium was one of the dominating groups of the clone libraries. The size of this population was assessed by fluorescence in situ hybridization and fatty acid analysis. In addition, considerable numbers of clones were assigned to uncultivated organisms.  相似文献   

16.
To provide insight into the phylogenetic bacterial diversity of the freshwater sponge Spongilla lacustris, a 16S rRNA gene libraries were constructed from sponge tissues and from lake water. Restriction fragment length polymorphism (RFLP) analysis of >190 freshwater sponge-derived clones resulted in six major restriction patterns, from which 45 clones were chosen for sequencing. The resulting sequences were affiliated with the Alphaproteobacteria (n = 19), the Actinobacteria (n = 15), the Betaproteobacteria (n = 2), and the Chloroflexi (n = 2) lineages. About half of the sequences belonged to previously described actinobacterial (hgc-I) and betaproteobacterial (beta-II) sequence clusters of freshwater bacteria that were also present in the lake water 16S rRNA gene library. At least two novel, deeply rooting alphaproteobacterial lineages were recovered from S. lacustris that showed <89% sequence similarity to known phylogenetic groups. Electron microscopical observations revealed that digested bacterial remnants were contained within food vacuoles of sponge archaeocytes, whereas the extracellular matrix was virtually free of bacteria. This study is the first molecular diversity study of a freshwater sponge and adds to a growing database on the diversity and community composition of sponge-associated microbial consortia.  相似文献   

17.
The situation in water bodies of northwestern Karelia in 1992–2001 was analyzed. As a result of waste discharge from the mining and ore-processing works, weakly mineralized hydrocarbonate-calcium waters changed into highly mineralized waters with the prevalence of potassium ions and sulfates. The total abundance and biomass of zooplanktonic communities decreased. Using the methods of principal components and partial correlations, differences in the responses of zooplankters to mineral pollution were revealed. Typical inhabitants of northern water bodies decreased in numbers, and the species Eudiaptomus gracilis Sars and Heterocope appendiculata Sars (Calanoida) disappeared. On the other hand, eurybiontic species prevailing in water bodies with higher mineralization manifested a positive reaction to the increase in the contents of dissolved mineral compounds. Toxicological experiments made it possible to estimate the survival threshold for E. gracilis and H. appendiculata: the populations of these crustaceans in the polluted water body perished when potassium concentration in water exceeded 50 mg/l.  相似文献   

18.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

19.
The diversity of plant species and their distribution in space are both thought to have important effects on the function of wetland ecosystems. However, knowledge of the relationships between plant species and spatial diversity remains incomplete. In this study, we investigated relationships between spatial pattern and plant species diversity over a five year period following the initial restoration of experimental wetland ecosystems. In 2003, six identical and hydrologically-isolated 0.18 ha wetland “cells” were constructed in former farmland in northeast Ohio. The systems were subjected to planting treatments that resulted in different levels of vascular plant species diversity among cells. Plant species diversity was assessed through annual inventories. Plant spatial pattern was assessed by digitizing low-altitude aerial photographs taken at the same time as the inventories. Diversity metrics derived from the inventories were significantly related to certain spatial metrics derived from the photographs, including cover type diversity and contagion. We found that wetlands with high cover type diversity harbor higher plant species diversity than wetlands with fewer types of patches. We also found significant relationships between plant species diversity and spatial patterning of patch types, but the direction of the effect differed depending on the diversity metric used. Links between diversity and spatial pattern observed in this study suggest that high-resolution aerial imagery may provide wetland scientists with a useful tool for assessing plant diversity.  相似文献   

20.
Abstract

With the aid of a flow cell assembly the desorption of cationic liposomes prepared from mixtures of dipalmitoylphoshatidylcholine (DDPC), cholesterol, and either dimethyldioctadecylammonium bromide (DDAB) or 3,β[N-(N1,N-dimethylethylenediamine)-carbamoyl]cholesterol (DC-chol) from immoblized biofilms of Staphylococcus aureus has been studied as a function of shear stress by confocal microscopy. A shear stress theory has been adapted from fluid mechanics of laminar flow between parallel plates and used to determine the critical shear stress for liposome desorption. The critical shear stress for both DDAB and DC-chol liposomes has been determined as a function of cationic lipid content and hence surface charge as reflected in their zeta potentials. The critical shear stress has been used to obtain the potential energy of liposome–biofilm interaction which together with the electrostatic interaction energy has enabled estimates of the London-Hamaker constants to be made. The values of the London-Hamaker constants at small liposome-bacterial cell separation were found to be independent of liposome composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号