首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cytological observation, using conventional fixing and staining, is made on the hemopoietic tissue in the crab, Carcinus maenas. The hemopoietic organ is formed by nodules grouping different cell types; nodules are surrounded by a limiting layer including collagenous filaments and material looking like basal lamina. Some fibrocytes and semi-granulous hemocytes are lining this limited layer. These hemocytes, more or less flattened, are transforming in fibrocytes. Fibroblast-like cells, with well developed intercellular junctions, are the first cell type: their dedifferentiation gives rise to isolated mitoting cells. We have named these mitoting cells "hemocytoblast". They are stem cells for hyaline hemocytes. Fibroblast-like cells can be compared with "reticular cells" in Insects. Uncertainty exists as to the formation and evolution of nodules.  相似文献   

2.
The fine structure of the hemopoietic tissue and its detailed reticular organization in the mealworm beetle, T. molitor were examined using light and scanning electron microscopes. The major hemopoietic tissues in the abdomen were located on the upper surface of the dorsal diaphragm which continuous over the ventral wall of the heart. Histologic characteristics of this hemopoietic tissues are dense clusters of cells. They are irregular in outline and are not surrounded by any connective tissue sheath. The hemopoietic tissue of this insect is consisted of three cellular components which are the reticular cells, hemocytic stem cells and several kinds of mature hemocytes. The reticular cells had numerous cytoplasmic processes and forming a complex network. The stem cells give rise to differentiating hemocytes of the different cell lineages. Mature hemocytes within this hemopoietic tissue are originated from the stem cells and differentiated into several types of hemocytes including prohemocytes, plasmatocytes, and granulocytes.  相似文献   

3.
The embryonic yolk sac and the adult dorsal vessel of the stick insect Carausius morosus (Br.) (Phasmatodea : Heteronemiidae) were shown to release a number of cells that appear morphologically similar to circulating adult hemocytes. Like adult hemocytes, these cells reacted positively when tested for both phenoloxidase activity and a monoclonal antibody specifically raised against a vitellin polypeptide. Based on this evidence, it is suggested that yolk sac-released cells behave as potential embryonic hemocytes. A model is thus proposed whereby the yolk sac might host a number of hemopoietic stem cells on their way to the dorsal vessel, and in so doing, it may temporally act as an embryonic hemopoietic organ.  相似文献   

4.
Han SS  Lee MH  Kim WK  Wago H  Yoe SM 《Zoological science》1998,15(3):371-379
Bombyx mori L. (Lepidoptera: Bombycidae) larva was investigated with a transmission electron microscopy to determine hemocytic differentiation in the hemopoietic organ located in the prothorax. Three and/or four types of stem cells in compact islets of the organ were observed. Immatured hemocytes in loose islets of the organ were more differentiated and developed than in compact islets. Four types of hemocytes such as prohemocyte, plasmatocyte, granulocyte and oenocytoid were observed in loose islets. Each type of hemocyte was differentiated from each type of stem cell. However, none of spherulocyte was observed. Each type of hemocytes matured in loose islets was discharged into hemolymph by the tearing of acellular membrane covering the islets. These observation strongly suggests that the four kinds of hemocytes except for spherulocytes first appeared in islets and then moved to the region of loose islets in matured form. The more detailed pathway of hemocytic differentiation in B. mori was represented here.  相似文献   

5.
G Van Zant  C G Fry 《Cytometry》1983,4(1):40-46
We have systematically studied the effect on hemopoietic colony-forming cells of staining cellular DNA with the bisbenzimidazole dye, Hoechst 33342. Mouse bone marrow cells could be adequately stained in a 30-60 min incubation with a 5 microM concentration of stain. Flow-cytometric analysis of stained cells provided cell distributions with coefficients of variation for the G1 peaks of 6% or less under these conditions. We found considerable heterogeneity among hemopoietic colony-forming cells with respect to the toxicity of the dye. Toxicity in the proliferatively quiescent stem cell population was not changed when the population became proliferatively active. In the sequence of most sensitive to least sensitive, the five progenitors studied could be arranged as follows: CFU-M, a megakaryocyte colony-forming cell; CFU-E, a relatively differentiated erythroid precursor; BFU-E, a primitive erythroid precursor; CFU-GM, a granulocyte-macrophage precursor; and CFU-S, the spleen colony-forming cell or hemopoietic stem cell. A staining procedure involving a 30-min exposure to 5 microM Hoechst 33342 provided optimal staining and no loss in four of the five progenitor populations; the CFU-M population was diminished by about 50%. We conclude that Hoechst can be regarded as a vital DNA stain for most bone marrow precursor populations, including the hemopoietic stem cell.  相似文献   

6.
Histological response of lobsters to injection of Aerococcus viridans var. homari, cause of gaffkemia, was followed over a 14-day period. Salient features in infected lobsters, Homarus americanus, were: aggregations of hemocytes occurring in hemal spaces throughout the tissues and increasing in number and size with time; the early phagocytosis of bacteria by the system of fixed phagocytes (FPs) present in hemal spaces of the hepatopancreas; and premature release of differentiating hemocytes from the hemopoietic tissue, so that by 14 days that tissue consisted mainly of large stem cells. Mass release of differentiating hemocytes presumably occurred to replace hemocytes lost from the circulation by their incorporation into aggregations or by lysis of individual cells ruptured through the pressure of phagocytized bacteria that were multiplying in them. Bacteria and their remains were present in FPs at 2 days but not visible in single or aggregated hemocytes until 6 days, when free bacteria were also present in the hemolymph. By 6 days, all bacteria, whether phagocytized or free, appeared normal and were surrounded by nonstaining halos that extended well beyond the stainable capsular material. As predicted earlier in physiological studies, gaffkemia is a nontoxic, noninvasive bacteremia. There was hemal stasis and consequent injury in the antennal gland due to free and aggregated hemocytes that occluded hemal spaces of that organ, but other tissues and organs appeared normal except for depletion of glycogen. Aggregations of hemocytes were present in lobsters 2 and 12 days after injection of a nonpathogenic, Gram-negative bacterium, Pseudomonas perolens. Unlike the case with gaffkemia, necrotic hemocytes were common in the aggregations, presumably in response to damage by endotoxin. A further difference was that aggregations were common in the heart of P. perolens-injected lobsters but rare in the heart of gaffkemic lobsters. Bacteria were not seen in hemolymph, hemocytes, or other cells of P. perolens-injected lobsters.  相似文献   

7.
Three‐dimensional reconstructions of a hematopoietic organ (HPO) from Bombyx mori larva were undertaken using light and electron microscopy. Each compact islet varied in sizes, but in the central area of the HPO their size became smaller. Compact islets and loose islets were made up of prohemocytes, plasmatocytes, and reticular cells, but there were differences in the proportions of these cells. Within the cytoplasm of reticular cells and within their cell projection, vacuoles were observed. Cell proliferation occurs primarily in the compact islets, and differentiation associated with the reticular cells occurs primarily in the loose islets. It can be inferred that reticular cells have a significant influence on proliferation and differentiation associated with hematopoiesis. According to the results of the 3‐D reconstruction, one reticular cell is in contact with eight or nine hemocytes. Each reticular cell is presumably of approximately ten hemocytes. Movies relevant to Figs. 3, 4 and 5 can be found at http://biotech.korea.ac.kr/ cellbio/pages/ 3D‐results.html.  相似文献   

8.
Embryogenesis of hemopoietic cell populations in the pronephros of Rana pipiens was examined during embryonic and early larval development. Differential cell counts of Wright-Giemsa-stained cell suspensions demonstrated that granulopoiesis is the predominant hemopoietic activity in the pronephros, erythropoiesis accounts for a minor component of the hemopoietic activity (less than 10%), and lymphopoiesis within the organ is negligible. Microdensitometric analysis of Feulgen-DNA stained granulocyte populations in pronephroses from larvae that had received chromosomally labeled pronephric analgen transplants between 84 and 96 h of development demonstrated that hemopoiesis in this organ is dependent on colonization by an extrinsic hemopoietic stem cell. A similar analysis of pronephric hemopoiesis in larvae which had received chromosomally labeled, presumptive ventral blood island transplants between 62 and 67 h of development, indicates that granulopoietic cells are not derived from the embryonic blood islands. It is proposed that the pronephros may be the initial site of granulocyte differentiation during early embryogenesis. Although the embryonic origin of the hemopoietic stem cell is unknown, indirect evidence from this study indicates a dorsal stem cell compartment.  相似文献   

9.
Embryogenesis of hemopoietic cell populations in the pronephros of Rana pipiens was examined during embryonic and early larval development. Differential cell counts of Wright-Giemsa-stained cell suspensions demonstrated that granulopoiesis is the predominant hemopoietic activity in the pronephros, erythropoiesis accounts for a minor component of the hemopoietic activity (> 10%), and lymphopoiesis within the organ is negligible. Microdensitometric analysis of Feulgen-DNA stained granulocyte populations in pronephroses from larvae that had received chromosomally labeled pronephric anlagen transplants between 84 and 96 h of development demonstrated that hemopoiesis in this organ is dependent on colonization by an extrinsic hemopoietic stem cell. A similar analysis of pronephric hemopoiesis in larvae which had received chromosomally labeled, presumptive ventral blood island transplants between 62 and 67 h of development, indicates that granulopoietic cells are not derived from the embryonic blood islands. It is proposed that the pronephros may be the initial site of granulocyte differentiation during early embryogenesis. Although the embryonic origin of the hemopoietic stem cell is unknown, indirect evidence from this study indicates a dorsal stem cell compartment  相似文献   

10.
Stromal cells of hemopoietic origin   总被引:1,自引:0,他引:1  
Hemopoiesis is a multistep process involving stem cell renewal, commitment, differentiation, maturation and consequent positioning of the cells within the tissue. Stromal cells are a major component of the hemopoietic microenvironment. The in vitro culture of cloned stromal cells has enabled detailed analysis of their functions and has provided answers relating to the contribution of stromal cells to the control of hemopoiesis. Cultured stromal cells were found to support the renewal of stem cells through a mechanism that did not seem to involve already known cytokines. Cloned stromal cells from both marrow and thymus supported the in vitro accumulation of myeloid as well as T and B lymphoid cells. Thus, cloned stromal cells had the ability to induce multilineage hemopoiesis, irrespective of the organ from which they were derived. Invariably, stromal cells tended to select in culture for hemopoietic cells at early differentiation stages and restricted the accumulation of mature cells. These functions may be part of the mechanism that protects the stem cell pool from excess differentiation.  相似文献   

11.
Disaggregated cell suspensions obtained by mouse bone marrow fermentative digestion as well as stromal tissue obtained by marrow mild mechanical destruction were explanted. Both methods yield the cultures in which the hematopoiesis duration is comparable with dexter cultures. Adhesive cells from all of these three culture types were resuspended and in the porous gelatin sponges heterotopically transplanted under the kidney capsule of syngenic recipients. In the transplantation site there develops the hemopoietic organ containing reticular stroma, hemopoietic cells, and in most cases the well developed bone tissue. Thus, the adherent layers of mouse bone marrow dexter and similar cultures contain for a long period (not less than 2-3.5 months) the stromal fibroblast population which maintains its osteogenic and hemopoietic microenvironment transfer capacities.  相似文献   

12.
Within hours after colonization of the light organ of the squid Euprymna scolopes by its bacterial symbiont Vibrio fischeri, the symbiont triggers morphogenesis of the light organ. This process involves the induction of apoptosis in the cells of two superficial ciliated epithelial fields and the gradual regression of these surface structures over a 96-h period. In this study, microscopic examination of various squid tissues revealed that host hemocytes specifically migrate into the epithelial fields on the surface of the light organ, a process that begins before any other indication of symbiont-induced morphogenesis. Experimental manipulations of symbiont-signal delivery revealed that hemocyte infiltration alone is not sufficient to induce regression, and high numbers of hemocytes are not necessary for the induction of apoptosis or the initiation of regression. However, studies with mutant strains of V. fischeri that show a defect in the induction of hemocyte infiltration provided evidence that high numbers of hemocytes facilitate the regression of the epithelial fields. In addition, a change in hemocyte gene expression, as indicated by the up-regulation of the C8 subunit of the proteasome, correlates with the induction of light organ morphogenesis, suggesting that bacteria-induced molecular changes in the hemocytes are required for the participation of these host cells in the regression process.  相似文献   

13.
The results of the histological and electron microscopic investigation of adipose and reticular cells and their interconnections with blood cells are presented in the material of trephine biopsies of the iliac bone. A possibility for development of adipocytes from the adventitial reticular cells is demonstrated. Close contacts are revealed between pre-adipocytes and young hemopoietic cells. Two types of the reticular cells are characterized, they differ in their position, structural organization and interconnection with the young hemopoietic elements. The peculiarities revealed in the morphofunctional state of the microenvironmental structures demonstrate functional variegation of the stromal elements, and also attest an essential importance of intercellular contacts of the hemopoietic predecessors and the stromal cells in maintaining the hemopoietic function of the bone marrow.  相似文献   

14.
The ultrastructure of hemopoietic bone marrow of the Spanish lizard, Lacerta hispanica, has been studied for the first time. The organ consists of a stroma formed by venous sinuses and reticular cells. Erythropoiesis takes place in the lumen of blood vessels, while granulopoiesis is extravascular. Pluripotent stem cells are structurally differentiated into erythrocytes and granulocytes. Two types of granulocytes, heterophils and acidophils, have been found, and a third granular cell type is tentatively identified as granular leukocyte. Remarkably, plasmacytopoiesis occurs in the bone marrow of Lacerta hispanica. The possible functional significance of these results is discussed with emphasis on their importance for the reptilian immune system.  相似文献   

15.
The cell surface phenotype of pluripotent hemopoietic stem cells (CFU-S) and committed progenitors (CFU-C1, CFU-C2, BFU-E) of mouse bone marrow was analyzed with respect to their binding of wheat germ agglutinin (WGA) and two monoclonal antibodies, anti-GM-1.2 and anti-PGP-1. Stained cells were fractionated on the basis of differences in fluorescence and light scatter intensity using a light-activated cell sorter. The 6% of the cells that bound most WGA and that also had a relatively high forward light scatter (FLS) and low perpendicular light scatter (PLS) contained nearly all stem cells (CFU-S) and progenitors. Anti-GM-1.2 stained only mature myeloid cells, not CFU-S or the in vitro colony-forming cells. Anti-PGP-1 stained all bone marrow cells in varying intensities: lymphoid cells were dull, CFU-S were intermediate, CFU-C2 were brighter, and mature myeloid cells very bright. Enrichment of progenitor cells was performed by a two-step sorting procedure. First, the 6% most WGA-binding cells with high FLS and low PLS were sorted out. A 10-15-fold enrichment of progenitors and CFU-S was obtained. Next, these cells were restained with anti-GM-1.2 or anti-PGP-1 and again fractionated on the FACS. The GM-1.2-negative cells were then another four- to sevenfold more enriched for stem cells and progenitors. Of the cells in this fraction, 95% could be assigned to a colony-forming unit. With anti-PGP-1, CFU-C2 could be partly separated from more early cells such as CFU-S and BFU-E.  相似文献   

16.
ABSTRACT The present study was undertaken to investigate the hematopoiesis of the hematopoietic organ found in orthopteran Euprepocnemis shirakii under both light and transmission electron microscopy. It was shown that the hemocyte differentiation of E. shirakii was distinct from features compared to patterns previously reported in other insect species: Their prohemocytes, plasmatocytes, granulocytes I, granulocytes II and spherulocytes were all derived from the hematopoietic stem cells surrounded by reticular cells. This pattern of hematopoiesis was also first observed in the Orthoptera. Thus, findings of this study strongly suggested that the patterns of hematopoiesis in insects differed, among groups, showing the need of an extensive investigation in order to correctly comprehend the patterns of hemocyte differentiation in insects in accordance with first order, and then systematically important taxa.  相似文献   

17.
Summary Electron microscopic studies have been made of the epithelial reticular cells of the thymus in mice of both sexes ranging in age from 5 to 8 weeks. The epithelial cells generally have long cytoplasmic processes by which they are interconnected and form a network throughout the organ. The processes adhere tightly to one another by desmosomes. At the surface of the organ the processes constitute a thin sheet, and a basement membrane is discernible close and parallel to the free surface of the epithelial sheet. In the cortex the meshes of the epithelial reticulum are filled with numerous lymphoid cells and relatively few mesenchymal reticular cells. The epithelial cells in the cortex are characterized by their slender cytoplasmic processes and by the presence of large round vesicles which contain coarsely granulated, dense material. By the presence of the vesicles as well as desmosomes at junctions of the cytoplasmic processes the epithelial cells can be distinguished from other cells. For comparison the cytological characteristics of the mesenchymal reticular cells are also described. In the medulla two types — reticular and hypertrophic — of epithelial cells are recognized. The cells of reticular type are irregularly stellated in shape with extended cytoplasmic processes. Their cytoplasm often contains considerable amounts of fine filaments in bundles. Due to the relative abundance of free ribonucleoprotein particles and other cytoplasmic components, the cytoplasm appears relatively electronopaque as compared with that of the cells of the other type. The plasma membrane of the cells of reticular type sometimes invaginates into the cytoplasm to enclose a lumen which contains substance of low density and sometimes fine filaments. A basement membrane-like layer is discernible close to the infolded plasma membrane in the lumen. The cells of hypertrophic type are relatively large and round with a few shorter cytoplasmic processes. They are characterized by the abundance of the smooth endoplasmic reticulum which appears as vesicle or sac of small size. These cells often possess peculiar vesicles the wall of which is provided with microvilli projecting into the lumen. Some of these vesicles carry cilia on their wall in addition to the microvilli. The cells of hypertrophic type often undergo degeneration. The degenerating cells are concentrically surrounded by a few neighboring cells of both hypertrophic and reticular types, and Hassall's corpuscles are formed.  相似文献   

18.
A review of one of the key problems of experimental hematology: the origin of hemopoietic stem cells in the development of vertebrates (amphibians, birds, and mammals). The appearance and functioning of two independent sources of hemopoietic stem cells (extra- and intraembryonic) were considered in amphibians, birds, and mammals. The contribution of each source to the formation of definitive hemopoietic tissue was analyzed. It was shown for amphibians and birds that intraembryonic organs such as the dorsolateral plate and the mesenchyme of dorsal aorta are involved in the formation of adult hemopoietic tissue, while the extraembryonic organs such as ventral islets and the yolk sac are devoid of true stem cells and provide only for the primary, transient hemopoiesis. New data have been considered concerning the previously unknown intraembryonic hemopoietic organ in mammals, a region of aorta–gonad–mesonephros arising in embryogenesis simultaneously with the yolk sac. Two extreme views on the involvement of stem cells of all these organs in the formation of definitive hemopoiesis have been considered. The data are provided on the interaction of the embryonic hemopoietic stem cells and the hemopoietic microenvironment of adult recipients.  相似文献   

19.
The patterns of development of T cells from the very early stem cells that settle in the embryonic thymus have been studied. For this purpose, mouse embryonic thymuses (14 days) depleted of thymocytes were reconstituted with hemopoietic stem cells from fetal liver (FL) and yolk sac (YS) and T-cell development was followed in vitro in organ culture. It was found that cells derived from FL and YS of 10- to 14-day-old embryos were capable of reconstituting depleted thymic explants and exhibiting membrane markers in a pattern similar to that of thymocytes developing in intact thymic explants. Furthermore, these cells responded to concanavalin A in proliferative and cytotoxic assays as measured by limiting-dilution analysis. Thus, lymphohemopoietic stem cells emerging in the embryo prior to thymus lymphoid development are capable of differentiation in the thymus microenvironment into T cells, identified by phenotypic markers and functions that are characteristic of cells developing in the intact embryonic thymus.  相似文献   

20.
Hematopoiesis is well-conserved between Drosophila and vertebrates. Similar as in vertebrates, the sites of hematopoiesis shift during Drosophila development. Blood cells (hemocytes) originate de novo during hematopoietic waves in the embryo and in the Drosophila lymph gland. In contrast, the hematopoietic wave in the larva is based on the colonization of resident hematopoietic sites by differentiated hemocytes that arise in the embryo, much like in vertebrates the colonization of peripheral tissues by primitive macrophages of the yolk sac, or the seeding of fetal liver, spleen and bone marrow by hematopoietic stem and progenitor cells. At the transition to the larval stage, Drosophila embryonic hemocytes retreat to hematopoietic “niches,” i.e., segmentally repeated hematopoietic pockets of the larval body wall that are jointly shared with sensory neurons and other cells of the peripheral nervous system (PNS). Hemocytes rely on the PNS for their localization and survival, and are induced to proliferate in these microenvironments, expanding to form the larval hematopoietic system. In this process, differentiated hemocytes from the embryo resume proliferation and self-renew, omitting the need for an undifferentiated prohemocyte progenitor. Larval hematopoiesis is the first Drosophila model for blood cell colonization and niche support by the PNS. It suggests an interface where innocuous or noxious sensory inputs regulate blood cell homeostasis or immune responses. The system adds to the growing concept of nervous system dependence of hematopoietic microenvironments and organ stem cell niches, which is being uncovered across phyla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号