首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Elementary Na+ currents through single cardiac Na+ channels were recorded at –50 mV in cell-attached patches from neonatal rat cardiocytes kept at holding potentials between –100 and –120 mV.Na+ channel activity may occur as burst-like, closely-timed repetitive openings with shut times close to 0.5–0.6 msec, indicating that an individual Na+ channel may reopen several times during step depolarization. A systematic quantiative analysis in 19 cell-attached patches showed that reopening may be quite differently pronounced. The majority, namely 16 patches, contained Na+ channels with a low tendency to reopen. This was evidenced from the average value for the mean number of openings per sequence, 2.5. Strikingly different results were obtained in a second group of three patches. Here, a mean number of openings per sequence of 3.42, 3.72, and 5.68 was found. Ensemble averages from the latter group of patches revealed macroscopic Na+ currents with a biexponential decay phase. Reconstructed Na+ currents from patches with poorly reopening Na+ channels were devoid of a slow decay component. This strongly suggests that reopening may be causally related to slow Na+ inactivation. Poorly pronounced reopening and, consequently, the lack of slow Na+ inactivation could be characteristic features of neonatal cardiac Na+ channels.  相似文献   

2.
Summary Elementary Na+ currents were recorded at 19°C during 220-msec lasting step depolarizations in cell-attached and inside-out patches from cultured neonatal rat cardiocytes in order to study the modifying influence of iodate, bromate and glutaraldehyde on single cardiac Na+ channels.Iodate (10 mmol/liter) removed Na+ inactivation and caused repetitive, burst-like channel activity after treating the cytoplasmic channel surface. In contrast to normal Na+ channels under control conditions, iodate-modified Na+ channels attain two conducting states, a short-lasting one with a voltage-independent lifetime close to 1 msec and, likewise tested between –50 and +10 mV, a long-lasting one being apparently exponentially dependent on voltage. Channel modification by bromate (10 mmol/liter) and glutaraldehyde (0.5 mmol/liter) also included the occurrence of two open states. Also, burst duration depended apparently exponentially on voltage and increased when shifting the membrane in the positive direction, but there was no evidence for two bursting states. Chemically modified Na+ channels retain an apparently normal unitary conductance (12.8±0.5 pS). Of the two substates observed, one of them is remarkable in that it is mostly attained from full-state openings and is very short living in nature; the voltage-independent lifetime was close to 2 msec. Despite removal of inactivation, open probability progressively declined during membrane depolarization. The underlying deactivation process is strongly voltage sensitive but, in contrast to slow Na+ inactivation, responds to a voltage shift in the positive direction with a retardation in kinetics. Chemically modified Na+ channels exhibit a characteristic bursting state much shorter than in DPI-modified Na+ channels, a difference not consistent with the hypothesis of common kinetic properties in noninactivating Na+ channels.  相似文献   

3.
4.
Three different modes of Na+ channel action, the F mode (fast inactivating), the S mode (slowly inactivating), and the P mode (persistent), were studied at different potentials in exceptionally small cell-attached patches containing one and only one channel. Switching between the modes was independent of voltage. In the F mode, the mean open time (tau o) at -30 and -40 mV was 0.14 and 0.16 ms, respectively, which was significantly larger than at -60 and 0 mV, where the values were 0.07 and 0.08 ms, respectively. The time before which half of the first channel openings occurred (t 0.5), decreased from 0.58 ms at -60 mV to 0.14 ms at 0 mV. The fit of steady-state activation with a Boltzmann function yielded a half-maximum value (V 0.5) at -48.1 mV and a slope (k) of 5.6 mV. The mean open time in the S mode increased steadily from 0.12 ms at -80 mV to 1.09 ms at -30 mV, but was not prolonged further at -20 mV (1.07 ms). Concomitantly, t 0.5 decreased from 1.61 ms at -80 mV to 0.22 ms at -20mV. Here the midpoint of steady-state activation was found at -61.2 mV, and the slope was 8.7 mV. The mean open time in the P mode increased from 0.07 ms at -60 mV to 0.45 ms at 0 mV and t 0.5 declined from 2.14 ms at -60 mV to 0.19 ms at +20 mV. Steady-state activation had its midpoint at -14.7 mV, and the slope was 10.9 mV. It is concluded that a single Na+ channel may switch among the F, S, and P mode and that the three modes differ by a characteristic pattern of voltage dependence of tau 0, t 0.5, and steady-state activation.  相似文献   

5.
6.
Properties of single cardiac Na channels at 35 degrees C   总被引:2,自引:0,他引:2       下载免费PDF全文
Single Na channel currents were recorded in cell-attached patches of mouse ventricular myocytes with an improved patch clamp technique. Using patch pipettes with a pore diameter in the range of 200 nm, seals with a resistance of up to 4 T omega were obtained. Under those conditions, total noise could be reduced to levels as low as 0.590 pA rms at 20 kHz band width. At this band width, properties of single- channel Na currents were studied at 35 degrees C. Six out of a total of 23 patches with teraohm seals contained channel activity and five of these patches contained one and only one active channel. Amplitude histograms excluding transition points showed heterogenous distributions of levels. In one patch, part of the openings was approximately Gaussian distributed at different potentials yielding a slope conductance of 27 pS. The respective peak open probability at -10 mV was 0.26. The mean open time was determined at voltages between -60 and -10 mV by evaluation of the distribution of the event-related gaps in the center of the baseline noise to be approximately 40 microseconds at -60 mV and 50-74 microseconds between -50 and -10 mV. It is concluded that single cardiac Na channels open at 35 degrees C frequently with multiple levels and with open times in the range of several tens of microseconds.  相似文献   

7.
Summary In patches from neonatal rat heart myocytes, elementary Na+ currents were recorded at near threshold potentials in order to compare cardiac Na+ channels kinetics in the cell-attached mode with those in the inside-out mode.The transition from cell-attached to cell-free recording conditions caused a small prolongation of the conductive state of about 20%. This appeared within 8 min after, patch excision regardless of the anionic composition (in mmol/liter) at the cytoplasmic membrane surface: 20 Cl plus 120 aspartate, 140 Cl, or 140 F. Prolonged exposure (up to 50 min) to cell-free conditions evoked no additional changes and, specifically, left the monoexponential open-time distribution unchanged. Increased burst activity only developed in the cytoplasmic presence of F, indicating that it is this artificial anion which influences reopening, but not the isolation of the Na+ channels from their natural environmentper se. The mean number of openings per sequence (increase by a factor of 1.23±0.04) and decay, of reconstructed macroscopicI Na (increase by a factor of 1.32±0.06) responded rather weakly to F. Cooling from 19 to 9°C accentuated this F effect significantly and led, at –65 mV, to pronounced burst activity. Moreover, the combined influence of F and cooling induced a second. long-lasting and sometimes dominating open state. It is concluded that isolated cardiac Na+ channels largely, preserve their intrinsic kinetic properties when facing a cytoplasmic environment with a quasi-physiological anionic composition.  相似文献   

8.
Batrachotoxin (BTX) modification and tetrodotoxin (TTX) block of BTX-modified Na channels were studied in single cardiac cells of neonatal rats using the whole-cell patch-clamp recording technique. The properties of BTX-modified Na channels in heart are qualitatively similar to those in nerve. However, quantitative differences do exist between the modified channels of these two tissues. In the heart, the shift of the conductance-voltage curve for the modified channel was less pronounced, the maximal activation rate constant, (tau m)max, of modified channels was considerably slower, and the slow inactivation of the BTX-modified cardiac Na channels was only partially abolished. TTX blocked BTX-modified mammalian cardiac Na channels and the block decreased over the potential range of -80 to -40 mV. The apparent dissociation constant of TTX changed from 0.23 microM at -50 mV to 0.69 microM at 0 mV. No further reduction of block was observed at potentials greater than -40 mV. This is the potential range over which gating from closed to open states occurred. These results were explained by assuming that TTX has a higher affinity for closed BTX-modified channels than for open modified channels. Hence, the TTX-binding rate constants are considered to be state dependent rather than voltage dependent. This differs from the voltage dependence of TTX block reported for BTX-modified Na channels from membrane vesicles incorporated into lipid bilayers and from amphibian node of Ranvier.  相似文献   

9.
Elementary Na+ currents through single cardiac Na+ channels were recorded at 19 degrees C in patch clamp experiments with cultured neonatal rat cardiocytes. The metabolites of the glycolytic pathway, 2,3-diphosphoglycerate and glyceraldehyde phosphate, were identified as a novel class of modulators of Na+ channel activity. In micromolar concentrations (1-10 mumol/liter), their presence at the cytoplasmic membrane face increased the number of sequential openings during depolarization and prolonged the conductive channel state. As found after ensemble averaging, the decay kinetics of reconstructed macroscopic Na+ currents became retarded and slow Na+ inactivation may have been evoked. Both metabolites attenuated the rundown of channel activity that regularly develops after patch excision in the inside-out patch configuration. It is tempting to assume that interference with Na+ inactivation is the mode of action underlying the increase in single-channel activity.  相似文献   

10.
Elementary Na+ currents were recorded in inside-out patches excised from cultured neonatal rat heart myocytes in order to study the influence of cytosolic Mg++ and other bivalent cations present at the cytoplasmic membrane surface on cardiac Na+ channel gating. Exposing the cytoplasmic membrane surface to a Mg++-free environment shortened the open state of cardiac Na+ channels significantly. open declined to 62±2% of the value obtained at 5 mmol/l Mgi ++. Other channel properties including the tendency to reopen and the elementary current size either changed insignificantly within a 10% range or remained completely unchanged. An almost identical change of open can be caused by switching from a Mn++ (5 mmol/l) containing internal solution to a Mn++-free internal solution. But open failed to significantly respond to a variation in internal Ni++ from 5 mmol/l to 0 mmol/l. The same response to internal Mg++ withdrawal was obtained with (–)-DPI-modified, non-inactivating Na+ channels, indicating that the exit rate from the open state remains as sensitive to cytosolic Mg++ variations as in normal Na+ channels with operating inactivation. Offprint requests to: M. Kohlhardt  相似文献   

11.
Summary In inside-out patches from cultured neonatal rat heart cells, single Na+ channel currents were analyzed under the influence of the cardiotonic compound DPI 201-106 (DPI), a putative novel channel modifier. In absence of DPI, normal cardiac single Na+ channels studied at –30 mV have one open state which is rapidly left with a rate constant of 826.5 sec–1 at 20°C during sustained depolarization., Reconstructed macroscopic currents relax completely with 7 to 10 msec. The current decay fits a single exponential. A considerable percentage of openings may occur during relaxation of the macroscopic current. In patches treated with 3×10–6 m DPI in the pipette solution, stepping to –30 mV results in drastically prolonged and usually repetitive openings. This channel activity mostly persists over the whole depolarization (usually 160 msec in duration) but is abruptly terminated on clamping back the patch to the holding potential. Besides these modified events, apparently normal openings occur. The open time distribution of DPI-treated Na+ channels is the sum of two exponentials characterized by time constants of 0.85 msec (which is close to the time constant found in the control patches, 1.21 msec) and 12 msec. Moreover, DPI-modified Na+ channels exhibit a sustained high, time-independent open probability. Similar to normal Na+ channels, the mean number of open DPI-modified Na+ channels is voltage-dependent and increases on shifting the holding potential in the hyperpolarizing direction. These kinetic changes suggest an elimination of Na+ channel inactivation as it may follow from an interaction of DPI with Na+ channels.  相似文献   

12.
Calcium-dependent potassium (BK-type) Ca2+ and voltage-dependent K+ channels in chromaffin cells exhibit an inactivation that probably arises from coassembly of Slo1 alpha subunits with auxiliary beta subunits. One goal of this work was to determine whether the Ca2+ dependence of inactivation arises from any mechanism other than coupling of inactivation to the Ca2+ dependence of activation. Steady-state inactivation and the onset of inactivation were studied in inside-out patches and whole-cell recordings from rat adrenal chromaffin cells with parallel experiments on inactivating BK channels resulting from cloned alpha + beta2 subunits. In both cases, steady-state inactivation was shifted to more negative potentials by increases in submembrane [Ca2+] from 1 to 60 microM. At 10 and 60 microM Ca2+, the maximal channel availability at negative potentials was similar despite a shift in the voltage of half availability, suggesting there is no strictly Ca2+-dependent inactivation. In contrast, in the absence of Ca2+, depolarization to potentials positive to +20 mV induces channel inactivation. Thus, voltage-dependent, but not solely Ca2+-dependent, kinetic steps are required for inactivation to occur. Finally, under some conditions, BK channels are shown to inactivate as readily from closed states as from open states, indicative that a key conformational change required for inactivation precedes channel opening.  相似文献   

13.
In small cell-attached patches containing one and only one Na+ channel, inactivation was studied in three different gating modes, namely, the fast-inactivating F mode and the more slowly inactivating S mode and P mode with similar inactivation kinetics. In each of these modes, ensemble-averaged currents could be fitted with a Hodgkin-Huxley-type model with a single exponential for inactivation (tauh). tauh declined from 1.0 ms at -60 mV to 0.1 ms at 0 mV in the F mode, from 4.6 ms at -40 mV to 1.1 ms at 0 mV in the S mode, and from 4.5 ms at -40 mV to 0.8 ms at +20 mV in the P mode, respectively. The probability of non-empty traces (net), the mean number of openings per non-empty trace (op/tr), and the mean open probability per trace (popen) were evaluated at 4-ms test pulses. net inclined from 30% at -60 mV to 63% at 0 mV in the F mode, from 4% at -90 mV to 90% at 0 mV in the S mode, and from 2% at -60 mV to 79% at +20 mV in the P mode. op/tr declined from 1.4 at -60 mV to 1.1 at 0 mV in the F mode, from 4.0 at -60 mV to 1.2 at 0 mV in the S mode, and from 2.9 at -40 mV to 1.6 at +20 mV in the P mode. popen was bell-shaped with a maximum of 5% at -30 mV in the F mode, 48% at -50 mV in the S mode, and 16% at 0 mV in the P mode. It is concluded that 1) a switch between F and S modes may reflect a functional change of inactivation, 2) a switch between S and P modes may reflect a functional change of activation, 3) tauh is mainly determined by the latency until the first channel opening in the F mode and by the number of reopenings in the S and P modes, 4) at least in the S and P modes, inactivation is independent of pore opening, and 5) in the S mode, mainly open channels inactivate, and in the P mode, mainly closed channels inactivate.  相似文献   

14.
Summary Cell-attached patch-clamp experiments were performed in cultured cardicyytes of neonatal rats at 19°C to analyze elementary currents through single Na+ channels under control conditions and in the presence of the class 1 antiarrhythmic drugs amiodarone, propafenone, and diprafenone. As observed in a cell-attached patch with only one functioning Na+ channel, repetitive stepping of the membrane at 0.4 Hz triggered periodically channel openings except during a silent period of about 1.5 min. The latter began and ceased abruptly and did not fit the monoexponential distribution of the run length of sweeps without activity (blank sweeps). Treating the cardiocytes with amiodarone, propafenone or diprafenone (10 to 20 mol/liter) led rapidly to a blockage and reduced the likelihood that membrane depolarization triggers the opening of Na+ channels. The number of blank sweeps increased at the expense of the number of sweeps with activity. The fraction of activity sweeps with superpositions, indicating the simultaneous activation of two or more Na+ channels, also declined. As tested with amiodarone, the run length of blank sweeps is voltage- and time-dependent, analogous to the intensity of the block of macroscopic Na+ currents. Open time, open-time distribution, unitary current size and the tendency to reopen did not differ in unblocked cardiac Na+ channels (i.e. that channel fraction capable of opening in the presence of amiodarone or propafenone) from the respective control values obtained before superfusing the cardiocytes with these drugs. Apart from its blocking action, the propafenone derivative diprafenone exerted additionally a modifying effect and reduced mean open time by up to 45%. In contrast to the block, this reduction in conducting state proved insensitive to changes in holding potential, at least between –130 and –150 mV, the range tested. This means that block was attenuated on hyperpolarization whereas the reduction in open time persisted. It is concluded that, in the presence of these drugs, unblocked cardiac Na+ channels share a number of properties with normal Na+ channels in the absence of these drugs. Shortening of channel lifetime by diprafenone may be indicative of a channel modification brought about possibli by a receptor-mediated facilitation of the transition from the open to the inactivated state.  相似文献   

15.
Modulation of cardiac Na channels by angiotensin II   总被引:2,自引:0,他引:2  
The modulation of Na channels by the vasoactive peptide angiotensin II (AT II) has been studied in isolated ventricular cells of guinea pigs using the patch clamp technique. In cell-attached patches the maximal probability of the channel being open was increased in a concentration range between 0.05 and 1 microM, but decreased at higher concentrations. A maximal increased of 2.5 +/- 0.86 was found at 1 microM AT II. The increase in the probability of the channel being open was due to a decrease in the number of nulls. In all affected cells (n = 17) we observed a delayed inactivation after application of AT II at concentrations between 0.05 and 10 microM. At -30 mV, the time constant of inactivation increased from 1.1 +/- 0.1 ms (controls) to 5.6 +/- 1.6 ms (10 microM AT II). This effect was due to an increased number of openings per sweeps. No significant effect on the mean open time and the first latency were observed. However, due to pronounced bursting, the averaged closed time was significantly increased from 0.8 +/- 0.1 ms to 1.3 +/- 0.1 ms in the presence of 1 microM AT II at -30 mV. An effect of AT II on cardiac Na channels via protein kinase C is discussed.  相似文献   

16.
Slow currents through single sodium channels of the adult rat heart   总被引:18,自引:6,他引:12       下载免费PDF全文
The currents through single Na+ channels from the sarcolemma of ventricular cells dissociated from adult rat hearts were studied using the patch-clamp technique. All patches had several Na+ channels; most had 5-10, while some had up to 50 channels. At 10 degrees C, the conductance of the channel was 9.8 pS. The mean current for sets of many identical pulses inactivated exponentially with a time constant of 1.7 +/- 0.6 ms at -40 mV. Careful examination of the mean currents revealed a small, slow component of inactivation at pulse potentials ranging from -60 to -30 mV. The time constant of the slow component was between 8 and 14 ms. The channels that caused the slow component had the same conductance and reversal potential as the fast Na+ currents and were blocked by tetrodotoxin. The slow currents appear to have been caused by repeated openings of one or more channels. The holding potential influenced the frequency with which such channel reopening occurred. The slow component was prominent during pulses from a holding potential of -100 mV, while it was very small during pulses from -140 mV. Ultraslow currents through the Na+ channel were observed occasionally in patches that had large numbers of channels. They consisted of bursts of 10 or more sequential openings of a single channel and lasted for up to 150 ms. We conclude that the single channel data cannot be explained by standard models, even those that have two inactivated states or two open states of the channel. Our results suggest that Na+ channels can function in several different "modes," each with a different inactivation rate.  相似文献   

17.
It is known that hypertension is accompanied by increased [Na+]i. The functional properties of Na,K-ATPase, which transports the Na+ out and K+ into myocardial cells during the relaxation phase, were investigated in the left ventricle (LV), septum (SV) and the right ventricle (RV) of anesthetized dogs with moderate acute blood pressure elevation elicited by short-term (4-hour) NO synthase inhibition. The NO-insufficiency was induced by administration of an L-arginine analogue, the N(G)-nitro-L-arginine methyl ester (L-NAME). Concerning the function of Na,K-ATPase under the conditions of lowered NO synthesis, we focused our attention to the binding of Na+ to the enzyme molecule. Activation of the enzyme by increasing Na+ concentrations revealed significant changes in both the maximal velocity (Vmax) and the affinity for Na+ (K(Na)) in all investigated heart sections. The Vmax increased by 27% in LV, by 87% in SV and by 58% in RV. The K(Na) value increased by 86% in LV, by 105% in SV and by 93% in RV, indicating an apparent decrease in the sensitivity of the Na+-binding site in the Na,K-ATPase molecule. This apparently decreased pump affinity for Na+ together with the increase of Vmax suggest that, during the short-term inhibition of NO synthesis, the Na,K-ATPase is capable of extruding the excessive Na+ from the myocardial cells more effectively at higher [Na+]i, as compared to the Na,K-ATPase of control animals.  相似文献   

18.
19.
Kinetics of 9-aminoacridine block of single Na channels   总被引:3,自引:0,他引:3       下载免费PDF全文
The kinetics of 9-aminoacridine (9-AA) block of single Na channels in neuroblastoma N1E-115 cells were studied using the gigohm seal, patch clamp technique, under the condition in which the Na current inactivation had been eliminated by treatment with N-bromoacetamide (NBA). Following NBA treatment, the current flowing through individual Na channels was manifested by square-wave open events lasting from several to tens of milliseconds. When 9-AA was applied to the cytoplasmic face of Na channels at concentrations ranging from 30 to 100 microM, it caused repetitive rapid transitions (flickering) between open and blocked states within single openings of Na channels, without affecting the amplitude of the single channel current. The histograms for the duration of blocked states and the histograms for the duration of open states could be fitted with a single-exponential function. The mean open time (tau o) became shorter as the drug concentration was increased, while the mean blocked time (tau b) was concentration independent. The association (blocking) rate constant, kappa, calculated from the slope of the curve relating the reciprocal mean open time to 9-AA concentration, showed little voltage dependence, the rate constant being on the order of 1 X 10(7) M-1s-1. The dissociation (unblocking) rate constant, l, calculated from the mean blocked time, was strongly voltage dependent, the mean rate constant being 214 s-1 at 0 mV and becoming larger as the membrane being hyperpolarized. The voltage dependence suggests that a first-order blocking site is located at least 63% of the way through the membrane field from the cytoplasmic surface. The equilibrium dissociation constant for 9-AA to block the Na channel, defined by the relation of l/kappa, was calculated to be 21 microM at 0 mV. Both tau -1o and tau -1b had a Q10 of 1.3, which suggests that binding reaction was diffusion controlled. The burst time in the presence of 9-AA, which is the sum of open times and blocked times, was longer than the lifetime of open channels in the absence of drug. All of the features of 9-AA block of single Na channels are compatible with the sequential model in which 9-AA molecules block open Na channels, and the blocked channels could not close until 9-AA molecules had left the blocking site in the channels.  相似文献   

20.
Human P2X7 receptors were expressed in Xenopus laevis oocytes and single channels were recorded using the patch-clamp technique in the outside-out configuration. ATP4- evoked two types of P2X7 receptor-mediated single channel currents characterized by short-lived and long-lived openings. The short- and long-lasting open states had mean open times of approximately 5 and approximately 20 ms and slope conductances near -60 mV of 9 and 13 pS, respectively. The open probabilities of the short and long openings were strongly [ATP4-]-dependent with EC50 values of approximately 0.3 mM and approximately 0.1 mM ATP4-, respectively. The channel kinetics did not change significantly during sustained P2X7 receptor activation for several minutes, as was also observed in recordings in the cell-attached patch-clamp configuration. Activation and deactivation of the short openings followed exponential time courses with time constants in the range of 20 ms, and displayed a shallow [ATP4-] dependence of the activation process. The kinetics of the short channel openings at negative membrane potentials fitted well to a linear C-C-C-O model with two ATP4- binding steps at equal binding sites with a dissociation constant Kd of 139 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号