首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The development of neurons and their synapses of the mouse motor cortex has been studied from the first postnatal day up to an age of three weeks both electronmicroscopically and with the Golgi method. Special attention has been paid to the maturation of the different cell types in the sixth cortical layer and their dendritic organization within this layer.The polymorph layer is subdivided into two zones: an internal (VIb) and an external one (VIa). In these zones six different cell types can be identified both electronmicroscopically and with the Golgi method: large, small and inverted pyramidal cells in VIa; horizontal cells, star cells and small pyramidal cells in VIb.Spines of apical dendrites of large pyramidal cells in sublayer VIa can be detected as early as the 6th postnatal day. About the ninth day the basal dendrites as well show emerging spines. Somatic spines are found only on the large pyramidal cells and disappear slowly towards the end of the 3rd postnatal week.The small pyramidal cells show developing spines on their apical dendrite in the first half of the second postnatal week. The final density and distribution of spines is reached by the stem dendrites towards the end of the second week, by the basal dendrites during the third week. The maturation process of the improperly orientated neurons occurs in time in between the large and the small pyramidal cells.The axo-somatic synapses appear in general at a later date than the axo-dendritic ones. In the horizontal cells axo-somatic synapses are visible already at the seventh postnatal day.At the end of the first week especially in layer VIb many immature neurons with an ovoid or round nucleus are present having little if any endoplasmic reticulum organised as ergastoplasm.Towards the end of the second week however most neurons in the polymorph layer have a well developed endoplasmic reticulum.Electronmicroscopical pictures reveal in outgrowing dendrites many enlargements filled with vesicles, these correspond to the varicosities seen in Golgi pictures. At nine days postnatally the first myelinated fibres appear.Aided by grant (R-209-67) from the United Cerebral Palsy Research and Educational Foundation, New York.  相似文献   

2.
The present study was designed to examine the nerve growth factor (NGF) system (ligand and receptor-expressing neurons) in the somatosensory (areas 1, 3a, and 3b) and motor (area 4) cortices of the mature macaque. Light and electron microscope immunohistochemistry was used to assess the distribution and identity of NGF-, p75-, and trk-expressing elements. In each cortical area examined, NGF-positive neuronal somata were distributed through all laminae; most immunolabeled neurons were in layers II, III, and V. Based upon light microscope criteria (e.g., the morphology of proximal dendrites), both pyramidal and stellate neurons expressed NGF. Of the identifiable NGF- immunoreactive cells, 92% were pyramidal neurons and the remainder was stellate neurons. The electron microscope study showed that most (88%) NGF-positive somata formed symmetric synapses, whereas the others formed both symmetric and asymmetric synapses. As the somata of pyramidal neurons form only symmetric synapses and those of inhibitory stellate neurons form both symmetric and asymmetric somatic synapses, the ultrastructural data support the light microscopic analyses. In contrast, neurotrophin receptors, p75 and trk, were expressed chiefly by the cell bodies of layer V pyramidal neurons and the supragranular neuropil. At the ultrastructural level, receptor-positive profiles were post-synaptic elements (e.g., dendritic shafts and spines) and the concentration of immunoreactivity was greatest in the vicinity of post-synaptic densities. Thus, NGF regulatory systems parallel excitatory and inhibitory neurotransmitter systems. Cortex contains the morphological framework by which pyramidal and/or inhibitory stellate neurons can affect the activity of post-synaptic pyramidal neurons via anterograde and autocrine/paracrine NGF systems.  相似文献   

3.
Tu YL  Liu YB  Zhang L  Zhao YJ  Wang L  Hu ZA 《生理学报》2003,55(2):206-212
为研究大鼠不同发育阶段视皮层神经元电的生理学与形态学特性,实验观察了神经元电生理和形态学特性的变化与年龄的同步化程度,探讨视皮层视觉依赖性突触的形成和重新分布的细胞内机制。应用脑片膜片钳全细胞记录技术和细胞内生物家标记相结合的方法,记录4—28d SD大鼠视皮层神经元的突触后电流(postsynaptic currents,PSCs)。共记录156个大鼠视皮层神经元,睁眼前与睁眼后组中无反应型细胞数量,多突触反应型细胞数量、细胞的输入阻抗有显著性差异。成功标记23例神经元,不同年龄的神经元的形态学成熟度不同。低输入阻抗神经元在形态学上属成熟型,高输入阻抗神经元属幼稚型。该结果表明,大鼠在发育过程中,视皮层神经元功能的成熟表现为在形觉刺激以及局部神经元网络的整合作用下的视觉依赖性突触的形成和重新分布。在视觉发育可塑性关键期内,视皮层神经元形态和电生理特性的变化与年龄的同步化程度大于皮层下结构。  相似文献   

4.
The hypothesis that extracellular matrix components may be related to neuronal development in the mouse cerebellar cortex was verified with immunohistochemistry by using an antibody against laminin-alpha1, a major extracellular matrix protein in various tissues. A commercially available polyclonal antibody, raised against the carboxyl-terminal 20-amino acid peptide of laminin-alpha1 was used. Some positive immunoreaction products were localized around large GABAergic interneurons in granular layers and others were around neurons in deep cerebellar nuclei. At the electron microscope level, diaminobenzidine immunoreaction products were localized around presynaptic boutons and in intercellular matrices around interneurons. Such immunoreaction products could be detected at postnatal day 20, when most of cerebellar synapses are assumed to be established. It has been known that a special feature of extracellular matrix, termed perineuronal nets, exists around specific subpopulation of neurons. In the mouse cerebellum, the present findings suggest that laminin itself or laminin-like-antigens exists in the perineuronal nets in relation to inhibitory neuron synapses.  相似文献   

5.
The hypothesis that extracellular matrix components may be related to neuronal development in the mouse cerebellar cortex was verified with immunohistochemistry by using an antibody against laminin-α1, a major extracellular matrix protein in various tissues. A commercially available polyclonal antibody, raised against the carboxyl-terminal 20-amino acid peptide of laminin-α1 was used. Some positive immunoreaction products were localized around large GABAergic interneurons in granular layers and others were around neurons in deep cerebellar nuclei. At the electron microscope level, diaminobenzidine immunoreaction products were localized around presynaptic boutons and in intercellular matrices around interneurons. Such immunoreaction products could be detected at postnatal day 20, when most of cerebellar synapses are assumed to be established. It has been known that a special feature of extracellular matrix, termed perineuronal nets, exists around specific subpopulation of neurons. In the mouse cerebellum, the present findings suggest that laminin itself or laminin-like-antigens exists in the perineuronal nets in relation to inhibitory neuron synapses.  相似文献   

6.
Pyramidal, aspinous, sparsely-spinous bipolar and multipolar neurons of the rat sensomotor cerebral cortex, impregnated after Golgi method, have been studied at an electron microscopical level. The ultrastructural characteristics of the pyramidal neurons differs from that of the nonpyramidal cells. Distribution of various synaptic contacts on the cellular surface and cortical postsynaptic targets of the axonal arborizations of the neurons are revealed. On the body of the pyramidal cells only symmetrical synapses exist, on large dendritic trunks symmetrical synapses prevail, on the spines and the terminal dendritic branches assymetrical synapses mainly predominate. Axonal collateralies of the pyramidal cells form asymmetrical synapses on the spines, small and middle dendrites. There are more axo-somatic synapses on the bodies of the nonpyramidal neurons than on the pyramidal cells, among them both symmetrical and asymmetrical types of the synapses occur. On the trunks and small dendrites of the nonpyramidal cells both types of synaptic contacts are revealed. In the distal direction of the dendrites the number of the asymmetrical synapses becomes predominating. Axons of the bipolar cells form asymmetrical synapses on the spines, small and middle dendrites. Axons of the multipolar cells form symmetrical synapses on the dendrites and the dendritic trunks of the nondifferentiated cells. Differences in the distribution character of the synaptic inlets and various postsynaptic targets of the axonal systems in the cells assume various functional role of the identified neurons.  相似文献   

7.
The development of somatostatin-immunoreactive (SS) neurons and processes in the rat visual cortex (VC) was studied in animals from embryonic day 20 (E20) to postnatal day 21 (D21). Three distinct patterns of immunoreactivity were seen. From E20 to birth (D0), VC was characterized by a small number of mainly bipolar SS neurons throughout the cortical plate. In the perinatal period, from D1 to D6, there were large numbers of immature immunoreactive neurons which were confined to layer VI and the subplate zone, a few bipolar neurons in the cortical plate and an extremely dense plexus of SS processes throughout the neuropil. The third phase, from D8 to weaning, was characterized by the absence of immature SS neurons, an increase in the number of multipolar SS neurons and a decrease in the density of SS fibers. By D15, the time of eye-opening, the number and distribution of SS neurons and processes was close to that seen in the adult. These results indicate that the SS system of neurons and fibers is among the earliest of the transmitter systems to be established in VC and suggests a role for the peptide in cortical organization as well as visual processing.  相似文献   

8.
The distribution of GABAergic interneurons as well as terminal and synaptic networks in different layers of the rat sensorimotor neocortex were studied at different stages of the postnatal period under normal conditions and after exposure to perinatal hypoxia. In control animals, the architectonics of the inhibitory network in different layers of the sensorimotor neocortex was shown to display distinctive features at different stages of the postnatal development. At early postnatal stages, a significant portion of neurons in layers II–V are immunopositive for GAD-67, indicative of a high level of GABA expression, however, GABA transmission is extremely weak, thus supporting the presence in the neuropil of only sporadic GABAergic terminals and synapses. By the juvenile age, a dramatic drop in the number of GABAergic neurons and an increase in the density of the network of GABA-immunopositive processes and synaptic structures occur in the neuropil, suggesting a considerable increase in GABA transmission. A higher level of GABA transmission is revealed in layers IV and V, persisting over the prepubertal period. Our results demonstrate that acute perinatal hypoxia affects the state of the inhibitory GABAergic network in the rat sensorimotor neocortex during the postnatal period. GABA expression and transmission were shown to change virtually in all layers.  相似文献   

9.
大鼠海马触液神经元的分布特征及其纤维联系   总被引:1,自引:0,他引:1  
本文应用HRP追踪与电镜结合的方法研究了大白鼠海马接触脑脊液神经元的分布特征和皮质内联系。光镜观察在海马的多形细胞层和锥体细胞层等处可见散在的神经元被标记,而在室管膜层标记的细胞较多,它们分布于交织成网的阳性纤维中。透射电镜可见海马室管膜层的HRP反应阳性的神经细胞、树突末稍及神经胶质细胞。在海马室管膜上也见到了被标记的神经纤维。同时在海马室管膜层内还发现未标记的阴性轴突与被HRP标记的阳性树突构成的轴-树突触。上述结果提示海马为接触脑脊液神经元存在的部位之一,其接触脑脊液神经元并受到其它神经元的突触调控  相似文献   

10.
The synapse architecture of the simcipital and auditory cortex of the cat (fields 7 and 22 after M. O. Gurevich and oth., 1929) was studied electron microscopically. In the both areas of the cortex there are much more axo-dendritic synapses that axo-somatic ones. In the upper layers the synapses are more often formed on small dendrites and thorns, while in layers IV-VI they often occur on the main trunks of large dendrites. The synapses on small branches and thorns of dendrites contain spherical vesicles, and the synapses on on large dendrites are formed by the terminals of two kinds-with flattened and spherical vesicles. The amount of axo-somatic synapses increases towards the lower layers of the cerebral cortes. The synapses on the soma and apical dendrites of the pyramid neurons always contain flattened vesicles; on the stellate neurons there occur perisynaptic terminals with sperical vesicles as well.  相似文献   

11.
Area 5 of the cat cortex was studied by Nissl's method and by Golgi's chromate-silver impregnation method. Its typical six-layered structure with well-developed layers of pyramidal cells was revealed. The characteristic features of area 5 are: predominance of pyramidal cells in layers II–III and the presence of large forms (40×26 µ) among them (in layer III); giant pyramidal neurons (70×23 µ) arranged singly or nidally in layer V; large (diameter 25–30 µ) and giant (diameter 40–45 µ) stellate cells with radial dendrites, arranged singly or in groups in layers V–VI; infrequent efferent fusiform neurons (40×20 µ) in layers V–VI. Stellate cells connecting pyramidal neurons in the same or in different layers were found in layers II–VI. Some stellate cells in layers II–III form long horizontal connections within area 5. Interneuronal connections are effected by axosomatic and axodendritic terminals, the latter being more numerous; Dendrodendritic and axoaxonal synapses are less common.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 35–42, January–February, 1979.  相似文献   

12.
The ultrastructural features of the primary auditory cortex of the cats and the character of the endings of geniculo-cortical afferent fibers in the early stages of experimental degeneration evoked by destruction of the medial geniculate body were studied. In all layers of the cortex asymmetrical synapses with round synaptic vesicles on dendritic spines and on thin dendritic branches of pyramidal and nonpyramidal neurons are predominant. Symmetrical synapses with flattened or polymorphic vesicles are distributed chiefly on the bodies of the neurons and their large dendrites. Because there are few symmetrical synapses which could be regarded as inhibitory it is postulated that inhibitory influences may also be transmitted through asymmetrical synapses with round vesicles. Other types of contacts between the bodies of neurons, dendrites, and glial processes also were found in the auditory cortex. Degenerating terminals of geniculo-cortical fibers were shown to terminate chiefly in layer IV of the cortex on pyramidal and nonpyramidal neurons. Degeneration was of the dark type in asymmetrical synapses with round vesicles. The results are dicussed in connection with electrophysiological investigations of the auditory cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 519–524, September–October, 1973.  相似文献   

13.
The distribution of gamma-aminobutyric acid (GABA) in surgical samples of human cerebellar cortex was studied by light and electron microscope immunocytochemistry using a polyclonal antibody generated in rabbit against GABA coupled to bovine serum albumin with glutaraldehyde. Observations by light microscopy revealed immunostained neuronal bodies and processes as well as axon terminals in all layers of the cerebellar cortex. Perikarya of stellate, basket and Golgi neurons showed evident GABA immunoreactivity. In contrast, perikarya of Purkinje neurons appeared to be negative or weakly positive. Immunoreactive tracts of longitudinally- or obliquely-sectioned neuronal processes and punctate elements, corresponding to axon terminals or cross-sectioned neuronal processes, showed a layer-specific pattern of distribution and were seen on the surface of neuronal bodies, in the neuropil and at microvessel walls. Electron microscope observations mainly focussed on the analysis of GABA-labelled axon terminals and of their relationships with neurons and microvessels. GABA-labelled terminals contained gold particles associated with pleomorphic vesicles and mitochondria and established symmetric synapses with neuronal bodies and dendrites in all cortex layers. GABA-labelled terminals associated with capillaries were seen to contact the perivascular glial processes, basal lamina and endothelial cells and to establish synapses with subendothelial unlabelled axons.  相似文献   

14.
Retrograde transport of cholera toxin conjugated with horseradish peroxidase in the postnatal rat has revealed remarkable features of dendritic fields of vagal motor neurons in the medulla oblongata and cervical spinal cord during the period of early development (0-10 days). At birth, vagal motor neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus, nucleus retroambigualis, nucleus dorsomedials and the spinal nucleus of the accessory nerve are small with relatively few, unbranched processes. The span of the dendritic tree is much smaller than that found in adult animals. By the postnatal Day 2 there are marked changes in the soma as well as in the dendritic tree of these neurons. There is dispersion of the cell bodies within the neuropil as well as an expansion of the total area of the brain stem occupied by these motor neurons and their dendritic processes which show extensive growth and branching. By postnatal Day 3 the most extensive proliferation of these neurons is seen and appears to represent the peak of dendritic growth of vagal motor neurons such that the area occupied by the dendritic tree of a single neuron is three times that seen in an adult rat. This proliferation gradually decreased during the subsequent seven days of early development (i.e. Days 4-10) so that by Day 10 the dendritic span of vagal motor neurons was reduced to about twice the adult size. This growth progressively decreased from Days 10 to 30 at which time adult levels were reached. Ultrastructural examination of these horseradish peroxidase labeled dendrites showed a positive correlation between the number of dendritic processes and the number of axo-dendritic synapses. This was accompanied by an increase in the number of identifiable synaptic junctions. These morphological complexities observed during the period of early development of vagal motor neurons indicate that the vagus nerve undergoes dramatic changes during the period of early development including the establishment of numerous synaptic contacts between vagal afferents and efferents in the brainstem. A number of these changes occur in developing dendritic fields of vagal motor neurons during the first three days of neonatal life. It is reasonable to assume that developmental abnormalities during this "critical period" could produce significant functional changes in the pattern of respiration as well as in the control of airway smooth muscle.  相似文献   

15.
Summary Morphogenesis of the arcuate nucleus of the rat from the 15th fetal day to the 6th postnatal day was investigated light and electron microscopically. The arcuate neurons exhibit a gradual development after the 15th fetal day. All cytoplasmic constituents are present in these nerve cells already during the last days of gestation. Nevertheless, they are not fully differentiated at birth. The first synapse-like structures (presynapses) were observed in 17 day-old, the first synapses in 18 day-old fetuses. During the early postnatal period the number of presynapses decreases, but at the same time there is a gradual increase in the number of the relatively mature synapses. This process starts already during the last days of prenatal life. Although all structural elements of the arcuate nucleus of the adult rat appear to be present at birth, the extent of the neuropil area and the number of the presynapses indicate that the arcuate nucleus is still in a fairly undeveloped stage during the first postnatal days.  相似文献   

16.
Gangliosides are characteristic plasma membrane constituents of vertebrate brain used as milestones of neuronal development. As neuronal morphology is a good indicator of neuronal differentiation, we analyzed how lack of the ganglioside biosynthetic gene Galgt1 whose product is critical for production of four major adult mammalian brain complex gangliosides (GM1, GD1a, GD1b and GT1b) affects neuronal maturation in vivo. To define maturation of cortical neurons in mice lacking B4galnt1 we performed a morphological analysis of Golgi-Cox impregnated pyramidal neurons in primary motor cortex and granular cells of dentate gyrus in 3, 21 and 150 days old B4galnt1-null and wild type mice. Quantitative analysis of basal dendritic tree on layer III pyramidal neurons in the motor cortex showed very immature dendritic picture in both mice at postnatal day 3. At postnatal day 21 both mice reached adult values in dendritic length, complexity and spine density. No quantitative differences were found between B4galnt1-null and wild type mice in pyramidal cells of motor cortex or granular cells of dentate gyrus at any examined age. In addition, the general structural and neuronal organization of all brain structures, qualitatively observed on Nissl and Golgi-Cox, were similar Our results demonstrate that neurons can develop normal dendritic complexity and length without presence of complex gangliosides in vivo. Therefore, behavioral differences observed in B4galnt1-null mice may be attributed to functional rather than morphological level of dendrites and spines of cortical pyramidal neurons.  相似文献   

17.
Postnatal expression of chondroitin sulfate proteoglycans was studied in the rat thalamus by immunocytochemistry and Western immunoblotting techniques with monoclonal antibodies that recognize carbohydrate epitopes (clones CS-56, 1-B-5, 2-B-6). The complex of the results shows that these antibodies recognize mostly nonoverlapping molecules whose expression is regulated during postnatal development. Chondroitin sulfate proteoglycans, recognized by antibody CS-56, and hyaluronan, identified by antibody 1-B-5 after hyaluronidase digestion, are abundant in the neuropil of most thalamic nuclei at the perinatal stage and progressively decrease during the second week of life, attaining levels barely detectable by immunocytochemistry at the end of the third week. In adult thalamus, chondroitin sulfate proteoglycans of high molecular mass, bearing glycosaminoglycans unsulfated in the linking region, and recognized by antibody 1-B-5 are confined to perineuronal nets around neurons chiefly localized in thalamic reticular nucleus. The immunoreactvity for antibody 2-B-6, specific for chondroitin-4-sulfate, is low at the perinatal stage and is not detectable in adult thalamus. Double-immunolabeling has shown that, along the rostrocaudal extension of reticular nucleus, the most developed perineuronal nets are associated with a subset of neurons expressing calretinin, and not with parvalbumin-positive neurons, which represent the largest neuronal population of the nucleus. The distribution of perineuronal nets supports the presence, in thalamic reticular nucleus, of neuronal subpopulations with different morphological and physiological features.  相似文献   

18.
At thoracic and lumbar levels the spinal dorsal gray of young specimens of the turtle Chrysemys d'orbigny consists of a cell-free neuropil and an aggregation of perikarya termed here the lateral column of the dorsal horn (LCDH). Nerve cell clusters also occur in the dorsal commissure. The main neuropil area can be divided into a thin superficial layer containing some myelinated fibers (neuropil area Ib) and a compact core composed of unmyelinated axon terminals, dendritic branches, and thin glial processes (neuropil area II). A looser neuropil area is located at the horn base (neuropil area III). The so-called marginal zone of de Lange represents a fourth synaptic field termed here neuropil area Ia. The LCDH consists of neurons of different size and shape. Two peculiar nerve cell types have been recognized in the dorsal horn: giant and bitufted neurons. The former exhibits a large dendritic arbor, which after passing through neuropil areas II and Ib projects into neuropil area Ia and the adjacent white matter. Most frequently Golgi-stained giant neurons have perikarya and dendritic domains on the same side (ipsilateral giant neurons). There are also heterolateral giant neurons whose dendritic branches invade the opposite horn. Bitufted neurons are characterized by the presence of two main dendritic shafts connecting neuropil area II of both dorsal horns. At neuropil levels the major dendritic branches ramify profusely giving rise to short tortuous terminal processes. Perikarya of bitufted neurons occur in the dorsal commissure. The LCDH also contains many small and medium-sized neurons. These are oriented in two main directions: parallel or radial with respect to the dorsal horn surface. The population of horizontally oriented neurons comprises two subtypes termed here alpha and beta. Radially oriented neurons are pleomorphic, defying precise, unequivocal classification.  相似文献   

19.
Quantitative electronmicroscopic studies have been made on the development of synapses in two modally different areas of the brain (V-VI layers of the visual and auditory cortex) in the rat and mouse Acomys cahirinus within first two weeks of their postnatal life. The density of synapses as well the relative amount of different types of synapses (symmetrical, asymmetrical, axo-spinal and synapses with large amounts of synaptic vesicles) were measured. It was shown that only in rats the development of synapses in the visual area usually is faster than in the auditory one.  相似文献   

20.
The present study aimed to elucidate the distribution of betaine/γ-aminobutyric acid (GABA) transporter-1 (BGT-1) in the normal monkey cerebral neocortex and hippocampus by immunoperoxidase and Immunogold labelling. BGT-1 was observed in pyramidal neurons in the cerebral neocortex and the CA fields of the hippocampus. Large numbers of small diameter dendrites or dendritic spines were observed in the neuropil. These made asymmetrical synaptic contacts with unlabelled axon terminals containing small round vesicles, characteristic of glutamatergic terminals. BGT-1 label was observed in an extra-perisynaptic region, away from the post-synaptic density. Immunoreactivity was not observed in portions of dendrites that formed symmetrical synapses, axon terminals, or glial cells. The distribution of BGT-1 on dendritic spines, rather than at GABAergic axon terminals, suggests that the transporter is unlikely to play a major role in terminating the action of GABA at a synapse. Instead, the osmolyte betaine is more likely to be the physiological substrate of BGT-1 in the brain, and the presence of the transporter in pyramidal neurons suggests that these neurons utilize betaine to maintain osmolarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号