首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that a chimpanzee infected with a primary human immunodeficiency virus type 1 (HIV-1) isolate (HIV-1(DH12)) developed an extremely potent virus-neutralizing antibody. Immunoglobulin G purified from this animal conferred sterilizing immunity following passive transfer to macaques which were subsequently challenged with simian immunodeficiency virus/HIV-1 chimeric virus strain DH12. In addition to being highly strain specific, the chimpanzee antiserum did not bind to the V3 loop peptide of HIV-1(DH12), nor did it block the interaction of gp120 with the CD4 receptor. When neutralization was examined in the context of virus particles carrying chimeric envelope glycoproteins, the presence of all five hypervariable regions (V1 to V5) was required for optimal neutralization. Virions bearing chimeric gp120 containing the V1-V2 and V4 regions of HIV-1(DH12) could also be neutralized, but larger quantities of the chimpanzee antiserum were needed to block infection. These results indicate that the HIV-1 gp120 epitope(s) targeted by the chimpanzee antiserum is highly conformational, involving surface elements contributed by all of the hypervariable domains of the envelope glycoprotein.  相似文献   

2.
The noncovalent association of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) is disrupted by soluble CD4 binding, resulting in shedding of the gp120 exterior envelope glycoprotein. This observation has led to the speculation that interaction of gp120 with the CD4 receptor triggers shedding of the exterior envelope glycoprotein, allowing exposure of gp41 domains necessary for membrane fusion steps involved in virus entry or syncytium formation. To test this hypothesis, a set of HIV-1 envelope glycoprotein mutants were used to examine the relationship of soluble CD4-induced shedding of the gp120 glycoprotein to envelope glycoprotein function in syncytium formation and virus entry. All mutants with a threefold or greater reduction in CD4-binding ability exhibited marked decreases in gp120 shedding in response to soluble CD4, even though several of these mutants exhibited significant levels of envelope glycoprotein function. Conversely, most fusion-defective mutants with wild-type gp120-CD4 binding affinity, including those with changes in the V3 loop, efficiently shed gp120 following soluble CD4 binding. Thus, soluble CD4-induced shedding of gp120 is not a generally useful marker for conformational changes in the HIV-1 envelope glycoproteins necessary for the virus entry or syncytium formation processes. Some gp120 mutants, despite being expressed on the cell surface and capable of efficiently binding soluble CD4, exhibited decreased gp120 shedding. These mutants were still sensitive to neutralization by soluble CD4, indicating that, for envelope glycoproteins exhibiting high affinity for soluble CD4, competitive inhibition may be more important than gp120 shedding for the antiviral effect.  相似文献   

3.
To map the regions of the external envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) involved in the process of membrane fusion, we determined the syncytium-inducing capacity of a panel of transiently expressed chimeric envelope genes. This panel was generated by exchanging gene fragments between four previously studied envelope genes that exhibited a high degree of sequence homology yet displayed marked differences in syncytium-inducing capacity when expressed by recombinant vaccinia virus. The results demonstrate that multiple regions of the HIV-1 envelope glycoproteins are involved in syncytium formation. Some fragments, most notably those containing the V2 or V3 region, can transfer syncytium-inducing capacity to envelope proteins previously not capable of inducing syncytia. Moreover, it is shown that such regions functionally interact with other envelope regions, especially one encompassing the V4 and V5 regions of gp120 or a region encompassing part of gp41, to exert their function in membrane fusion.  相似文献   

4.
The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into cells involves specific interactions between the viral envelope glycoprotein gp120 and two target cell proteins, CD4 and either CCR5 or CXCR4 chemokine receptors. In order to delineate the functional role of HIV-1 gp120 subdomains of dualtropic strains in CCR5 coreceptor usage, we used a panel of chimeric viruses in which the V1/V2 and V3 domains of gp120 from the dualtropic HIV-1(KMT) isolate were introduced either alone or in combination into the T-tropic HIV-1(NL4-3) background. These chimeric constructs were employed in cell-cell fusion and cell-free virus infectivity assays using cell lines expressing CD4 and the CCR5 chemokine receptor. In both assays, the V3 domain of HIV-1(KMT) but not the V1/V2 domain proved to be the principal determinant of CCR5 coreceptor usage. However, in the cell-free viral infectivity assay although a chimeric virus with a combined V1/V2 and V3 domains of HIV-1(KMT) efficiently fused with coreceptor expressing cells, yet its infectivity was markedly diminished in CCR5 as well as CXCR4 expressing cells. Restoring a comparable level of infection of such chimeric virus required the C3-V5 domain from HIV-1(KMT) to be introduced. Our present findings confirmed that the V3 domain is the major determinant of fusion activity and cellular tropism, and demonstrated a dispensable role for the V1/V2 domain. In addition the C3-V5 domain appeared to play an important role in viral infectivity when the corresponding V1/V2 and V3 domains are present.  相似文献   

5.
A human immunodeficiency virus type 1 (HIV-1) mutant lacking the V1 and V2 variable loops in the gp120 exterior envelope glycoprotein replicated in Jurkat lymphocytes with only modest delays compared with the wild-type virus. Revertants that replicated with wild-type efficiency rapidly emerged and contained only a few amino acid changes in the envelope glycoproteins compared with the parent virus. Both the parent and revertant viruses exhibited increased sensitivity to neutralization by antibodies directed against the V3 loop or a CD4-induced epitope on gp120 but not by soluble CD4 or an antibody against the CD4 binding site. This result demonstrates the role of the gp120 V1 and V2 loops in protecting HIV-1 from some subsets of neutralizing antibodies.  相似文献   

6.
The contributions of the first and second variable regions of the human immunodeficiency virus type 1 gp120 glycoprotein to envelope glycoprotein structure, function, and recognition by a neutralizing antibody were studied. Several mutants with substitutions in the V2 loop demonstrated complete dissociation of the gp120 and gp41 glycoproteins, suggesting that inappropriate changes in V2 conformation can affect subunit assembly. Some glycoproteins with changes in V1 or V2 were efficiently expressed on the cell surface and were able to bind CD4 but were deficient in syncytium formation and/or virus entry. Recognition of gp120 by the neutralizing monoclonal antibody G3-4 was affected by particular substitutions affecting residues 176 to 184 in the V2 loop. These results suggest that the V1/V2 variable regions of the human immunodeficiency virus type 1 gp120 glycoprotein play a role in postreceptor binding events in the membrane fusion process and can act as a target for neutralizing antibodies.  相似文献   

7.
The entry of human immunodeficiency virus type 1 (HIV-1) into target cells involves binding to the viral receptor (CD4) and membrane fusion events, the latter influenced by target cell factors other than CD4. The third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein and the amino terminus of the HIV-1 gp41 transmembrane envelope glycoprotein have been shown to be important for the membrane fusion process. Here we demonstrate that some HIV-1 envelope glycoproteins containing an altered V3 region or gp41 amino terminus exhibit qualitatively different abilities to mediate syncytium formation and virus entry when different target cells are used. These results demonstrate that the structure of these HIV-1 envelope glycoprotein regions determines the efficiency of membrane fusion in a target cell-specific manner and support a model in which the gp41 amino terminus interacts directly or indirectly with the target cell during virus entry.  相似文献   

8.
Many regions within the envelope of human immunodeficiency virus type 1 (HIV-1) that affect its structure and function have been identified. We have previously reported that the interaction of the second conserved (C2) and third variable (V3) regions of gp120 influences the ability of HIV-1 to establish a productive infection in susceptible cells. To better understand the basis for this interaction, we have conducted structure-function analyses of envelope expressed from molecular proviral clones of HIV-1 containing defined mutations in C2 and V3 that individually and in combination differentially affect envelope function. The substitution of a glutamine for an asparagine residue (Q-267) at a potential asparagine-linked glycosylation site in C2, which severely impairs virus infectivity, reduces intracellular processing of gp160 into gp120, the association of gp120 with virions, and the ability of gp120 to bind to the HIV-1 cell surface receptor protein, CD4. The change of an arginine to an isoleucine codon in V3 (I-308), in the presence of the Q-267 mutation, restores virus infectivity to near wild-type levels by increasing the amount of gp120 associated with virions as compared with the Q-267 mutant but does not compensate for the Q-267-induced processing defect. The I-308 change in the context of the wild-type HIV-1 has no affect on processing, association, or CD4 binding. These results indicate that the impaired infectivity of the Q-267 mutant virus is due to a marked reduction in the amount of virion gp120 and suggest that the interaction of C2 and V3 stabilizes the association of gp120 with gp41.  相似文献   

9.
A previously reported amino acid substitution within the second conserved domain of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope results in the production of noninfectious particles. Molecular characterization of spontaneous revertant viruses, which arose during long-term cocultures of this env mutant, revealed that an amino acid change within another region of gp120 could functionally compensate for the mutation and restore infectivity. In the current study, we have introduced a conservative amino acid substitution at this second-site revertant codon and observed a marked reduction in HIV-1 infectivity. During the passage of this defective virus in cocultures, yet another revertant appeared which contained an amino acid change within a variable region of gp120 which restored infectivity to near wild-type levels. These results, in combination with other point mutations that have been introduced into the HIV-1 envelope, suggest that at least three discrete regions of gp120 may interact during the establishment of a productive viral infection. This critical step occurs subsequent to the adsorption of virions to the cell surface and either prior to or concomitant with the fusion of viral and cellular membranes.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) isolates derived directly from clinical samples are usually unable to grow in cytokine-independent continuous cell lines, thus hindering the study of their biological features and their sensitivity to humoral and cellular protective immunity. To overcome these limitations, we have derived from the Hut78 T-cell line a CD4+ clone (PM1) characterized by a unique susceptibility to a wide range of HIV-1 isolates, including primary and biologically pure macrophage (M phi)-tropic isolates (e.g., HIV-1BaL), which are unable to infect other human T- or promonocytic cell lines. Both primary and M phi-tropic HIV-1 establish persistent infection in PM1, with sustained levels of virus replication for prolonged periods. Experiments with chimeric viruses containing envelope fragments of HIV-1BAL inserted into the genetic framework of HXB2, a molecular clone derived from the cell-line-tropic isolate HIV-1IIIB, showed the third hypervariable domain (V3) of gp120 to be a critical determinant of the cell line tropism of HIV-1. Nevertheless, the V3 loop of HIV-1BaL was not sufficient to confer on the chimeras a bona fide M phi tropism. The biological characteristics of HIV-1BaL and of a primary isolate (HIV-1(573)) were investigated by using the PM1 clone. Infection of PM1 by HIV-1BaL was critically dependent on the CD4 receptor, as shown by competition experiments with an anti-CD4 monoclonal antibody (OKT4a) or with soluble CD4. However, the amount of soluble CD4 required for inhibition of HIV-1BaL was approximately 100-fold higher than for HIV-1IIIB, suggesting that the affinity of HIV-1BaL for CD4 is significantly lower. Infection of PM1 with either HIV-1BaL or HIV-1(573) failed to induce downregulation of surface CD4 expression and syncytium formation. Analogous results were obtained with a chimeric virus (HXB2[BaL PvuII-BamHI]) encompassing a large portion of gp120 and gp41 of HIV-1BaL, indicating that the env genes contain critical determinants for CD4 downregulation and syncytium formation. Consistent with the lack of CD4 downregulation, persistent infection of PM1 by HIV-1BaL or HIV-1(573) failed to interfere with HIV-1IIIB superinfection, as revealed by the expression of a type-specific V3 loop epitope (M77) and by the induction of extensive syncytium formation. This lack of interference suggests that a direct viral interaction may occur in vivo between biologically diverse HIV-1 strains.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Deletions of the major variable regions (V1/V2, V3, and V4) of the human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein were created to study the role of these regions in function and antigenicity. Deletion of the V4 region disrupted processing of the envelope glycoprotein precursor. In contrast, the deletion of the V1/V2 and/or V3 regions yielded processed exterior envelope glycoproteins that retained the ability to interact with the gp41 transmembrane glycoprotein and the CD4 receptor. Shedding of the gp120 exterior glycoprotein by soluble CD4 was observed for the mutant with the V3 deletion but did not occur for the V1/V2-deleted mutant. None of the deletion mutants formed syncytia or supported virus entry. Importantly, the affinity of neutralizing antibodies directed against the CD4-binding region for the multimeric envelope glycoprotein complex was increased dramatically by the removal of both the V1/V2 and V3 structures. These results indicate that, in addition to playing essential roles in the induction of membrane fusion, the major variable regions mask conserved neutralization epitopes of the HIV-1 gp120 glycoprotein from antibodies. These results explain the temporal pattern associated with generation of HIV-1-neutralizing antibodies following infection and suggest stratagems for eliciting improved immune responses to conserved gp120 epitopes.  相似文献   

12.
Preventing cell entry of human immunodeficiency virus 1 (HIV-1) is of interest for the development of innovative therapies. We previously reported a specific interaction between HIV-1 envelope glycoprotein 120 (gp120) and Tat at the cell surface, which enhances virus attachment and entry. We also identified a gp120-mimicking peptide, CT319, that competes with gp120 for Tat binding, thus inhibiting HIV-1 infection. Here we report a molecular dissection of gp120 regions involved in this mechanism. Our findings identify the V1/V2 loop of gp120 as involved in Tat binding, and define this interaction as functionally relevant for HIV-1 entry into host cells.  相似文献   

13.
Protein-protein interaction surfaces can exhibit structural plasticity, a mechanism whereby an interface adapts to mutations as binding partners coevolve. The HIV-1 envelope glycoprotein gp120-gp41 complex, which is responsible for receptor attachment and membrane fusion, represents an extreme example of a coevolving complex as up to 35% amino acid sequence divergence has been observed in these proteins among HIV-1 isolates. In this study, the function of conserved gp120 contact residues, Leu593, Trp596, Gly597, Lys601, and Trp610 within the disulfide-bonded region of gp41, was examined in envelope glycoproteins derived from diverse HIV-1 isolates. We found that the gp120-gp41 association function of the disulfide-bonded region is conserved. However, the contribution of individual residues to gp41 folding and/or stability, gp120-gp41 association, membrane fusion function, and viral entry varied from isolate to isolate. In gp120-gp41 derived from the dual-tropic isolate, HIV-189.6, the importance of Trp596 for fusion function was dependent on the chemokine receptor utilized as a fusion cofactor. Thus, the engagement of alternative chemokine receptors may evoke distinct fusion-activation signals involving the site of gp120-gp41 association. An examination of chimeric glycoproteins revealed that the isolate-specific functional contributions of particular gp120-contact residues are influenced by the sequence of gp120 hypervariable regions 1, 2, and 3. These data indicate that the gp120-gp41 association site is structurally and functionally adaptable, perhaps to maintain a functional glycoprotein complex in a setting of host selective pressures driving the rapid coevolution of gp120 and gp41.  相似文献   

14.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

15.
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.  相似文献   

16.
The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) is extensively glycosylated, containing approximately 23 asparagine (N)-linked glycosylation sites on its gp120 subunit. In this study, specific glycosylation sites on gp120 of a dualtropic primary HIV-1 isolate, DH12, were eliminated by site-directed mutagenesis and the properties of the resulting mutant envelopes were evaluated using a recombinant vaccinia virus-based cell-to-cell fusion assay alone or in the context of viral infections. Of the glycosylation sites that were evaluated, those proximal to the V1/V2 loops (N135, N141, N156, N160) and the V3 loops (N301) of gp120 were functionally critical. The glycosylation site mutations near the V1/V2 loop compromised the use of CCR5 and CXCR4 equally. In contrast, a mutation within the V3 loop preferentially inhibited the usage of CCR5; although this mutant protein completely lost its CCR5-dependent fusion activity, it retained 50% of the wild-type fusion activity with CXCR4. The replication of a virus containing this mutation was severely compromised in peripheral blood mononuclear cells, MT-4 cells, and primary monocyte-derived macrophages. A revertant virus, which acquired second site changes in the V3 loop that resulted in an increase in net positive charge, was isolated. The revertant virus fully recovered the usage of CXCR4 but not of CCR5, thereby altering the tropism of the parental virus from dualtropic to T-tropic. These results suggest that carbohydrate moieties near the V1/V2 and the V3 loops play critical roles in maintaining proper conformation of the variable loops for optimal interaction with receptors. Our results, combined with those of previously reported studies, further demonstrate that the function of individual glycans may be virus isolate dependent.  相似文献   

17.
The binding of human immunodeficiency virus type 1 (HIV-1) to the cellular receptor CD4 has been suggested to induce conformational changes in the viral envelope glycoproteins that promote virus entry. Conserved, discontinuous epitopes on the HIV-1 gp120 glycoprotein recognized by the 17b, 48d, and A32 antibodies are preferentially exposed upon the binding of soluble CD4 (sCD4). The binding of the 17b and 48d antibodies to the gp120 glycoprotein can also be enhanced by the binding of the A32 antibody. Here we constructed HIV-1 gp120 mutants in which the variable segments of the V1/V2 and V3 structures were deleted, individually or in combination, while the 17b, 48d, and A32 epitopes were retained. The effects of the variable loop deletions on the function of the HIV-1 envelope glycoproteins and on the exposure of epitopes induced by sCD4 or A32 binding to the monomeric gp120 glycoprotein were examined. The variable-loop-deleted envelope glycoproteins were able to mediate virus entry, albeit at lower efficiencies than those of the wild-type glycoproteins. Thus, the V1/V2 and V3 variable sequences contribute to the efficiency of HIV-1 entry but are not absolutely required for the process. Neither the V1/V2 nor V3 loops were necessary for the increase in exposure of the 17b/48d epitopes induced by binding of the A32 monoclonal antibody. By contrast, induction of the 17b, 48d, and A32 epitopes by sCD4 binding apparently involves a movement of the V1/V2 loops, which in the absence of CD4 partially mask these epitopes on the native gp120 monomer. The results obtained with a mutant glycoprotein containing a deletion of the V1 loop alone indicated that the contribution of the V2 loop to these phenomena was more significant than that of the V1 sequences. These results suggest that the V1/V2 loops, which have been previously implicated in CD4-modulated, postattachment steps in HIV-1 entry, contribute to CD4-induced gp120 conformational changes detected by the 17b, 48d, and A32 antibodies.  相似文献   

18.
Yuan W  Craig S  Si Z  Farzan M  Sodroski J 《Journal of virology》2004,78(10):5448-5457
The synthetic peptide T-20, which corresponds to a sequence within the C-terminal heptad repeat region (HR2) of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope glycoprotein, potently inhibits viral membrane fusion and entry. Although T-20 is thought to bind the N-terminal heptad repeat region (HR1) of gp41 and interfere with gp41 conformational changes required for membrane fusion, coreceptor specificity determined by the V3 loop of gp120 strongly influences the sensitivity of HIV-1 variants to T-20. Here, we show that T-20 binds to the gp120 glycoproteins of HIV-1 isolates that utilize CXCR4 as a coreceptor in a manner determined by the sequences of the gp120 V3 loop. T-20 binding to gp120 was enhanced in the presence of soluble CD4. Analysis of T-20 binding to gp120 mutants with variable loop deletions and the reciprocal competition of T-20 and particular anti-gp120 antibodies suggested that T-20 interacts with a gp120 region near the base of the V3 loop. Consistent with the involvement of this region in coreceptor binding, T-20 was able to block the interaction of gp120-CD4 complexes with the CXCR4 coreceptor. These results help to explain the increased sensitivity of CXCR4-specific HIV-1 isolates to the T-20 peptide. Interactions between the gp41 HR2 region and coreceptor-binding regions of gp120 may also play a role in the function of the HIV-1 envelope glycoproteins.  相似文献   

19.
We have described previously genetic characterization of neutralization-resistant, high-infectivity, and neutralization-sensitive, low-infectivity mutants of human immunodeficiency virus type 1 (HIV-1) MN envelope. The distinct phenotypes of these clones are attributable to six mutations affecting functional interactions between the gp120 C4-V5 regions and the gp41 leucine zipper. In the present study we examined mechanisms responsible for the phenotypic differences between these envelopes using neutralization and immunofluorescence assays (IFA). Most monoclonal antibodies (MAbs) tested against gp120 epitopes (V3, CD4 binding site, and CD4-induced) were 20 to 100 times more efficient at neutralizing pseudovirus expressing sensitive rather than resistant envelope. By IFA cells expressing neutralization sensitive envelope bound MAbs to gp120 epitopes more, but gp41 epitopes less, than neutralization-resistant envelope. This binding difference appeared to reflect conformational change, since it did not correlate with the level of protein expression or gp120-gp41 dissociation. This conformational change was mostly attributable to one mutation, L544P, which contributes to neutralization resistance but not to infectivity enhancement. The V420I mutation, which contributes a major effect to both high infectivity and neutralization resistance, had no apparent effect on conformation. Notably, a conformation-dependent V3 neutralization epitope remained sensitive to neutralization and accessible to binding by MAbs on neutralization-resistant HIV-1 envelope. Sensitivity to sCD4 did not distinguish the clones, suggesting that the phenotypes may be related to post-CD4-binding effects. The results demonstrate that neutralization resistance can be determined by distinguishable effects of mutations, which cause changes in envelope conformation and/or function(s) related to infectivity. A conformation-dependent V3 epitope may be an important target for neutralization of resistant strains of HIV-1.  相似文献   

20.
We have demonstrated previously that a human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein containing a Val-to-Glu substitution at the second amino acid of the transmembrane glycoprotein gp41 (termed the 41.2 mutant) dominantly interferes with wild-type envelope-mediated syncytium formation and virus infectivity. To understand the mechanism by which the 41.2 mutant exerts the dominant interfering phenotype and thereby determine further how the mutant might be used as an inhibitor of viral spread, additional mutations were made in the envelope gene, and the effects of these mutations on interference were determined. It was found that processing of the 41.2 mutant glycoprotein in gp120 and gp41 subunits and a functional CD4-binding domain are necessary for the interfering phenotype to be exhibited fully. However, neither a wild-type V3 loop nor the gp41 cytoplasmic tail is necessary for efficient interference. In addition, it was determined that the dominant interfering phenotype is not conferred exclusively by the glutamate substitution at amino acid 2 of gp41, since a substitution with a basic residue at this position also results in a dominant interfering envelope glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号