首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A biofunctional hybrid nanocomposite of carbon nanofiber (CNF) with water-soluble iron(III) meso-tetrakis(N-methylpyridinum-4-yl) porphyrin (FeTMPyP) was designed via non-covalent interaction for preparation of highly sensitive ethanol biosensor. The prepared nanocomposite showed good dispersion in water and was characterized with steady-state electronic absorption spectroscopy and scanning electron microscope. The nanocomposite combined the good conductivity of CNF and the excellent catalytic activity of both CNF and FeTMPyP toward the reduction of dissolved oxygen, producing a method for amperometric detection of oxygen ranging from 6.5 nM to 6.4 microM at a low overpotential. The nanocomposite modified electrode was further used for assembly of alcohol oxidase to construct an amperometric biosensor for ethanol. The biosensor showed rapid and highly sensitive response to ethanol with a linear range from 2.0 microM to 112 microM. The immobilized alcohol oxidase also showed its direct electrochemistry. The biofunctional nanocomposite provides a new way to not only construct the highly sensitive biosensors but also mimic the catalytic activity of enzyme in the life process.  相似文献   

2.
Zhao H  Ju H 《Analytical biochemistry》2006,350(1):138-144
A bilayer of the polyelectrolytes poly(dimethyldiallylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) was formed on a 3-mercapto-1-propanesulfonic-acid-modified Au electrode. Subsequently, multiwall carbon nanotubes (MWCNTs) wrapped by positively charged PDDA were assembled layer-by-layer with negatively charged glucose oxidase (GOx) onto the PSS-terminated bilayer. Electrochemical impedance spectroscopy and atomic force microscopy were adopted to monitor the regular growth of the PDDA-MWCNTs/GOx bilayers. Using GOx as a model enzyme, the assembled multilayer membranes showed some striking features such as the adsorbed form of GOx on individual MWCNT, uniformity, good stability, and electrocatalytic activity toward oxygen reduction. Based on the consumption of dissolved oxygen during the oxidation process of glucose catalyzed by the immobilized GOx, a sensitive amperometric biosensor was developed for the detection of glucose up to 5.0 mM with a detection limit of 58 microM. The sensitivity increased with increasing sensing layers up to five bilayers. Ascorbic acid and uric acid did not cause any interference due to the use of a low operating potential. The present method showed high reproducibility for the fabrication of carbon-nanotubes-based amperometric biosensors.  相似文献   

3.
The present study reports on the use of p(2-hydroxyethyl methacrylate) (pHEMA) in which polypyrrole and various oxidoreductase enzymes were physically entrapped to function as a viable matrix for the construction of clinically important amperometric biosensors. Glucose oxidase, cholesterol oxidase and galactose oxidase biosensors were constructed. Electrode-supported hydrogel films were prepared by UV polymerization of the HEMA component (containing the dissolved enzyme) followed immediately by electrochemical polymerization (+0.7V vs. Ag/AgCl) of the pyrrole component within the interstitial spaces of the pre-formed hydrogel network. The optimized glucose oxidase biosensor displayed a wide linear glucose response range (5.0 x 10(-5) to 2.0 x 10(-2) M), a detection limit (3S(y/x)/sensitivity) of 25 microM and a response time of 35-40 s. The analytical recovery of glucose in serum samples ranged from 98 to 102% with mean coefficients of variation of 4.4% (within-day analyses) and 5.1% (day-to-day analyses). All three sensors displayed good stabilities when stored desiccated in the absence of buffer (>9 months).  相似文献   

4.
A fluorescent glucose biosensor was constructed by immobilizing glucose oxidase on a bamboo inner shell membrane with glutaraldehyde as a cross-linker. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution with a concomitant increase in the fluorescence intensity of an oxygen transducer, tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(Pi) ditetrakis(4-chlorophenyl)borate. The enzyme immobilization, effect of pH, temperature and ionic strength have been studied in detail. The biosensor exhibited repeatable response to a 2.0 mM glucose solution with a relative standard deviation of 3.0% (n = 10). It showed good storage stability and maintained 95% of its initial response after it had been kept at 4 degrees C for 8 months. The biosensor has a linear response range of 0.0-0.6 mM glucose with a detection limit of 58 microM (S/N = 3). Common potential interferants in samples do not pose any significant interference on the response of the glucose biosensor. It was successfully applied to the determination of glucose content in some commercial wines and medical glucose injections.  相似文献   

5.
Gold nanoparticles stabilized by amino-terminated ionic liquid (Au-IL) have been in situ noncovalently deposited on poly(sodium 4-styrene-sulfonate) (PSS)-functionalized multiwalled carbon nanotubes (MWCNTs) to form a MWCNTs/PSS/Au-IL nanocomposite. PSS can interact with MWCNTs through hydrophobic interaction. Amino-terminated ionic liquid was applied to reduce aqueous HAuCl(4), and the resulting gold nanoparticles were attached to the PSS-functionalized MWCNTs simultaneously. Most gold nanoparticles dispersed well on the functionalized MWCNTs. Transmission electron microscopy, Raman and X-ray photoelectron spectroscopy were used to confirm the composition and structure of the nanocomposites. The resulting MWCNTs/PSS/Au-IL composite exhibits good electrocatalysis toward oxygen and hydrogen peroxide reduction. And good biocompatibility with glucose oxidase was also demonstrated due to its good biocatalysis toward glucose substrate, which offered a friendly environment for the immobilization of biomolecules. Such bionanocomposite provides us potential applications in fabrication of biosensors. The resulting biosensor exhibits good response to glucose with a low detection limit 25 microM. It also has excellent reproducibility, satisfied operational stability and good storage stability.  相似文献   

6.
A ferricyanide mediated microbial biosensor for ethanol detection was prepared by surface modification of a glassy carbon electrode. The selectivity of the whole Gluconobacter oxydans cell biosensor for ethanol determination was greatly enhanced by the size exclusion effect of a cellulose acetate (CA) membrane. The use of a CA membrane increased the ethanol to glucose sensitivity ratio by a factor of 58.2 and even the ethanol to glycerol sensitivity ratio by a factor of 7.5 compared with the use of a dialysis membrane. The biosensor provides rapid and sensitive detection of ethanol with a limit of detection of 0.85 microM (S/N=3). The selectivity of the biosensor toward alcohols was better compared to previously published enzyme biosensors based on alcohol oxidase or alcohol dehydrogenases. The biosensor was successfully used in an off-line monitoring of ethanol during batch fermentation by immobilized Saccharomyces cerevisiae cells with an initial glucose concentration of 200 g l(-1).  相似文献   

7.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased.  相似文献   

8.
Biosensors with the composition of carbon/Prussian blue/(glucose oxidase+glutaraldehyde+polytyramine) were constructed. Before tyramine monomers were electropolymerized, glucose oxidase and tyramine monomers were cross-linked with glutaraldehyde onto the surface of Prussian-blue-modified electrodes. The constructed biosensors produced highly reproducible and stable devices. The biosensors exhibited neglectable decrease in current response after 10 repeated uses or after 1 month of dry storage. The resultant biosensors had a linear range of 0.1-1 mM glucose and a detection limit of 0.05 mM. Since the following electrocatalytic process proceeds at a low electrode potential (ca. -0.3 V vs Ag/AgCl), ascorbate and uric acid do not produce observable interfering signal for the determination of glucose.  相似文献   

9.
An uric acid biosensor fabricated from a uricase-immobilized eggshell membrane and an oxygen electrode was presented. The detection schemes involve the enzymatic reactions of the uricase leading to the depletion of dissolved oxygen level upon exposure to uric acid solution. The decrease in oxygen level was monitored and related to the uric acid concentration. The scanning electron micrographs show the microstructure of the eggshell membrane within which the uricase is successfully immobilized. The effects of enzyme loading, pH, temperature, and phosphate buffer concentration on the response of the biosensor were investigated in detail. The uric acid biosensor has a linear response range of 4.0-640 microM with a detection limit of 2.0 microM (S/N=3). The response time was less than 100 s. The biosensor exhibited good repeatable response to a 0.10mM uric acid solution with a relative standard deviation of 3.1% (n=7). The reproducibility of fabrication of the biosensors using four different membranes was good with a R.S.D. of 3.2%. The biosensor showed extremely good stability with a shelf-life of at least 3 months. Some common potential interferents in samples such as glucose, urea, ascorbic acid, lactic acid, glycine, DL-alpha-alanine, DL-cysteine, KCl, NaCl, CaCl2, MgSO4, and NH4Cl showed no interferences on the response of the uric acid biosensor. The biosensor was successfully applied to determine the uric acid level in some human serum and urine samples, and the results agreed well with those obtained by a commercial colorimetric assay kit.  相似文献   

10.
Multi-wall carbon nanotubes (MWNTs) functionalized with amino groups were prepared via silane treatment using 3-aminopropyltrimethoxysilane (APS) as a silane-coupling agent. The resultant amino terminated MWNTs (AMWNTs) were applied to construct glucose biosensors with IO(4)(-)-oxidized glucose oxidase (IO(4)(-)-oxidized GOx) through the layer-by-layer (LBL) covalent self-assembly method without any cross-linker. Scanning electron microscopy (SEM) indicated that the assembled AMWNTs were almost in a form of small bundles or single nanotubes, and the surface density increased uniformly with the number of GOx/AMWNTs bilayers. From the analysis of voltammetric signals, a linear increment of the coverage of GOx per bilayer was estimated. The resulting biosensor showed excellent catalytic activity towards the electroreduction of dissolved oxygen at low overvoltage, based on which glucose concentration was monitored conveniently. The enzyme electrode exhibited good electrocatalytic response towards the glucose and that response increased with the number of GOx/AMWNTs bilayers, suggesting that the analytical performance such as sensitivity and detection limit of the glucose biosensors could be tuned to the desired level by adjusting the number of deposited GOx/AMWNTs bilayers. The biosensor constructed with four bilayers of GOx/AMWNTs showed high sensitivity of 7.46muAmM(-1)cm(-2) and the detection limit of 8.0muM, with a fast response less than 10s. Because of relative low applied potential, the interference from other electro-oxidizable compounds was minimized, which improved the selectivity of the biosensors. Furthermore, the obtained enzyme electrodes also showed remarkable stability due to the covalent interaction between the GOx and AMWNTs.  相似文献   

11.
Boron-doped diamond has drawn much attention in electrochemical sensors. However there are few reports on non-doped diamond because of its weak conductivity. Here, we reported a glucose biosensor based on electrochemical pretreatment of non-doped nanocrystalline diamond (N-NCD) modified gold electrode for the selective detection of glucose. N-NCD was coated on gold electrode and glucose oxidase (GOx) was immobilized onto the surfaces of N-NCD by forming amide linkages between enzyme amine residues and carboxylic acid groups on N-NCD. The anodic pretreatment of N-NCD modified electrode not only promoted the electron transfer rate in the N-NCD thin film, but also resulted in a dramatic improvement in the reduction of the dissolved oxygen. This performance could be used to detect glucose at negative potential through monitoring the current change of oxygen reduction. The biosensor effectively performs a selective electrochemical analysis of glucose in the presence of common interferents, such as ascorbic acid (AA), acetaminophen (AP) and uric acid (UA). A wide linear calibration range from 10 microM to 15 mM and a low detection limit of 5 microM were achieved for the detection of glucose.  相似文献   

12.
The amperometric biosensors based on carbon paste electrodes (CPEs) encrusted with single microreactor (MR) have been constructed for the determination of glucose. The MRs were prepared from CPC-silica carrier (CPC) and were loaded with glucose oxidase (GO), mediator (M) and acceptor (A). As the mediator cation radical of 5,10-dimethyl-5, 10-dihydrophenazine (DMDHP), N-methylphenazonium methyl sulfate (PMS) and o-benzoquinone (BQ) and as the acceptor Fe[EDTA]- or Fe(CN)6(3-) was used. The biosensors acted at electrode potential 0.15-0.27 V versus Ag-AgCl electrode. The calibration graphs of the biosensors were linear in the range from 1.5 to 50 mM of glucose. The sensitivity of the biosensors did not change at pH 6-8. The dissolved oxygen little (7%) influenced the biosensors response and 1 mM of ascorbic acid produced the response that was of equal value to 0.5 mM of glucose. The biosensors showed high stability; no change of the response of the biosensors prepared by using the novel microreactor was observed at least for 6 months by keeping the loaded CPC at room temperature in silica container. An optimization of the biosensors response against the GO, the mediator and the polymer amount was performed. The digital modeling of the biosensors action is following.  相似文献   

13.
The spherical porous Pd nanoparticle assemblies (NPAs) have been successfully synthesized by starch-assisted chemical reduction of Pd(II) species at room temperature. Such Pd NPAs are not simply used to enlarge the surface area and to promote the electron transfer. They also catalyze the reduction of H(2)O(2) which are regarded as horseradish peroxidase (HRP) substitutes in electron transfer process. By using them as electrocatalysts, as low as 6.8×10(-7) M H(2)O(2) can be detected with a linear range from 1.0×10(-6) to 8.2×10(-4) M. Moreover, through co-immobilization of such Pd NPAs and glucose oxidase (GOx), a sensitive and selective glucose biosensor is developed. The detection principle lies on measuring the increase of cathodic current by co-reduction of dissolved oxygen and the in situ generated H(2)O(2) during the enzymatic reaction. Under optimal conditions, the detection limit is down to 6.1×10(-6) M with a very wide linear range from 4.0×10(-5) to 2.2×10(-2) M. The proposed biosensor shows a fast response, good stability, high selectivity and reproducibility of serum glucose level. It provides a promising strategy to construct fast, sensitive, stable and anti-interferential amperometric biosensors for early diagnosis and prevention of diabetes.  相似文献   

14.
A simple and relatively cheap glucose biosensor based on a combination of gold nanoparticles (Au NPs) and glucose oxidase (GO(x) ) immobilized on a bioplatform eggshell membrane was established. Scanning electron microscopy showed successful immobilization of Au NPs/GO(x) on the eggshell membrane. The effects of pH, phosphate buffer concentration, and temperature on the glucose biosensor were studied in detail. The biosensor shows a linear response at a glucose concentration range of 5-525 μM. The detection limit of the biosensor is 2.5 μM (S/N = 3). The biosensor exhibits good repeatability with RSD = 3.6% (n = 6), good operational stability with over 300 measurements and long-term storage stability with a shelf life of at least 6 months. The response time is less than 60 s. The glucose level in commercial food samples has been successfully determined. The proposed work shows potential to develop cost-effective biosensors for biotechnological, biomedical and industrial use.  相似文献   

15.
A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical performances. The interaction between GOD and TPSP-ZnO is examined by using AFM, N(2) adsorption isotherms and electrochemical methods. The immobilized GOD at a TPSP-ZnO-modified glassy carbon electrode shows a good direct electrochemical behavior, which depends on the properties of the TPSP-ZnO. Based on a decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the proposed biosensor exhibits a linear response to glucose concentrations ranging from 0.05 to 8.2mM with a detection limit of 0.01mM at an applied potential of -0.50V which has better biosensing properties than those from other morphological ZnO nanoparticles. The biosensor shows good stability, reproducibility, low interferences and can diagnose diabetes very fast and sensitively. Such the TPSP-ZnO nanostructure provides a good matrix for protein immobilization and biosensor preparation.  相似文献   

16.
Calcium carbonate nanoparticles (nano-CaCO3) may be a promising material for enzyme immobilization owing to their high biocompatibility, large specific surface area and their aggregation properties. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) in order to develop glucose amperometric biosensor. The GOD/nano-CaCO3-based sensor exhibited a marked improvement in thermal stability compared to other glucose biosensors based on inorganic host matrixes. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) in order to oxidize the hydrogen peroxide generated by the enzymatic reaction. The biosensor exhibited a rapid response (6s), a low detection limit (0.1 microM), a wide linear range of 0.001-12 mM, a high sensitivity (58.1 mAcm-2M-1), as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

17.
Gold (Au) and platinum (Pt) screen-printed electrodes were modified with Prussian Blue (PB) for the development of amperometric sensors selective for hydrogen peroxide detection. The sensors exhibited sensitivities towards H(2)O(2) equal to 2 A M(-1) cm(-2) for Au and 1 A M(-1) cm(-2) for Pt electrodes. The sensors were also employed as the basis for construction of glucose biosensors through further modification with crystallised glucose oxidase immobilised in a Nafion membrane. In order to improve the operational stability of the modified electrodes a buffer solution containing tetrabutylammonium toluene-4-sulfonate was used. The long-term performance of the sensors and biosensors were evaluated by continuous monitoring of hydrogen peroxide and glucose solutions (50 microM and 1 mM, respectively) in the flow-injection mode for 10 h.  相似文献   

18.
A novel trienzyme sensor for the amperometric determination of lactate was constructed by immobilizing salicylate hydroxylase (SHL, E.C. 1.14.13.1), l-lactate dehydrogenase (LDH, E.C. 1.1.1.27), and pyruvate oxidase (PyOD, E.C. 1.2.3.3) on a Clark-type oxygen electrode. The enzymes were entrapped by a poly(carbamoyl) sulfonate (PCS) hydrogel on a Teflon membrane. LDH catalyzes the specific dehydrogenation of lactate consuming NAD(+). SHL catalyzes the irreversible decarboxylation and the hydroxylation of salicylate in the presence of oxygen and NADH produced by LDH. PyOD decarboxylates pyruvate using oxygen and phosphate. SHL and PyOD force the equilibrium of dehydrogenation of lactate by LDH to the product side by consuming NADH and pyruvate, respectively. Dissolved oxygen acts as an essential material for both PyOD and SHL during their respective enzymatic reactions. Therefore, an amplified signal, caused by the consumptions of dissolved oxygen by the two enzymes, was observed in the measurement of lactate. Regeneration of cofactor was found in the trienzyme system. A Teflon membrane was used to fabricate the sensor in order to avoid interferences. The sensor has a fast response (2s) and short recovery times (2 min). The total test time for a measurement by using this lactate sensor (4 min) was faster than using a commercial lactate testing kit (up to 10 min). The sensor has a linear range between 10 and 400 microM lactate, with a detection limit of 4.3 microM. A good agreement (R2 = 0.9984) with a commercial lactate testing kit was obtained in beverage sample measurements.  相似文献   

19.
Glucose oxidase was embedded in organic films through a layer-by-layer approach, where the enzyme demonstrated significantly enhanced electron-transfer reactivity and finely tuned enzymatic activity. An unmediated, reagentless glucose biosensor was accordingly prepared with two polyethylenimine/glucose oxidase bilayers-modified pyrolytic graphite electrode. A calibration linear range of glucose was 0.5-8.9 mM with a detection limit of 50 microM and sensitivity of 0.76 microA mM(-1).  相似文献   

20.
Integrating graphene-based composites with enzyme provides a potent strategy to enhance biosensor performance due to their unique physicochemical properties. Herein we report on the utilization of graphene-CdS (G-CdS) nanocomposite as a novel immobilization matrix for the enzymes, which glucose oxidase (GOD) was chosen as model enzyme. In comparison with the graphene sheet and CdS nanocrystal, G-CdS nanocomposite exhibited excellent electron transfer properties for GOD with the rate constant (k(s)) of 5.9 s(-1) due to the synergy effect of graphene sheet and CdS nanocrystals. Further, based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the obtained glucose biosensor displays satisfactory analytical performance over an acceptable linear range from 2.0 to 16 mM with a detection limit of 0.7 mM, and also prevents the effects of interfering species, which is suitable for glucose determination by real samples. These results mean that this immobilization matrix not only can be used for immobilizing GOD, but also can be extended to other enzymes and bioactive molecules, thus providing a promising platform for the development of biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号