首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The light-induced oxygen evolution, photoreduction of 2,6-dichlorophenolindophenol (DPIP) and carotenoid photobleaching induced by carbonylcyanide m-chlorophenylhydrazone (CCCP) were investigated withspinach chloroplast fragments in the presence of H2O2. Oxygenevolution in the presence of H2O2 was not inhibited by CCCPand was only partially inhibited by 5 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea(DCMU) which completely inhibited the Hill reaction with DPIP.The degree of inhibition by DCMU was decreased by a simultaneousaddition of CCCP. Carotenoid photobleaching in the presenceof CCCP was stimulated by H2O2. The CCCP-induced carotenoidphotobleaching was completely inhibited by DCMU. However, itwas only partially inhibited by DCMU in the presence of H2O2.These data indicate that H2O2 donates electrons at a site betweenthe CCCP-sensitive site and the reaction center of photosystemII and is reduced at a site between the DCMU-blocked site andthe reaction center of photosystem II. 1Present address: Department of Biology, Kyushu Dental College,Kitakyushu 803, Japan. (Received June 20, 1974; )  相似文献   

2.
Chemiluminescence of luminol (CLL) was induced by illuminatedspinach chloroplast fragments. CLL was diminished by superoxidedismutase or under anaerobic conditions and increased by anautoxidizable electron acceptor, methyl viologen. The optimumpH for CLL was 10.0-10.5. Ferredoxin and cytochrome c reducing substance (CRS) did notaffect the intensity of CLL, but accelerated the dark decayin the absence of methyl viologen. In the presence of methylviologen, ferredoxin and CRS lowered the intensity and acceleratedthe dark decay. 3-(4-Chlorophenyl)-1,1-dimethylurea diminishedCLL. Carbonylcyanide m-chlorophenylhydrazone accelerated theinitial rate of CLL increase at low concentration and inhibitedit at high concentration. Half-decay time of CLL after the cessationof light was shortened by inhibiting electron transfer on theoxidizing side of photosystem II. We conclude that most of the CLL observed in illuminated chloroplastsis dependent on O2. The results also suggest that O2is reduced by reduced ferredoxin or CRS and oxidized on theoxidizing side of photosystem II. The half life of O2in illuminated chloroplasts was estimated from the half-decaytime of CLL to be a few sec. 1 Present address: Kyushu Dental College, Department of Biology,Kitakyushu 803, Japan. (Received May 30, 1977; )  相似文献   

3.
The phytotoxic effects of sulfur dioxide (SO2) were investigatedby fumigating spinach plants with SO2. Inhibition of 2,6-dichloroindophenol(DCIP) photoreduction was observed in spinach chloroplasts isolatedfrom fumigated leaves. NADP and DCIP photoreductions were inhibitedto a similar extent by fumigation with 2.0 ppm SO2 but electronflow from reduced DCIP to NADP was not affected. When electronflow from H2O to NADP was inhibited by 36%, a 39% inhibitionof non-cyclic photophosphorylation was observed. However, phenazinemethosulfate(PMS)-catalyzed cyclic photophosphorylation wasas active as in the control chloroplasts. Moreover, in the presenceof PMS, no significant suppression was observed in the extentof light-induced H+ uptake or in the rate of H+ efflux in chloroplasts.From these results, it can be concluded that SO2 inhibits theelectron flow driven by photosystem II when plants have beenfumigated with SO2. In spinach leaves fumigated with SO2, the rate of photosyntheticO2 evolution was reduced under light-limited conditions, whilethe rate of respiratory O2 uptake changed slightly. (Received February 8, 1979; )  相似文献   

4.
Reactivation of photosynthetic oxygen-evolution was investigatedwith chloroplasts inhibited by 0.8 M Tris-, 0.8 M Tris-20% acetone-,0.8 M KCl-, 0.5 M NaClO4- or 1 mM NH2OH-washing, and with heat-treatedor aged chloroplasts. These chloroplasts restored oxygen evolvingactivity by two successive treatments; incubation of chloroplastswith reduced DPIP, then with Mn2$, Ca2$, dithiothreitol andbovine serum albumin under weak illumination (light-reactivation). Some factors required for light-reactivation could be omitteddepending on the inhibition treatment. For example, Mn2$, Ca2$and dithiothreitol were not necessary for (1 mM NH2OH-STN (pH7.0)-washed)-DPIP-treated chloroplasts, and dithiothreitol for(Tris-acetone (pH 8.4)-washed)-DPIP-treated chloroplasts. Uncouplers, such as atebrin, CCCP, DCCD and NH4Cl, inhibitedthe lightreactivation. The Mn and Ca contents of the chloroplasts were determined withinhibited and DPIP-treated chloroplasts. The Mn content of thechloroplasts tended to decrease with increasing pH of the washingmedium for inhibition. The Ca content decreased when chloroplastswere washed with 0.8 M KCl. (Received November 22, 1974; )  相似文献   

5.
Oxygen-evolution activity of spinach chloroplasts was investigatedby washing chloroplasts with 0.8M Tris buffer containing 20%acetone. This inactivitation was easily removed by two successivetreatments, dark- and light-reactivations. The first treatmentwas dark-reactivation step, rewashing inactivated chloroplastswith reduced DPIP (DPIP treatment). The second one was a light-reactivatedchloroplasts with incubating chloroplasts with Mn2+, Ca2+, dithiothreitoland bovine serum albumin under ilumination. Both light- and dark-reactivation treatments were required toregain oxygen-evolution activity of Tris-acetone-washed chloroplasts,which is characteristic of such chloroplasts. However, in Tris-washedchloroplasts considerable activity was recovered by dark-reactivationalone. Manganese and calcium contents of Tris-acetone-washed chloroplastswere compared with those of chloroplasts obtained by other preparations. Tris-acetone washing was presumed to inhibit the oxygen-evolutionsite of Photo-systetm II by affecting Mn, Ca and other substancesin chloroplasts. The inhibition site was estimated from a changein fluorescence yield of chlorophyll and the effect of artificialelectron donor specific for Photosystem II on NADP photoreductionactivity. (Received August 20, 1973; )  相似文献   

6.
Photosynthetic Properties of Guard Cell Protoplasts from Vicia faba L.   总被引:3,自引:0,他引:3  
Guard cell protoplasts were isolated enzymatically from theepidermis of Vicia faba L. and their photosynthetic activitieswere investigated. Time courses of light-induced changes inthe chlorophyll a fluorescence intensity of these protoplastsshowed essentially the same induction kinetics as found formesophyll protoplasts of Vicia. The transient change in thefluorescence intensity was affected by DCMU, an inhibitor ofphotosystem II; by phenylmercuric acetate, an inhibitor of ferredoxinand ferredoxin NADP reductase; and by methyl viologen, an acceptorof photosystem I. Low temperature (77 K) emission spectra ofthe protoplasts had peaks at 684 and 735 nm and a shoulder near695 nm. A high O2 uptake (175 µmol mg–1 Chl hr–1)was observed in guard cell protoplasts kept in darkness, whichwas inhibited by 2 mM KCN or NaN3 by about 60%. On illumination,this O2 uptake was partially or completely suppressed, but itssuppression was removed by DCMU, which indicates that oxygenwas evolved (150 µmol mg–1 Chl hr–1) photosynthetically.We concluded that both photosystems I and II function in guardcell chloroplasts and that these protoplasts have high respiratoryactivity. (Received January 30, 1982; Accepted May 15, 1982)  相似文献   

7.
Addition of salicylic acid (SA) to tobacco (Nicotiana tabacum)suspension culture immediately induced a rapid and transientgeneration of superoxide anion (O2), followed by a transientincrease in cytosolic free calcium ion concentration ([Ca2+]c).The level of SA-induced O2 was lowered by treatment withseveral scavengers of active oxygen species and a peroxidaseinhibitor, but not with an NADPH oxidase inhibitor. The SA-induced[Ca2+]c elevation was also lowered by inhibitors which effectivelylowered the O2 level. Inhibition of [Ca2+]c elevationby Ca2+ channel blockers and a Ca2+ chelator indicated thatextracellular Ca2+ was responsible for the increased [Ca2+]c.Among the several SA analogs, only compounds that actively inducedthe O2 generation also elevated [Ca2+]cIn addition, theinhibitory effects of SA analogs on catalase activity correlatedwell with their effects on the O2 generation and the[Ca2+]c elevation. SA-dependent O2 generation was shownto occur extracellularly, requiring both H2O2 and at least oneproteinaceous factor excreted from the cells. This factor wasdetermined to be a salicylhydroxamic acid-sensitive extracellularguaiacol-utilizing peroxidase. 4Present address: Isehara Research Laboratory, Kanto ChemicalCo., Inc., Suzukawa, Isehara, 259-1146 Japan.  相似文献   

8.
  1. Solubilization of chioroplasts with a mixture of 1 per centDuponol C and 1 per cent Span 80 (3: 1) caused a destructionof activity in the HILL reaction, but the treatment broughtabout an increase by about 60 per cent in the rate of ascorbatephotooxidation in the presence of DPIP. Heating the broken chloroplastscaused a marked decrease in the photooxidation activity. Byadding surface- active agents to the boiled preparation, theactivity was restored up to almost 80 per cent of the originallevel.
  2. With colloidal suspensions of isolated chiorophylls,ascorbatewas only slightly photooxidized in the presence ofDPIP. Byaddi tion of the surface-active agents, the activitywas greatlyenhanced.
  3. Dependency of the photooxidation bywhole and solubilized chloroplastsand isolated chlorophylla on the presence of DPIP was examined.DPIP can serve as anintermediate electron carrier in solubilizedchloroplasts aswell as in whole chloroplasts.
  4. Effect of o-phenanthrolineon ascorbate photooxidation by thesethree preparations wastested. With solubilized chloroplastsand isolated chlorophylls,the addition of the inhibitor hadno influence on their ascorbatephotooxidation either in thepresence or absence of DPIP.
  5. Treatmentof whole chloroplasts with the surface-active agentsinducedan activity of photooxidation of cytochrome c. The electron-flowpattern for the photooxidation of ascorbate by whole and solubilizedchloroplasts was briefly discussed.
1 Contribution No. 130 from the Department of Biology, Facultyof Science, Kyushu University. Aided in part by Grant-in-Aidfor Fundamental Scientific Research from the Ministry of Education. (Received August 23, 1962; )  相似文献   

9.
Ascorbate (AsA) peroxidase was found in six species of cyanobacteriaamong ten species tested. Upon the addition of H218O2 to thecells of AsA peroxidase-containing cyanobacteria, 16O2 derivedfrom water and 18O2 derived from H2I8O2 were evolved in thelight. The evolution of 16O2 was inhibited by DCMU and did notoccur in the dark, but I8O2 was evolved even in the dark orin the presence of DCMU. Similar light-dependent evolution of16O2 was observed in the cells of AsA peroxidase-containingEuglena and Chlamydomonas. However, the cells of AsA perox-idase-lackingcyanobacteria evolved only 18O2 in either the light or dark.Furthermore, the quenching of chlorophyll fluorescence inducedby hydrogen peroxide was observed only in the cells of the AsAperoxidase-containing Synechocystis 6803, and not in the cellsof Anacystis nidulans which lacks AsA peroxidase. Thus, cyanobacteriacan be divided into two groups, those that has and those thatlacks AsA peroxidase. The first group scavenges hydrogen peroxidewith the peroxidase using a photoreductant as the electron donor,and the second group only scavenges hydrogen peroxide with catalase. (Received July 23, 1990; Accepted October 18, 1990)  相似文献   

10.
  1. The effect of -hydroxy sulfonates and sulfite, inhibitors ofglycolate oxidase, on the photochemical reactions of spinachchloroplasts was studied. The photo reduction of ferricyanideand NADP was not affected by the poisons, whereas the photophosphorylationand 14CO2 fixation were inhibited.
  2. Glyoxylate was photoreducedby the chloroplasts in the presenceof PPNR and glyoxylate reductase,and this reduction was acceleratedby the addition of NADP.ATP formation accompanied with thereduction of glyoxylate bythe illuminated chloroplasts wasobserved. It is supposed thatglyoxylate oxidizes the photoreducedNADPH2 or PPNR and thusthe photophosphorylation is stimulated.
1A part of this paper was presented at the annual meeting ofAgricultural Society of Japan, in August, 1964. 2Present address: Radiation Center of Osaka Prefecture, Sakai,Osaka.  相似文献   

11.
A cell-free preparation of hydrogenase was obtained from acetone-driedcells of Anabaena cylindrica. This preparation was capable ofcatalyzing the reduction of various redox dyes by molecularhydrogen and evolution of hydrogen from reduced methyl viologen.PMS, methylene blue, DPIP and toluidine blue were effective,in this order, as hydrogen acceptors. Ferricyanide, p-quinone,phenosafranine and neutral red were not reduced by the presentpreparation. PPNR obtained from this alga was effective on neitherreduction of NAD and NADP by hydrogen nor stimulation of hydrogenuptake with methylene blue and PMS. Coupled with hydrogenasereaction, there occurred reduction of nitrate to ammonia whenmethylene blue was added to the reaction mixture. 1Present address: Department of Zoology, University of Texas,Austin, Texas, U.S.A.  相似文献   

12.
Changes in chemical constituents and respiratory metabolismof a long-day duck-weed, Lemna gibba G3 exposed to continuousillumination after short-day cultivation were investigated.The dry weight to fresh weight ratio was constant during thefirst 72 hr of continuous illumination. pH of the crude extractwas constant at 6.6, but pH of the culture medium was raisedwith the Lemna growth. Titratable acidity decreased after about44 hr, whereas malic acid content increased in 18 hr. Therewere no significant changes in total reducing sugar and pentose.Total protein content and lipid showed rhythmical changes withcycles of 48 hr. O2-Uptake gave a damped oscillation with cycles of 24 hr. Itwas low in the first half day and high in the second half. 14CO2-Outputfrom glucose-l-14C showed a similar damped oscillation. 14CO2-Outputfrom glucose-2-14C or glucose-6-14C was almost constant. TheC6/C2 ratio, then, showed damped oscillation in the reverseway to O2- uptake between 0.3–0.5, and the C8/C2 ratiowas constant at 0.9. Accordingly, the diurnal rhythm of O2-uptakewas thought to be brought about by variation in activity ofthe pentose-phosphate pathway. Reproduction of glucose-6-phosphateby the pentose-phosphate pathway was presumably limited in amount. Glyceraldehyde-3-phosphate dehydrogenase activity varied diurnally.The activities of NADP-linked and NAD-linked enzymes increasedand decreased, respectively, in the first half day. Variationsin these enzymatic activities are discussed in correlation withrhythmical changes in O2-uptake and in the C6/C1 ratio. Acidphosphatase activity also followed a diurnal variation. No activitiesof alcohol and formic dehydrogenases were found. The activitiesof NADP glucose-6-phosphate dehydrogenase, 6-phosphogluconatedehydrogenase, pyruvic kinase and NADP isocitric dehydrogenasewere high, but showed no rhythmical variation. 1Presented at the Annual Meeting of the Botanical Society ofJapan, 1966 (Proceedings, p. 46). Adapted from a thesis submittedby the first author (H. M.) in 1967 to the Biological Institute,Nagoya University in partial fulfillment of the requirementsfor the degree of M. S. (Received May 8, 1969; )  相似文献   

13.
Illuminated intact spinach chloroplasts decomposed one moleculeof H218O2 which resulted in the evolution of a half moleculeof 16O2, but little 18O2. The chloroplasts showed the same rateof photoreduction of 18C2 as that of the evolution of 16O2 withoutaccumulation of H218O2. These reactions were suppressed by DCMU,and also by several inhibitors of ascorbate peroxidase and dehydroascorbateand monodehydroascorbate reductases in chloroplasts. These observationsindicate that the hydrogen peroxide produced in chloroplastsis reduced to water by a peroxidase using a photoreductant asthe electron donor. The hydrogen peroxide scavenging systemof chloroplasts was inactivated if hydrogen peroxide was addedin the dark, but not if added during the light. (Received May 4, 1984; Accepted July 10, 1984)  相似文献   

14.
This paper reports the effects of low O2 concentration (0–01,0–055, and 0.115mol m–3) in nutrient solutions onK+/Na+ selectivity of growing and mature root tissues of 6-to 8-d-old, intact, wheat (Triticum aestivum cv. Gamenya) seedlings. Increases in anaerobic catabolism and decreases in O2 uptake,K+ uptake and K+/Na+ selectivity were all more pronounced and/oroccurred at higher external O2 concentrations in the apex (0–2mm) than in the expanding tissues (2–4 mm); these growingtissues were, in turn, more affected than the expanded tissuesof the roots (4–12 mm). Selectivity for K+ over Na+ in roots and shoots was particularlysensitive to O2 deficiency. For example, in apical tissues (0–2mm) K + /Na+ selectivity was already reduced at 0.115 mol m–3O2, yet at this O2 concentration there was no effect on eithergrowth or (K+/Na+) uptake. Upon transfer from 0.01 to 0.26 mol m–3 O2, a detailedstudy of the 12 mm root tips showed that 70% of these tips regainedhigh (K+ + Na+) concentrations and K+/Na+ ratios. In contrast,there was no recovery in the remaining 30% of the 12 mm roottips. Net K+ transport to the shoots during the period afterre-aeration was negative for the population as a whole. Theseverity of these effects supports the view that the root tipsand the stele were more susceptible to O2 deficiency than wasthe cortex of the fully-developed root tissues. Key words: Hypoxia, K+/Na+ selectivity, expanded and expanding tissues  相似文献   

15.
A mild heat shock (hyperthermia) protects cells from apoptotic and necrotic deaths by inducing overexpression of various heat shock proteins (Hsps). These proteins, in combination with the activation of the nitric oxide synthase (NOS) enzyme, play important roles in the protection of the myocardium against a variety of diseases. In the present work we report that the generation of potent reactive oxygen species (ROS), namely ·OH in cardiac H9c2 cells, is attenuated by heat shock treatment (2 h at 42°C). Western blot analyses showed that heat shock treatment induced overexpression of Hsp70, Hsp60, and Hsp25. The observed ·OH was found to be derived from the superoxide (O2·) generated by the mitochondria. Whereas the manganese superoxide dismutase (MnSOD) activity was increased in the heat-shocked cells, the mitochondrial aconitase activity was reduced. The mechanism of O2· conversion into ·OH in mitochondria is proposed as follows. The O2· leaked from the electron transport chain, oxidatively damages the mitochondrial aconitase, releasing a free Fe2+. The aconitase-released Fe2+ combines with H2O2 to generate ·OH via a Fenton reaction and the oxidized Fe3+ recombines with the inactivated enzyme after being reduced to Fe2+ by other cellular reductants, turning it over to be active. However, in heat-shocked cells, because of higher MnSOD activity, the excess H2O2 causes irreversible damage to the mitochondrial aconitase enzyme, thus inhibiting its activity. In conclusion, we propose that attenuation of ·OH generation after heat shock treatment might play an important role in reducing the myocardial ischemic injury, observed in heat shock-treated animals. proteins; free radicals; spin trapping; reactive oxygen species  相似文献   

16.
In order to elucidate the role of lipids in photosynthesis,chloroplasts were digested with lipase, and the effect of lipase-digestionon some photochemical activities was studied. The HILL reactionwas sensitive to the digestion, but chloroplasts having intactmembrane were somewhat resistant to the action of lipase. Theinactivation by lipase digestion seems to be due to the destructionof a component necessary for the Hill reaction to proceed. Thechloroplasts treated with lipase showed the following activities. (1) Active photooxidation of reduced cytochrome c and menadione. (2) Photooxidation of ascorbate, which was enhanced in the presenceof DPIP, and retarded in the absence of the dye. (3) NADP-photoreduction in the presence of the DPIP-ascorbatecouple, as the electron donor. These facts suggested that the site attacked with lipase wasresponsible for the photochemical oxygen evolution. The decrease in the fluorescence intensity of chlorophyll awas also observed during the digestion. 1Present address : Biological Laboratory, General EducationDeparment, Kyushu University, Otsubo-machi, Fukuoka.  相似文献   

17.
Recent evidence indicates that oxidative stress is central to the pathogenesis of a wide variety of degenerative diseases, aging, and cancer. Oxidative stress occurs when the delicate balance between production and detoxification of reactive oxygen species is disturbed. Mammalian cells respond to this condition in several ways, among which is a change in mitochondrial morphology. In the present study, we have used rotenone, an inhibitor of complex I of the respiratory chain, which is thought to increase mitochondrial O2· production, and mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to investigate the relationship between mitochondrial O2· production and morphology in human skin fibroblasts. Video-rate confocal microscopy of cells pulse loaded with the mitochondria-specific cation rhodamine 123, followed by automated analysis of mitochondrial morphology, revealed that chronic rotenone treatment (100 nM, 72 h) significantly increased mitochondrial length and branching without changing the number of mitochondria per cell. In addition, this treatment caused a twofold increase in lipid peroxidation as determined with C11-BODIPY581/591. Finally, digital imaging microscopy of cells loaded with hydroethidine, which is oxidized by O2· to yield fluorescent ethidium, revealed that chronic rotenone treatment caused a twofold increase in the rate of O2· production. MitoQ (10 nM, 72 h) did not interfere with rotenone-induced ethidium formation but abolished rotenone-induced outgrowth and lipid peroxidation. These findings show that increased mitochondrial O2· production as a consequence of, for instance, complex I inhibition leads to mitochondrial outgrowth and that MitoQ acts downstream of this O2· to prevent alterations in mitochondrial morphology. rhodamine 123; video-rate confocal microscopy; superoxide; MitoQ  相似文献   

18.
Root growth of 7-d-old wheat (Triticum aestivum cv. Gamenya)seedlings was impaired at dissolved O2 concentrations of 0.01and 0.055 mol m–3 O2, while growth at 0.115 mol m–3O2 was the same as that in continuously aerated controls (0.26mol m–3 O2). Oxygen uptake by apical (0–2 mm), expanding (2–4mm) and expanded (10–12 mm) tissues of the roots decreasedbelow 0.16, 0.09 and 0.05 mol m–3 O2, respectively. Thishierarchy is consistent with the metabolic rates of these tissues.There was a small (c. 9%) inhibition of O2 uptake and some netsynthesis of ethanol and alanine in root apices at 0.115 molm–3 O2. Significant amounts of anaerobic end-productsaccumulated at 0.055 mol m–3 O2 and even more so at 0.01mol m–3 O2, indicating that oxidative phosphorylationwas strongly inhibited. Net alanine synthesis increased in fully expanded (10–16mm) tissues exposed to <0.003–0.01 mol m–3 O2,and this increase was accompanied either by a proportionallysmaller increase in the concentration of other free amino acidsor by a net decrease in free amino acid levels excluding alanine.This suggests that alanine was synthesized as an end-productof anaerobic catabolism and did not accumulate simply becauseof decreased net protein synthesis. Comparing the carbon flow to CO2, ethanol, lactate and alaninein roots at 0.01 mol m–3 O2 with carbon loss as CO2 inaerated roots suggests that carbon flow to products of metabolismwas not greatly enhanced due to O2 deficiency. This infers,but does not prove that, in wheat, generation of energy duringperiods of O2 deficiency is not enhanced due to a Pasteur effect. Key words: Anaerobic, fermentation, oxygen, wheat  相似文献   

19.
Washing spinach chloroplasts with high-concentration Tris-saltbuffers induced various types of anion-dependent changes inthe electron flow and photophosphorylation in chloroplasts. Tris-HCl buffer caused enhancement of NADP photoreduction andinhibition of phosphorylation. Tris-HNO3 buffer, on the otherhand, caused inhibition of both electron flow and phosphorylationand decreased trypsin-activated Ca2+-dependent ATPase activity.Tris-H2SO4 and Tris-H3PO4 buffers, however, had no effect onthe rates of electron flow and photophosphorylation. Determination of the presence of the coupling factor (as measuredby ATPase activity) revealed a normal enzyme activity levelin chloroplasts washed with Tris-HCl or Tris-H2SO4 buffer. Removalof the coupling factor by EDTA from chloroplasts washed withTris salts inhibited phosphorylation severely. Phosphorylationactivity could be partially restored by reconstitution withthe coupling factor in die presence of Mg2+. In addition to their different effects on electron flow, Tris-HCland Tris-HNO3 induced a marked decrease in phosphorylative activityitself. The much decreased rate of phosphorylation can be explainedby the release of the coupling factor and by damage to the high-energystate generating mechanism by Tris-HNO3-washing and by modificationof the coupling factor in the case of Tris-HCl-washing. 1Present address: Biology Department, College of Science andEngineering, Ryukyu University, Naha, Okinawa. Japan. (Received June 27, 1972; )  相似文献   

20.
活性氧在UV-B诱导的玉米幼苗叶片乙烯产生中的作用   总被引:3,自引:0,他引:3       下载免费PDF全文
 研究了活性氧在UV-B(280~320 nm)诱导的玉米(Zea mays)幼苗叶片乙烯合成中的作用。结果表明,UV-B促进了玉米幼苗活性氧和乙烯的产生;乙 烯合成抑制剂氨氧乙烯基甘氨酸 (AVG)和氨氧乙酸(AOA)能明显减弱UV-B对玉米幼苗乙烯产生的诱导作用,但对活性氧(ROS)的 产生没有明显影 响;ROS的清除剂不但能抑制UV-B诱导的 ROS的产生,而且还可以抑制UV_B诱导的乙烯的产生,但这种抑制作用可以被外源O2.-的供体所逆转。这 说明,乙烯的积累不能作为UV-B胁迫下ROS的诱导的因素,相反,ROS的积累则导致了乙烯的积累;因此,ROS可能参与了UV-B胁迫诱导的乙烯的产生 。质膜NADPH氧化酶的抑制剂二苯碘鎓(DPI)和H2O2的特异性清除剂过氧化氢酶(CAT)对UV-B胁迫诱导的乙烯积累 几乎没有影响, 这说明H2O2 可能与UV-B诱导的玉米幼苗叶片乙烯的产生无关, 在UV-B诱导的玉米幼苗叶片乙烯的生物合成过程中O2.-起着很重要的作用,相关的O2.-不是由 NADPH氧化酶催化产生的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号