首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chronic inflammation is tightly linked to diseases associated with endothelial dysfunction including aberrant angiogenesis. To better understand the endothelial role in pro‐inflammatory angiogenesis, we analyzed signaling pathways in continuously activated endothelial cells, which were either chronically exposed to soluble TNF or the reactive oxygen species (ROS) generating H2O2, or express active transmembrane TNF. Testing in an in vitro capillary sprout formation assay, continuous endothelial activation increased angiogenesis dependent on activation of p38 MAP kinase, NADPH oxidase, and matrix metalloproteinases (MMP). p38 MAP kinase‐ and MMP‐9‐dependent angiogenesis in our assay system may be part of a positive feed forward autocrine loop because continuously activated endothelial cells displayed up‐regulated ROS production and subsequent endothelial TNF expression. The pro‐angiogenic role of the p38 MAP kinase in continuously activated endothelial cells was in stark contrast to the anti‐angiogenic activity of the p38 MAP kinase in unstimulated control endothelial cells. In vivo, using an experimental prostate tumor, pharmacological inhibition of p38 MAP kinase demonstrated a significant reduction in tumor growth and in vessel density, suggesting a pro‐angiogenic role of the p38 MAP kinase in pathological angiogenesis in vivo. In conclusion, our results suggest that continuous activation of endothelial cells can cause a switch of the p38 MAP kinase from anti‐angiogenic to pro‐angiogenic activities in conditions which link oxidative stress and autocrine TNF production. J. Cell. Physiol. 226: 800–808, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Angiogenesis is a process during which endothelial cells divide and migrate to form new capillaries from the preexisting blood vessels. The present study was designed to investigate whether MAPKs (mitogen‐activated protein kinases) play crucial roles in regulating EGF (epidermal growth factor)‐induced endothelial cell angiogenesis. Our results showed that EGF stimulated HUVEC (human umbilical vein endothelial cells) proliferation in a concentration‐dependent manner, of which the maximum effective concentration of EGF was 10 ng/ml. Western blot analysis showed that EGF at 10 ng/ml significantly induced the phosphorylation of ERK1/2 (extracellular signal‐regulated kinase 1 and 2) and p38 kinase at 5 min, while it induced the phosphorylation of JNK/SAPK (c‐Jun N‐terminal kinase/stress‐activated protein kinase) at 15 min. Further results showed that a JNK/SAPK inhibitor, SP600125, and a specific siRNA JNK/SAPK could both significantly inhibit EGF‐induced tube formation in HUVEC cells, and an ERK1/2 inhibitor PD098059 could also block the tube formation in some content, while a p38 inhibitor SB203580 failed to do so. Furthermore, only SP600125 significantly inhibited EGF‐induced HUVEC cell proliferation under no cytotoxic concentration, so did JNK/SAPK siRNA. In conclusion, JNK/SAPK and ERK1/2 signals therefore play critical roles in EGF‐mediated HUVEC cell angiogenesis.  相似文献   

3.
The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in both suppression and promotion of tumorigenesis. It remains unclear how these 2 opposite functions of p38 operate in vivo to impact cancer development. We previously reported that a p38 downstream kinase, p38-regulated/activated kinase (PRAK), suppresses tumor initiation and promotion by mediating oncogene-induced senescence in a murine skin carcinogenesis model. Here, using the same model, we show that once the tumors are formed, PRAK promotes the growth and progression of skin tumors. Further studies identify PRAK as a novel host factor essential for tumor angiogenesis. In response to tumor-secreted proangiogenic factors, PRAK is activated by p38 via a vascular endothelial growth factor receptor 2 (VEGFR2)-dependent mechanism in host endothelial cells, where it mediates cell migration toward tumors and incorporation of these cells into tumor vasculature, at least partly by regulating the phosphorylation and activation of focal adhesion kinase (FAK) and cytoskeletal reorganization. These findings have uncovered a novel signaling circuit essential for endothelial cell motility and tumor angiogenesis. Moreover, we demonstrate that the tumor-suppressing and tumor-promoting functions of the p38-PRAK pathway are temporally and spatially separated during cancer development in vivo, relying on the stimulus, and the tissue type and the stage of cancer development in which it is activated.  相似文献   

4.
In our present study we focused on soluble VCAM-1 (sVCAM-1)/alpha(4) integrin-induced angiogenesis and found that this type of angiogenesis was mediated through p38 mitogen-activated protein kinase and focal adhesion kinase (FAK). HUVEC expressed both alpha(4) and beta(1) integrins, and it was reported that expression of alpha(4) integrin and its counterreceptor, sVCAM-1/VCAM-1, was enhanced in response to an inflammatory cytokine, TNF-alpha. In endothelial cells phosphorylation of p38 and FAK, but not that of extracellular signal-regulated kinase 1/2 was induced by sVCAM-1. Migration of endothelial cells was stimulated in response to sVCAM-1 at similar levels as those induced by vascular endothelial growth factor, and sVCAM-1-induced migration was almost completely blocked by neutralizing Ab against alpha(4) integrin, by either an inhibitor of p38 (SB203580), or by adenovirus containing FAK-related nonkinase. sVCAM-1 also induced the formation of blood vessels in Matrigel plug assay in vivo, and this neovascularization was blocked by SB203580 or neutralizing Ab against alpha(4) integrin. Moreover, we also confirmed that both TNF-alpha and sVCAM-1 could synergistically induce angiogenesis in the corneas of mice when each factor at used dose could not induce. This angiogenesis by TNF-alpha and sVCAM-1 was almost completely blocked by coadministration of SB203580 and also by neutralizing Ab against alpha(4) integrin. These results suggest that sVCAM-1/alpha(4) integrin induces angiogenesis through p38 and FAK signaling pathways.  相似文献   

5.
An aminoacyl-tRNA synthetase subunit, p43, was previously demonstrated to be released from mammalian cells, and to function as an extracellular regulator of both angiogenesis and inflammatory responses (Ko et al., [2001] J Biol Chem, 276; 23028; Park et al.[2002], J Biol Chem 277; 45243). Here, we report that p43 is internalized to the endothelial cells via lipid rafts. Exogenous p43 was co-localized on bovine aorta endothelial cells with cholera toxin B (CTB), which binds to cholesterol-enriched lipid rafts. The p43 was rapidly internalized to the cells, as early as 5 min after binding to the surfaces of the cells. p43 bound to the isolated lipid rafts, and its interaction with the lipid rafts, was prevented by high salt content, but not by detergent. This suggests that ionic bonds are involved in the molecular association of p43 with the lipid rafts. Taken together, we conclude that p43 binds to the endothelial cell surface via lipid rafts.  相似文献   

6.
In human, nine aminoacyl tRNA synthetases are associated with the three auxiliary proteins, p18, p38, and p43, to form a stable multiprotein complex. The p43 component, which has a potent tRNA binding capacity, is associated to the complex via its N-terminal moiety. This protein is also the precursor of the endothelial monocyte-activating polypeptide II (p43(EMAPII), corresponding to the C-terminal moiety of p43), a cytokine generated during apoptosis. Here we examined the cellular pathway that, starting from the p43 subunit of the complex, leads to this extracellular cytokine. We identified a new intermediate in this pathway, named p43(ARF) for Apoptosis-released Factor. This intermediate is produced in cellulo by proteolytic cleavage of endogenous p43 and is rapidly recovered in the culture medium. This p43 derivative was purified from the medium of human U937 cells subjected to serum starvation. It contains 40 additional N-terminal amino acid residues as compared with the cytokine p43(EMAPII) and may be generated by a member of the matrix metalloproteinase family. Recombinant p43(ARF) is a monomer in solution and binds tRNA with a Kd of approximately 6 nM, 30-fold lower than that of p43. Highly purified p43(ARF) or p43(EMAPII) do not stimulate the expression of E-selectin by human umbilical vein endothelial cells. Our results suggest that the cleavage of p43 and its cellular delocalization, and thus the release of this tRNA binding subunit from the complex, is one of the molecular mechanisms leading to the shut down of protein synthesis in apoptosis.  相似文献   

7.
Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that limits vessel density in normal tissues and curtails tumor growth. Here, we show that the inhibition of angiogenesis in vitro and in vivo and the induction of apoptosis by thrombospondin-1 all required the sequential activation of CD36, p59fyn, caspase-3 like proteases and p38 mitogen-activated protein kinases. We also detected increased endothelial cell apoptosis in situ at the margins of tumors in mice treated with thrombospondin-1. These results indicate that thrombospondin-1, and possibly other broad-spectrum natural inhibitors of angiogenesis, act in vivo by inducing receptor-mediated apoptosis in activated microvascular endothelial cells.  相似文献   

8.
Disruption of endothelial barrier is a critical pathophysiological factor in inflammation. Thrombin exerts a variety of cellular effects including inflammation and apoptosis through activation of the protease activated receptors (PARs). The activation of PAR‐1 by thrombin is known to have a bimodal effect in endothelial cell permeability with a low concentration (pM levels) eliciting a barrier protective and a high concentration (nM levels) eliciting a barrier disruptive response. It is not known whether this PAR‐1‐dependent activity of thrombin is a unique phenomenon specific for the in vitro assay or it is part of a general anti‐inflammatory effect of low concentrations of thrombin that may have a physiological relevance. Here, we report that low concentrations of thrombin or of PAR‐1 agonist peptide induced significant anti‐inflammatory activities. However, relatively high concentration of thrombin or of PAR‐1 agonist peptide showed pro‐inflammatory activities. By using function‐blocking anti‐PAR‐1 antibodies and PI3 kinase inhibitor, we show that the direct anti‐inflammatory effects of low concentrations of thrombin are dependent on the activation of PAR‐1 and PI3 kinase. These results suggest a role for cross communication between PAR‐1 activation and PI3 kinase pathway in mediating the cytoprotective effects of low concentrations of thrombin in the cytokine‐stimulated endothelial cells. J. Cell. Physiol. 219: 744–751, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
For cancer therapy, hypoxia represents an important tumor specific target. Therefore we designed and synthesized antiangiogenic hypoxic cytotoxins as 'hypoxia modifiers'. They can be activated bioreductively in hypoxic cells to kill the oxygen-deficient tumor cells selectively and prevent their re-growth. The aromatic heterocycle di-N-oxides, tirapazamine (TPZ), TX-1102, and TX-402 inhibited growth of EMT6/KU cells, SAS/neo cells, and SAS/Trp248 cells (mutant p53 gene transformant) under hypoxic condition. They also induced apoptosis selectively at a dose of 10 microM each under hypoxic condition for 5 h. Their hypoxic cytotoxicities and apoptosis inducing activities were p53-independent because the activities in SAS/neo cells were almost similar to that in SAS/Trp248 cells. In angiogenesis inhibition assay using chick embryo chorioallantoic membrane (CAM), TPZ, TX-1102, TX-402 and TX-1033 showed 40, 25, 60 and 60% inhibition of angiogenesis each at a dose of 10 microg/CAM. On the other hand, the nitrosopyrimidine, TX-1041 had neither antiangiogenic activity nor cytotoxicity. Therefore the di-N-oxide group is thought to be required for the biological activities. TX-1102 was a potent antiangiogenic hypoxic cytotoxin inducing apoptosis p53-independently.  相似文献   

10.
11.
TGF-β1 and VEGF, both angiogenesis inducers, have opposing effects on vascular endothelial cells. TGF-β1 induces apoptosis; VEGF induces survival. We have previously shown that TGF-β1 induces endothelial cell expression of VEGF, which mediates TGF-β1 induction of apoptosis through activation of p38 mitogen-activated protein kinase (MAPK). Because VEGF activates p38(MAPK) but protects the cells from apoptosis, this finding suggested that TGF-β1 converts p38(MAPK) signaling from prosurvival to proapoptotic. Four isoforms of p38(MAPK) -α, β, γ, and δ-have been identified. Therefore, we hypothesized that different p38(MAPK) isoforms control endothelial cell apoptosis or survival, and that TGF-β1 directs VEGF activation of p38(MAPK) from a prosurvival to a proapoptotic isoform. Here, we report that cultured endothelial cells express p38α, β, and γ. VEGF activates p38β, whereas TGF-β1 activates p38α. TGF-β1 treatment rapidly induces p38α activation and apoptosis. Subsequently, p38α activation is downregulated, p38β is activated, and the surviving cells become refractory to TGF-β1 induction of apoptosis and proliferate. Gene silencing of p38α blocks TGF-β1 induction of apoptosis, whereas downregulation of p38β or p38γ expression results in massive apoptosis. Thus, in endothelial cells p38α mediates apoptotic signaling, whereas p38β and p38γ transduce survival signaling. TGF-β1 activation of p38α is mediated by VEGF, which in the absence of TGF-β1 activates p38β. Therefore, these results show that TGF-β1 induces endothelial cell apoptosis by shifting VEGF signaling from the prosurvival p38β to the proapoptotic p38α.  相似文献   

12.
Vascular endothelial growth factor (VEGF), an endothelial cell-specific mitogen, promotes endothelial cell survival and angiogenesis. We recently showed that VEGF can support the growth of human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells in serum-free medium. Reasoning that VEGF might be modulating apoptotic signal transduction pathways, we examined mechanisms involved in the anti-apoptotic effect of VEGF on starvation- and ceramide-induced apoptosis in HDMEC. We observed that VEGF ameliorated the time-dependent increase in apoptosis, as demonstrated by morphologic observations, TUNEL assay, and DNA fragmentation. On the other hand, basic fibroblast growth factor only partially prevented apoptosis in serum-starved HDMEC; platelet-derived growth factor-BB was completely ineffective. VEGF activated the phosphorylation of extracellular signal regulated kinase (ERK)1 (p44 mitogen-activated protein kinase; MAPK) and ERK2 (p42 MAPK) in a time- and concentration-dependent manner. Both the VEGF-induced activation and its anti-apoptotic effect were prevented by the specific MAPK/ERK inhibitor PD98059. The presence of VEGF also inhibited the sustained activation of stress-activated protein kinase/c-jun-NH2-kinase (SAPK/JNK) caused by serum starvation and ceramide treatment. Activation of the MAPK pathway together with inhibition of SAPK/JNK activity by VEGF appears to be a key event in determining whether an endothelial cell survives or undergoes programmed cell death.  相似文献   

13.
An auxiliary factor of mammalian multi-aminoacyl-tRNA synthetases, p43, is thought to be a precursor of endothelial monocyte-activating polypeptide II (EMAP II) that triggers proinflammation in leukocytes and macrophages. In the present work, however, we have shown that p43 itself is specifically secreted from intact mammalian cells, while EMAP II is released only when the cells are disrupted. Secretion of p43 was also observed when its expression was increased. These results suggest that p43 itself should be a real cytokine secreted by an active mechanism. To determine the cytokine activity and active domain of p43, we investigated tumor necrosis factor (TNF) and interleukin-8 (IL-8) production from human monocytic THP-1 cells treated with various p43 deletion mutants. The full length of p43 showed higher cytokine activity than EMAP II, further supporting p43 as the active cytokine. p43 was also shown to activate MAPKs and NFkappaB, and to induce cytokines and chemokines such as TNF, IL-8, MCP-1, MIP-1alpha, MIP-1beta, MIP-2alpha, IL-1beta, and RANTES. Interestingly, the high level of p43 was observed in the foam cells of atherosclerotic lesions. Therefore, p43 could be a novel mediator of atherosclerosis development as well as other inflammation-related diseases.  相似文献   

14.
Pramanicin is a novel anti-fungal drug with a wide range of potential application against human diseases. It has been previously shown that pramanicin induces cell death and increases calcium levels in vascular endothelial cells. In the present study, we showed that pramanicin induced apoptosis in Jurkat T leukemia cells in a dose- and time-dependent manner. Our data reveal that pramanicin induced the release of cytochrome c and caspase-9 and caspase-3 activation, as evidenced by detection of active caspase fragments and fluorometric caspase assays. Pramanicin also activated c-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated kinases (ERK 1/2) with different time and dose kinetics. Treatment of cells with specific MAP kinase and caspase inhibitors further confirmed the mechanistic involvement of these signalling cascades in pramanicin-induced apoptosis. JNK and p38 pathways acted as pro-apoptotic signalling pathways in pramanicin-induced apoptosis, in which they regulated release of cytochrome c and caspase activation. In contrast the ERK 1/2 pathway exerted a protective effect through inhibition of cytochrome c leakage from mitochondria and caspase activation, which were only observed when lower concentrations of pramanicin were used as apoptosis-inducing agent and which were masked by the intense apoptosis induction by higher concentrations of pramanicin. These results suggest pramanicin as a potential apoptosis-inducing small molecule, which acts through a well-defined JNK- and p38-dependent apoptosis signalling pathway in Jurkat T leukemia cells.  相似文献   

15.
Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells that circulate at low concentration in human umbilical cord and adult peripheral blood and are largely resident in blood vessels. ECFCs not only appear to be critical for normal vascular homeostasis and repair but may also contribute to tumor angiogenesis and response to therapy. To begin to characterize the potential role of ECFCs during the treatment of tumors in children and adults with radiation, we characterized the X-ray sensitivity of cord and adult blood-derived ECFCs. We found both cord blood and adult ECFCs to be highly radiation sensitive (3 Gy resulted in >90% killing without induction of apoptosis). The X-ray survival curves suggested reduced potential for repair capacity, but X-ray fractionation studies demonstrated that all the ECFCs exhibited repair when the radiation was fractionated. Finally, the mechanisms of X-ray-induced cell death for cord blood and adult ECFCs were different at low and high dose. At low dose, all ECFCs appear to die by mitotic death/catastrophe. However, at high radiation doses (≥ 10 Gy) cord blood ECFCs underwent p53 stabilization and Bax-dependent apoptosis as well as p21-dependent G? and G?/M cell cycle checkpoints. By contrast, after 10 Gy adult ECFCs undergo only large-scale radiation-induced senescence, which is a cellular phenotype linked to premature development of atherosclerosis and vasculopathies. These data demonstrate that the ECFC response to radiation is dose-dependent and developmentally regulated and may provide potential mechanistic insight into their role in tumor and normal tissue response after ionizing radiation treatment.  相似文献   

16.
Shyu KG  Tsai SC  Wang BW  Liu YC  Lee CC 《Life sciences》2004,76(7):813-826
Saikosaponin C is one of the saikosaponins that are consisted in a Chinese herb, Radix Bupleuri. Recently, saikosaponins have been reported to have properties of cell growth inhibition, inducing cancer cells differentiation and apoptosis. However, saikosaponin C had no correlation with cell growth inhibition. In this study, we investigated the role of saikosaponin C on the growth of endothelial cells and angiogenesis. We found that saikosaponin C yielded a potent effect on inducing human umbilical vein endothelial cells (HUVECs) viability and growth. In addition to inducing endothelial cells growth, saikosaponin C also induced endothelial cells migration and capillary tube formation. The gene expression or activation of matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF) and the p42/p44 mitogen-activated protein kinase (MAPK, ERK) that correlated with endothelial cells growth, migration and angiogenesis were also induced by saikosaponin C. From these results, we suggest that saikosaponin C may have the potential for therapeutic angiogenesis but is not suitable for cancer therapy.  相似文献   

17.
LY2228820 dimesylate is a highly selective small molecule inhibitor of p38α and p38β mitogen-activated protein kinases (MAPKs) that is currently under clinical investigation for human malignancies. p38 MAPK is implicated in a wide range of biological processes, in particular those that support tumorigenesis. One such process, angiogenesis, is required for tumor growth and metastasis, and many new cancer therapies are therefore directed against the tumor vasculature. Using an in vitro co-culture endothelial cord formation assay, a surrogate of angiogenesis, we investigated the role of p38 MAPK in growth factor- and tumor-driven angiogenesis using LY2228820 dimesylate treatment and by shRNA gene knockdown. p38 MAPK was activated in endothelial cells upon growth factor stimulation, with inhibition by LY2228820 dimesylate treatment causing a significant decrease in VEGF-, bFGF-, EGF-, and IL-6-induced endothelial cord formation and an even more dramatic decrease in tumor-driven cord formation. In addition to involvement in downstream cytokine signaling, p38 MAPK was important for VEGF, bFGF, EGF, IL-6, and other proangiogenic cytokine secretion in stromal and tumor cells. LY2228820 dimesylate results were substantiated using p38α MAPK-specific shRNA and shRNA against the downstream p38 MAPK effectors MAPKAPK-2 and HSP27. Using in vivo models of functional neoangiogenesis, LY2228820 dimesylate treatment reduced hemoglobin content in a plug assay and decreased VEGF-A-stimulated vascularization in a mouse ear model. Thus, p38α MAPK is implicated in tumor angiogenesis through direct tumoral effects and through reduction of proangiogenic cytokine secretion via the microenvironment.  相似文献   

18.
Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 (CYP) metabolites synthesized from the essential fatty acid arachidonic acid to generate four regioisomers, 14,15-, 11,12-, 8,9-, and 5,6-EET. Cultured human coronary artery endothelial cells (HCAECs) contain endogenous EETs that are increased by stimulation with physiological agonists such as bradykinin. Because EETs are known to modulate a number of vascular functions, including angiogenesis, we tested each of the four regioisomers to characterize their effects on survival and apoptosis of HCAECs and cultured human lung microvascular endothelial cells (HLMVECs). A single application of physiologically relevant concentration of 14,15-, 11,12-, and 8,9-EET but not 5,6-EET (0.75-300 nM) promoted concentration-dependent increase in cell survival of HLMVECs and HCAECs after removal of serum. The lipids also protected the same cells from death via the intrinsic, as well as extrinsic, pathways of apoptosis. EETs did not increase intracellular calcium concentration ([Ca2+]i) or phosphorylate mitogen-activated protein kinase p44/42 when applied to these cells, and their protective action was attenuated by the phosphotidylinositol-3 kinase inhibitor wortmannin (10 microM) but not the cyclooxygenase inhibitor indomethacin (20 microM). Our results demonstrate for the first time the capacity of EETs to enhance human endothelial cell survival by inhibiting both the intrinsic, as well as extrinsic, pathways of apoptosis, an important underlying mechanism that may promote angiogenesis and endothelial survival during atherosclerosis and related cardiovascular ailments.  相似文献   

19.
Tumor conditioned medium (CM) has been widely used to stimulate endothelial cells to form capillary-like structures in in vitro angiogenesis models. We report herein the effect of HT1080 and A549 CM after they were mixed with microvascular endothelial cells medium-2 (EGM-2) on angiogenesis in human umbilical vein endothelial cells (HUVECs). Both HT1080 and A549 CM decreased HUVEC proliferation, to different extents. While A549 CM significantly increased capillary-like structure formation in a co-culture system, no effect of HT1080 was apparent. Inhibition of p38 mitogen-activated protein kinase (MAPK) blocked both basal and A549 CM induced capillary-like structure formation, but inhibition of extracellular signal-regulated kinases (ERK) and that of c-Jun N-terminal protein kinases (JNK) MAPK had no such effect. Activation of ERK MAPK was inhibited by both CMs, whereas p38 MAPK was inactivated by HT1080 and activated by A549 CM and a control. Neither CM had an effect on JNK MAPK. The results suggest that p38 MAPK played a critical role in capillary-like structure formation in the co-culture, partly via promotion of apoptosis in HUVECs.  相似文献   

20.
Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration‐dependently enhance bFGF‐induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1‐receptor antagonist), SB203580 (selective p38 mitogen‐activated protein kinase (MAPK) inhibitor) and L ‐NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2‐receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF‐incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF‐κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF‐induced angiogenesis, and this action was linked to VEGF production through H1‐receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. J. Cell. Biochem. 114: 1009–1019, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号