首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Though most birds and insects are capable of flight (volant) some species are flightless. In this paper I test the hypothesis that phylogenetic constraints have played a role in the evolution of flightlessness. If speciation occurred after the evolutionary transition to flightlessness, inferences concerning the importance of particular aspects of the environment on the probability of the evolution of flightlessness may be statistically spurious because of the inflation of the sample size. Among birds, ratites and penguins illustrate the phenomenon of considerable speciation subsequent to the transition to the evolution of flightlessness. In contrast, the rails represent a group in which each flightless species probably represents a separate evolutionary transition. There are many more flightless insect species than bird species and several orders are monomorphically flightless, the sometimes enormous speciation within the order following and possibly being a consequence of the evolution of flightlessness. While it can be shown in insects that flightlessness has evolved independently many times, there are at least as many cases in which the question cannot be resolved. Therefore, in both birds and insects phylogenetic effects should not be ignored, for the number of evolutionary transitions may be much less than the number of species. The effect of incorporating phylogenetic (or at least taxonomic) constraints into the analysis of habitat factors associated with flightlessness is considered.  相似文献   

2.
Flightless birds belonging to phylogenetically distant clades share several morphological features in the pectoral and pelvic apparatus. There are indications that skull morphology is also influenced by flightlessness. In this study we used a large number of flightless species to test whether flightlessness in modern birds does indeed affect cranial morphology. Discriminant analyses and variation partitioning show evidence for a relationship between skull morphology and the flightless condition in birds. A possible explanation for the change in cranial morphology can be linked to the reduced selective force for light-weight skulls in flightless birds. This makes an increase in muscle mass, and therefore an enlargement of muscle insertion areas on the skull, possible. We also compared the ontogenetic trajectory of Gallus with the adult morphology of a sample of flightless species to see whether the apomorphic features characterizing the skull of flightless birds share the same developmental basis, which would indicate convergent evolution by parallelism. Skull morphology (expressed as principal component scores) of palaeognathous flightless birds (ratites) is dissimilar (higher scores) to juvenile stages of the chicken and therefore seem peramorphic (overdeveloped). Principal component scores of adult neognathous flightless birds fall within the range of chicken development, so no clear conclusions about the ontogenetic trajectories leading to their sturdier skull morphology could be drawn.  相似文献   

3.
Ant communities in tropical forests may be governed by varying assembly mechanisms, depending on the particular habitat investigated. We compared phylogenetic diversity and structure across two forest biomes (dry and humid) and two vertical layers (arboreal and terricolous) in ant communities in Madagascar, and assessed the influence of invasive species on this community structure. We estimated phylogenetic signal and correlated evolution for habitat and several functional traits and tested for conservatism in relevant functional and habitat traits. Ancestral states were reconstructed to illuminate the evolution of habitat traits. All analyses utilized phylogenies estimated from newly generated data from three nuclear markers for 290 Malagasy ant taxa. Dry forests, although lower in species richness, were found to support equally high lineage diversity as humid forests. In contrast, phylogenetic diversity was much lower in arboreal than in terricolous communities. We observed significant phylogenetic clustering in the combined humid forest and in the arboreal–humid, arboreal–dry and terricolous–humid communities, whereas the combined dry forest community was overdispersed. Among ant communities in Madagascar, overdispersion and competition therefore may be more prevalent in dry forest, and habitat filtering may be more dominant in humid forest. Excluding invasive ant species had little overall effect on community structure. All investigated traits showed low to intermediate conservatism; strong support for correlated evolution was found for increased eye size and an arboreal lifestyle. Habitat transitions from humid to dry and from terricolous to arboreal occurred more frequently, and ancestors of most lineages were predicted to be terricolous or humid‐forest adapted. We conclude that most Malagasy ant clades first colonized humid forests and subsequently transitioned into dry forests, indicating that previous hypotheses on the evolution of Madagascar's hyperdiverse biota may not apply to ants and other arthropods.  相似文献   

4.
The physiological demands of flight exert strong selection pressure on avian morphology and so it is to be expected that the evolutionary loss of flight capacity would involve profound changes in traits. Here, we investigate morphological consequences of flightlessness in a bird family where the condition has evolved repeatedly. The Rallidae include more than 130 recognized species of which over 30 are flightless. Morphological and molecular phylogenetic data were used here to compare species with and without the ability to fly in order to determine major phenotypic effects of the transition from flighted to flightless. We find statistical support for similar morphological response among unrelated flightless lineages, characterized by a shift in energy allocation from the forelimbs to the hindlimbs. Indeed, flightless birds exhibit smaller sterna and wings than flighted taxa in the same family along with wider pelves and more robust femora. Phylogenetic signal tests demonstrate that those differences are independent of phylogeny and instead demonstrate convergent morphological adaptation associated with a walking ecology. We found too that morphological variation was greater among flightless rails than flighted ones, suggesting that relaxation of physiological demands during the transition to flightlessness frees morphological traits to evolve in response to more varied ecological opportunities.  相似文献   

5.
Flightlessness in Tachyeres is caused by wing-loadings in excess of 2.5 g·cm–2, which result from the large body size and small wing areas of the flightless species. Reduced wing areas of flightless species are related to absolutely shorter remiges, and to relatively or absolutely shortened wing bones, although these reductions differ among species. Reduced lengths of the ulna, radius, and carpometacarpus are associated most strongly with flightlessness. Pectoral muscles and the associated sternal keel are well developed in all species of Tachyeres, largely because of the use of wings in “steaming,” an important locomotor behavior. Relative size of these muscles was greatest in largely flighted T. patachonicus; however, sexual dimorphism in wing-loadings results in flightlessness in some males of this species. Proportions in the wing skeleton, intraspecific allometry, and limited data on growth indicate that the relatively short wing bones and remiges of flightless Tachyeres are produced developmentally by a delay in the growth of wing components, and that this heterochrony may underlie, in part, skeletal sexual dimorphism. Increased body size in flightless steamer-ducks is advantageous in territorial defense of food resources and young, and perhaps diving in cold, turbulent water; reductions in wing area probably reflect refinements for wing-assisted locomotion and combat. Flightlessness in steamer-ducks is not related to relaxed predation pressure, but instead was permitted selectively by the year-round habitability of the southern South American coasts. These conditions not only permitted the success of the three flightless species of Tachyeres, but at present may be moving marine populations of T. patachonicus toward flightlessness.  相似文献   

6.
Steamer ducks (Tachyeres) comprise four species, three of which are flightless. The flightless species are believed to have diverged from a flying common ancestor during the Late Pleistocene; however, their taxonomy remains contentious. Of particular interest is the previously unstudied population of flying steamer ducks in the Falkland Islands. We present the first genetic data from this insular population, and illustrate that the flying and flightless steamer ducks on the Falkland Islands are genetically indistinguishable, in contrast to their traditional classification as separate species. The three species that reside in continental South America form a genetically distinct lineage from the Falkland Island ducks. The Falkland steamer ducks diverged from their continental relatives 2.2-0.6 million years ago, coincident with a probable land bridge connecting the Falkland Islands to the mainland. The three continental species share a common ancestor approximately 15 000 years ago, possibly owing to isolation during a recent glacial advance. The continental steamer duck species are not reciprocally monophyletic, but show some amount of genetic differentiation between them. Each lineage of Tachyeres represents a different stage between flight and flightlessness. Their phylogenetic relationships suggest multiple losses of flight and/or long-term persistence of mixed-flight capability. As such, steamer ducks may provide a model system to study the evolution of flightlessness.  相似文献   

7.
Abstract. Biramus lunatus gen.n., sp.n. is described from Venezuela. This species is of special phylogenetic interest as it is the sister-group of the subfamily Hemerobiinae ( sensu Oswald, 1993), which previously contained four genera ( Hemerobiella, Hemerobius, Nesobiella and Wesmaelius ) and approximately 200 of the c. 550 world hemerobiid species. The conformation of the forewing radius in Biramus is especially interesting and provides a test case for distinguishing parallel evolution among forewing radial vein states within the Hemerobiidae.  相似文献   

8.
Nudds, R. L. and Slove Davidson, J. 2010. A shortening of the manus precedes the attenuation of other wing-bone elements in the evolution of flightlessness in birds. — Acta Zoologica (Stockholm) 91 : 115–122
This is the first study to present evidence for a general pattern of wing-bone attenuation during the early stages of the evolution of flightlessness. A comparative analysis using phylogenetic independent contrasts showed that in families that contain both flighted (volant) and flightless species, the volant species have shorter wings and total-arm (humerus + ulna + manus) lengths relative to their body masses than the species within their wholly volant sister families. A shortening of the manus may typify the early stages of the evolution of flightlessness, with the humerus and ulna attenuating later, perhaps because of their role in maintaining the position of the aerodynamically important alula. A shorter wing relative to body mass was not the result of the inverse (i.e. heavier body mass relative to wing length) because mean body masses of volant members of flightless families were similar to or lower than those of their wholly volant sister families. Despite finding a common trend in the wing morphologies of volant members of flightless families, it seems unlikely that a general model of selection pressures driving the evolution of flightlessness exists. At the very least, a dichotomy between those birds that have lost the ability to fly in order to gain the ability to swim and terrestrial forms, may persist.  相似文献   

9.
Data are presented on the standard energetics of six flighted and five flightless species of rails (Aves: Rallidae). The factors influencing these data and those from three additional species available from the literature, one of which was flightless, are examined. Basal rate of metabolism correlates with body mass, residency on islands or continents, volant condition, pectoral muscle mass, and food habits, but not with climate. The greatest capacity (96.2%) to account for the variation in basal rate of metabolism in 15 populations that belong to the 14 species occurs when body mass, volant condition, and food habits are combined. Then flighted species have basal rates that average 1.38 times those of flightless species and herbivorous rails have basal rates that are 1.37 times those of omnivorous species, which means that, independent of body mass, flighted gallinules have basal rates that are 1.9 times those of flightless, omnivorous rails. Distribution, pectoral muscle mass, and flight ability cannot be combined in the same analysis because they code for similar information. The evolution of a flightless condition in rails requires the absence of eutherian predators, but has occurred in the presence of marsupial predators. Each of the six studied flightless rails independently evolved a flightless condition and a low basal rate, whereas the evolution of herbivory and an associated high basal rate evolved at least twice in these species. Flightless rails on islands have clutch sizes that are only about one-half those of flighted rails living on continents, the reduction in clutch size correlating with a reduction in basal rate of metabolism. Thermal conductance in rails is correlated with body mass and food habits: herbivorous rails had conductances that were 1.43 times those of omnivores, i.e., conductances are highest in species with the highest basal rates.  相似文献   

10.
Some insect species exhibit polymorphisms in flight muscles or wings, which provide opportunities for studying the factors that drive dispersal polymorphisms and the evolution of flightlessness in insects. We investigated the macroscale evolutionary pattern of flightlessness in the widespread Japanese beetle Necrophila japonica (Coleoptera: Silphidae), which exhibits flight muscle dimorphisms using phylogeographic approaches. N. japonica lives in both stable and unstable habitats, and the flight muscle dimorphisms may have been maintained through the use of these diverse habitats. We studied the distribution pattern of the proportion of individuals lacking flight muscles in relation to the genetic differentiation among geographic populations using an 842-base pair sequence of the COI-II gene. Both flight-capable and flightless individuals occurred over the distribution area, and the flight muscle condition showed no significant phylogeographic pattern. Several populations comprised flight-capable individuals only, whereas few comprised flightless ones only. Demographic expansion was suggested for major clades of COI-II haplotypes, and the genetic differentiation showed an isolation-by-distance pattern among the populations in Japan. The proportion of flightless individuals was higher in a population with a higher annual mean temperature and with higher genetic diversity among individuals. These results indicate that geographic expansion occurred recently while flight muscle dimorphisms have been maintained, that flight-capable individuals have colonized cooler (peripheral) habitats, and that flightlessness has increased in long-persisting populations as suggested by high genetic diversity.  相似文献   

11.
Flightlessness has evolved independently in at least 11 extant avian families. A number of hypotheses have been proposed to explain these transitions in individual families, including release from predation on oceanic islands, energetic costs of flight and use of forelimbs for activities other than flying. Few studies have sought to explore factors common to all families containing flightless species, which may explain the taxonomic distribution of flightlessness. In this study, we found that for all eight avian families which contain both flightless and flighted species, the flighted species have shorter wing lengths relative to body mass than their sister families. This result is not biased by taxon size. Models of avian aerodynamics predict that birds with relatively short wings pay a high energetic cost of flight. We suggest that these increased energetic costs of flying predispose these avian families to evolve flightless species. The various causes for the shortening of wings among flighted species of birds and the possibility of future transitions to flightlessness are discussed.  相似文献   

12.
Evolutionary theory predicts that selection in distinct microhabitats generates correlations between morphological and ecological traits, and may increase both phenotypic and taxonomic diversity. However, some microhabitats exert unique selective pressures that act as a restraining force on macroevolutionary patterns of diversification. In this study, we use phylogenetic comparative methods to investigate the evolutionary outcomes of inhabiting the arboreal microhabitat in salamanders. We find that arboreality has independently evolved at least five times in Caudata and has arisen primarily from terrestrial ancestors. However, the rate of transition from arboreality back to terrestriality is 24 times higher than the converse. This suggests that macroevolutionary trends in microhabitat use tend toward terrestriality over arboreality, which influences the extent to which use of the arboreal microhabitat proliferates. Morphologically, we find no evidence for an arboreal phenotype in overall body proportions or in foot shape, as variation in both traits overlaps broadly with species that utilize different microhabitats. However, both body shape and foot shape display reduced rates of phenotypic evolution in arboreal taxa, and evidence of morphological convergence among arboreal lineages is observed. Taken together, these patterns suggest that arboreality has played a unique role in the evolution of this family, providing neither an evolutionary opportunity, nor an evolutionary dead end.  相似文献   

13.
Flightlessness in birds is the product of changes in suites of characters—including increased body size and reduced anterior limbs—that have evolved repeatedly and independently under similar ecological conditions (generally insularity). It remains unknown whether this phenotypic convergence extends to the genomic level, partially because many losses of flight occurred long ago (such as in penguins or ratites), thus complicating the study of the genetic pathways to flightlessness. Here, we use genome sequencing to study the evolution of flightlessness in a group of ducks that are current and dynamic exemplars of this major functional transition. These recently diverged Tachyeres steamer ducks differ in their ability to fly: one species is predominantly flighted and three are mainly flightless. Through a genome‐wide association analysis, we identify two narrow candidate genomic regions implicated in the morphological changes that led to flightlessness, and reconstruct the number of times flightlessness has evolved in Tachyeres. The strongest association is with DYRK1A, a gene that when knocked out in mice leads to alterations in growth and bone morphogenesis. These findings, together with phylogenetic and demographic analyses, imply that the genomic changes leading to flightlessness in Tachyeres may have evolved once, and that this trait remains functionally polymorphic in two species.  相似文献   

14.
Abstract

An investigation of flightlessness in the Rallidae led me to question the theories of Olson (1973); that all rails in the genus Gallirallus were distributed over their present range by recent flighted dispersal; and that flightlessness is a recent process conferred by the paedomorphic process neoteny. The current distribution of some members of Gallirallus (Olson 1973a) are interpreted using the panbiogeographic method of Croizat (1958, 1958a). This method indicates that the distribution of some rails is similar to other biota. I suggest the group may be ancient, and its distribution the result of vicariism. Consequently, the evolution of flightless morphology need not be fast, and the flightless rails on different land masses could be the result of flightless radiations.  相似文献   

15.
The beetle family Lampyridae (fireflies) encompasses ~100 genera worldwide with considerable diversity in life histories and signaling modes. Some lampyrid males use reproductive accessory glands to produce spermatophores, which have been shown to increase female lifetime fecundity. Sexual dimorphism in the form of neotenic and flightless females is also common in this family. A major goal of this study was to test a hypothesized link between female flight ability and male spermatophore production. We examined macroevolutionary patterns to test for correlated evolution among different levels of female neoteny (and associated loss of flight ability), male accessory gland number (and associated spermatophore production), and sexual signaling mode. Trait reconstruction on a molecular phylogeny indicated that flying females and spermatophores were ancestral traits and that female neoteny increased monotonically and led to flightlessness within multiple lineages. In addition, male spermatophore production was lost multiple times. Our evolutionary trait analysis revealed significant correlations between increased female neoteny and male accessory gland number, as well as between flightlessness and spermatophore loss. In addition, female flightlessness was positively correlated with the use of glows as female sexual signal. Transition probability analysis supported an evolutionary sequence of female flightlessness evolving first, followed by loss of male spermatophores. These results contribute to understanding how spermatophores have evolved and how this important class of seminal nuptial gifts is linked to other traits, providing new insights into sexual selection and life-history evolution.  相似文献   

16.
Anthropogenic environmental change can underpin major shifts in natural selective regimes, and can thus alter the evolutionary trajectories of wild populations. However, little is known about the evolutionary impacts of deforestation—one of the most pervasive human-driven changes to terrestrial ecosystems globally. Absence of forest cover (i.e. exposure) has been suggested to play a role in selecting for insect flightlessness in montane ecosystems. Here, we capitalize on human-driven variation in alpine treeline elevation in New Zealand to test whether anthropogenic deforestation has caused shifts in the distributions of flight-capable and flightless phenotypes in a wing-polymorphic lineage of stoneflies from the Zelandoperla fenestrata species complex. Transect sampling revealed sharp transitions from flight-capable to flightless populations with increasing elevation. However, these phenotypic transitions were consistently delineated by the elevation of local treelines, rather than by absolute elevation, providing a novel example of human-driven evolution in response to recent deforestation. The inferred rapid shifts to flightlessness in newly deforested regions have implications for the evolution and conservation of invertebrate biodiversity.  相似文献   

17.
Prior to the extinction wave that followed the human colonization of Oceania, flightless rails (Aves: Rallidae) were among the largest radiations of island birds, and perhaps the most species-rich example of convergent evolution in vertebrates. Insular flightless species are thought to have evolved from extant, volant species that colonized from continental sources and rapidly followed parallel adaptive pathways to flightlessness. The present study provides the first test of this model of speciation using genetic data sampled throughout the range of a putative ancestral species. Mitochondrial control region sequences from 71 individuals of the Gallirallus philippensis species complex reveal essentially no geographic structure within archipelagos and only weak structure among archipelagos, with no major genetic breaks except for birds sampled in the Philippines. Demographic tests of coalescent models support a recent rapid expansion into Oceania (including Australia) out of the Philippines approximately 20 000 years ago. The estimated coalescence of G. philippensis mitochondrial alleles approximately 33 000 years ago closely corresponds to the expansion of humans into the archipelagoes of Near Oceania, suggesting that humans may have facilitated its colonization by exterminating flightless competitors and clearing lowland forests. Phylogenetic analyses that included all G. philippensis haplotypes and samples from 11 single-island endemic flightless species of Gallirallus indicate that G. philippensis is polyphyletic, but is not the ancestor of most of its flightless congeners, as previously thought. Nuclear gene sequences (β-actin inron 3) suggest that G. philippensis polyphyly is at least partly due to hybridization. The flightless condition evolves in rails before reproductive isolation is complete.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 601–616.  相似文献   

18.
Abstract Adult Gryllus assimilis given an analog of juvenile hormone exhibited reduced flight muscles and enlarged ovaries similar to those found in naturally occurring flightless individuals of species that are polymorphic for dispersal capability. Control and hormone-treated (flightless) G. assimilis did not differ in the amount of food consumed or assimilated on any of three diets that differed in nutrient quantity. Thus, enhanced ovarian growth of flightless individuals resulted from increased allocation of internal nutrients to reproduction (i.e., a trade-off) rather than from increased acquisition of nutrients. Compared with flight-capable controls, flightless G. assimilis also had reduced whole-organism respiration, reduced respiration of flight muscles, and reduced lipid and triglyceride (flight fuel) reserves. These differences are remarkably similar to those between naturally occurring flightless and flight-capable morphs of other Gryllus species. Results collectively suggest that the increased allocation of nutrients to ovarian growth in flightless G. assimilis and other Gryllus species results from reduced energetic costs of flight muscle maintenance and/or the biosynthesis or acquisition of lipids. Reduction in these energetic costs appears to be an important driving force in the evolution of flightlessness in insects. Respiratory metabolism associated with flight capability utilizes an increasing proportion of the energy budget of crickets as the quantity of nutrients in the diet is decreased. This leads to a magnification of greater ovarian growth of flightless versus flight-capable individuals on nutrient-poor diets.  相似文献   

19.
Until now, only fully winged mayflies have been known. It has been proposed recently that brachyptery could be a missing link in the development of insect flight, via sailing or skimming aquatic insects. To our knowledge, we report here the first documented case of brachyptery in mayflies. The flightless genus Cheirogenesia is endemic to Madagascar, and the adults skim the water surface. This loss of the flight function has induced important physiological changes, such as a shift from lipids to carbohydrates in the energy reserves used during their adult life. Comparison of wing area of living mayflies with fossil species indicates that brachyptery could have already occurred in early flying insects (in the Permian). We argue that flight loss in Cheirogenesia has been made possible by the lack of fish predation in its natural habitats.  相似文献   

20.
The morphological bases of flightlessness in three genera of grebes were studied using 790 study skins, 322 skeletons, myological data from 40 anatomical specimens studied by Sanders (1967), and ancillary data on wing-loadings. Three species, Rollandia microptera, Podilymbus gigas, and Podiceps taczanowskii, are considered to be flightless; each is endemic to a high-altitude, neotropical lake or lake system. Compared to their flighted (capable of flight) sister-species, the three flightless species shared several broadly convergent characters: larger body mass and skeletal dimensions (exclusive of the sternal carina), reductions in relative lengths of wing, tail, and primary remiges, and reduction in the relative size of breast muscles. Rollandia microptera exhibited the greatest morphological differences from its flighted sister-species; these differences were comparable to intergeneric morphometric differences in magnitude and involved a tripling of body mass, a modal loss of one primary remex in each wing, absolute reduction of the sternal carina, flattening of proximal wing elements, a large morphometric shift in skeletal dimensions, an increase in the scapulocoracoid angle, and six qualitative differences in the pectoral musculature. Morphological differences between Podilymbus gigas and its flighted congener were comparatively minor; flightlessness in this species, if genuine, evidently results from an allometric increase in size combined with a large decrease in relative bulk of breast musculature and shift of alar muscle mass. Podiceps taczanowskii was intermediate in degree of anatomical difference from its flighted relatives, but was unique in its slight reduction in absolute length of the wings and decrease in absolute widths of the skeletal wing elements. Multivariate differences in external characters associated with flightlessness were strongly convergent in the three genera, but multivariate differences in skeletal proportions differed substantially among genera in detail. An estimate of wing-loading indicated that Podilymbus gigas and, especially, Podiceps taczanowskii may be only “flight-impaired” rather than flightless. Relative wing lengths and conformation of sterna in Rollandia microptera and Podiceps taczanowskii indicate that morphological changes associated with flightlessness are paedomorphic; intraspecific allometry in Rollandia indicates that the underlying ontogenetic change may involve a delay in the start of pectoral-alar development (postdisplacement). Flightlessness in grebes, a family typified by moderately heavy wing-loadings and relatively small pectoral muscles, is related in all three instances to the year-round residency afforded by large lakes at low latitudes. The primary selective advantages of morphological changes leading to flightlessness probably are related to the thermodynamic advantages of increased body sizes, feeding specialization associated with enlargement of the bill, and reduction of intraspecific niche overlap through increased sexual dimorphism; the changes are also possibly related to economy of pectoral-alar development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号