首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli alpha-hemolysin (HlyA) is a protein exotoxin that binds and lyses eukaryotic cell and model membranes in the presence of calcium. Previous studies have been able to distinguish between reversible toxin binding to the membrane and irreversible insertion into the lipid matrix. Membrane lysis occurs as the combined effect of protein insertion plus a transient perturbation of the membrane bilayer structure. In the past, insertion and bilayer perturbation have not been experimentally dissected. This has now been achieved by studying HlyA penetration into lipid monolayers at the air-water interface, in which three-dimensional effects (of the kind required to break down the bilayer permeability barrier) cannot occur. The study of native HlyA, together with the nonlytic precursor pro-HlyA, and of different mutants demonstrates that although some nonlytic variants (e.g. pro-HlyA) exhibit very low levels of insertion, others (e.g. the nonlytic mutant HlyA H859N) insert even more strongly than the lytic wild type. These results show that insertion does not necessarily lead to membrane lysis, i.e. that insertion and lysis are not "coupled" phenomena. Millimolar levels of Ca(2+), which are essential for the lytic activity, cause an extra degree of insertion but only in the case of the lytic forms of HlyA.  相似文献   

2.
α-Hemolysin (HlyA) is a protein toxin, a member of the pore-forming Repeat in Toxin (RTX) family, secreted by some pathogenic strands of Escherichia coli. The mechanism of action of this toxin seems to involve three stages that ultimately lead to cell lysis: binding, insertion, and oligomerization of the toxin within the membrane. Since the influence of phase segregation on HlyA binding and insertion in lipid membranes is not clearly understood, we explored at the meso- and nanoscale—both in situ and in real-time—the interaction of HlyA with lipid monolayers and bilayers. Our results demonstrate that HlyA could insert into monolayers of dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/16:0SM/Cho) and DOPC/24:1SM/Cho. The time course for HlyA insertion was similar in both lipidic mixtures. HlyA insertion into DOPC/16:0SM/Cho monolayers, visualized by Brewster-angle microscopy (BAM), suggest an integration of the toxin into both the liquid-ordered and liquid-expanded phases. Atomic-force-microscopy imaging reported that phase boundaries favor the initial binding of the toxin, whereas after a longer time period the HlyA becomes localized into the liquid-disordered (Ld) phases of supported planar bilayers composed of DOPC/16:0SM/Cho. Our AFM images, however, showed that the HlyA interaction does not appear to match the general strategy described for other invasive proteins. We discuss these results in terms of the mechanism of action of HlyA.  相似文献   

3.
Adenylate cyclase toxin (ACT) is secreted by Bordetella pertussis, the bacterium causing whooping cough. ACT is a member of the RTX (repeats in toxin) family of toxins, and like other members in the family, it may bind cell membranes and cause disruption of the permeability barrier, leading to efflux of cell contents. The present paper summarizes studies performed on cell and model membranes with the aim of understanding the mechanism of toxin insertion and membrane restructuring leading to release of contents. ACT does not necessarily require a protein receptor to bind the membrane bilayer, and this may explain its broad range of host cell types. In fact, red blood cells and liposomes (large unilamellar vesicles) display similar sensitivities to ACT. A varying liposomal bilayer composition leads to significant changes in ACT-induced membrane lysis, measured as efflux of fluorescent vesicle contents. Phosphatidylethanolamine (PE), a lipid that favors formation of nonlamellar (inverted hexagonal) phases, stimulated ACT-promoted efflux. Conversely, lysophosphatidylcholine, a micelle-forming lipid that opposes the formation of inverted nonlamellar phases, inhibited ACT-induced efflux in a dose-dependent manner and neutralized the stimulatory effect of PE. These results strongly suggest that ACT-induced efflux is mediated by transient inverted nonlamellar lipid structures. Cholesterol, a lipid that favors inverted nonlamellar phase formation and also increases the static order of phospholipid hydrocarbon chains, among other effects, also enhanced ACT-induced liposomal efflux. Moreover, the use of a recently developed fluorescence assay technique allowed the detection of trans-bilayer (flip-flop) lipid motion simultaneous with efflux. Lipid flip-flop further confirms the formation of transient nonlamellar lipid structures as a result of ACT insertion in bilayers.  相似文献   

4.
The activity of antimicrobial peptides has been shown to depend on the composition of the target cell membrane. The bacterial selectivity of most antimicrobial peptides has been attributed to the presence of abundant acidic phospholipids and the absence of cholesterol in bacterial membranes. The high amount of cholesterol present in eukaryotic cell membranes is thought to prevent peptide-induced membrane disruption by increasing the cohesion and stiffness of the lipid bilayer membrane. While the role of cholesterol on an antimicrobial peptide-induced membrane disrupting activity has been reported for simple, homogeneous lipid bilayer systems, it is not well understood for complex, heterogeneous lipid bilayers exhibiting phase separation (or "lipid rafts"). In this study, we show that cholesterol does not inhibit the disruption of raft-containing 1,2-dioleoyl-sn-glycero-3-phosphocholine:1,2-dipalmitoyol-sn-glycero-3-phosphocholine model membranes by four different cationic antimicrobial peptides, MSI-78, MSI-594, MSI-367 and MSI-843 which permeabilize membranes. Conversely, the presence of cholesterol effectively inhibits the disruption of non-raft containing 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyol-sn-glycero-3-phosphocholine lipid bilayers, even for antimicrobial peptides that do not show a clear preference between the ordered gel and disordered liquid-crystalline phases. Our results show that the peptide selectivity is not only dependent on the lipid phase but also on the presence of phase separation in heterogeneous lipid systems.  相似文献   

5.
The fluorescent membrane probe 6-propionyl-2-dimethylaminonaphthalene (Prodan) displays a high sensitivity to the polarity and packing properties of lipid membrane. Contrary to 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), Prodan can also monitor the properties of the membrane surface, i.e., the polar-head pretransition. In bilayers composed of coexisting gel and liquid-crystalline phases, Prodan shows a preferential partitioning in the latter, so that the detected membrane properties mainly belong to fluid domains. In the presence of cholesterol, the packing properties of the gel phase phospholipids are modified in such a way that Prodan can penetrate and label the membrane. Although Prodan labeling of the gel phase is a function of cholesterol concentration, 3 mol percent cholesterol is sufficient for a 60% Prodan labeling with respect to the maximum labeling reached at 15 mol percent cholesterol. We present steady-state and dynamical fluorescence measurements of Prodan in bilayers in the presence of cholesterol. Our results fit the liquid-ordered/liquid-disordered phase model for cholesterol-containing membranes and show that the presence of cholesterol, in addition to modification to the phase state of the hydrophobic portion of the bilayer, strongly affects the packing and the polarity of the membrane hydrophobic-hydrophilic interface.  相似文献   

6.
Equinatoxin-II is a eukaryotic pore-forming toxin belonging to the family of actinoporins. Its interaction with model membranes is largely modulated by the presence of sphingomyelin. We have used large unilamellar vesicles and lipid monolayers to gain further information about this interaction. The coexistence of gel and liquid-crystal lipid phases in sphingomyelin/phosphatidylcholine mixtures and the coexistence of liquid-ordered and liquid-disordered lipid phases in phosphatidylcholine/cholesterol or sphingomyelin/phosphatidylcholine/cholesterol mixtures favor membrane insertion of equinatoxin-II. Phosphatidylcholine vesicles are not permeabilized by equinatoxin-II. However, the localized accumulation of phospholipase C-generated diacylglycerol creates conditions for toxin activity. By using epifluorescence microscopy of transferred monolayers, it seems that lipid packing defects arising at the interfaces between coexisting lipid phases may function as preferential binding sites for the toxin. The possible implications of such a mechanism in the assembly of a toroidal pore are discussed.  相似文献   

7.
Lopes SC  Fedorov A  Castanho MA 《Steroids》2004,69(13-14):825-830
Fluorescence techniques were used to study (1) the extent of insertion of the bioactive cyclic dipeptide cyclo(l-tyrosyl-l-prolyl), maculosin, in model systems of membranes of 1, 2-palmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl choline (POPC), (2) its in-depth location in those lipidic membranes, and (3) the influence of cholesterol on the dipeptides's location and orientation. Partition into lipidic bilayers is extensive, mainly for liquid crystalline phase membranes (K(p)=1.3x10(4)). Maculosin locates at the lipid head groups level regardless of the membrane system. Nevertheless, its orientation is lipid phase dependent. When maculosin was inserted in liquid crystalline phase bilayers, its phenolic ring was perpendicular to the membrane surface, whereas it changed orientation when inserted in gel phase membranes. Cholesterol was able to reverse the lipid phase influence on maculosin's orientation.  相似文献   

8.
Cell membranes provide an environment that is essential to the functions of membrane proteins. Cell membranes are mainly composed of proteins and highly diverse phospholipids. The influence of diverse lipid compositions of native cell membranes on the dynamics of the embedded membrane proteins has not been examined. Here we employ solid-state NMR to investigate the dynamics of E. coli Aquaporin Z (AqpZ) in its native inner cell membranes, and reveal the influence of diverse lipid compositions on the dynamics of AqpZ by comparing it in native cell membranes to that in POPC/POPG bilayers. We demonstrate that the dynamic rigidity of AqpZ generally conserves in both native cell membranes and POPC/POPG bilayers, due to its tightly packed tetrameric structure. In the gel and the liquid crystal phases of lipids, our experimental results show that AqpZ is more dynamic in native cell membranes than that in POPC/POPG bilayers. In addition, we observe that phase transitions of lipids in native membranes are less sensitive to temperature variations compared with that in POPC/POPG bilayers, which results in that the dynamics of AqpZ is less affected by the phase transitions of lipids in native cell membranes than that in POPC/POPG bilayers. This study provides new insights into the dynamics of membrane proteins in native cell membranes.  相似文献   

9.
Hemolysin (HlyA) is an extracellular protein secreted by uropathogenic strains of Escherichia coli. The mature HlyA is able to bind to mammalian target cell membranes including those of the immune system, causing lysis. The lytic activity is absolutely dependent upon the Hlyc-dependent acylation of Prohemolysin. In this paper we show, through Trp fluorescence studies and denaturation in Guanidine hydrochloride, that the acylation is responsible for the loose conformation of the active protein, necessary to transform it from soluble to membrane-bound form. Previous studies showed that toxin binding to the bilayers occurs in, at least two ways, a reversible adsorption and irreversible insertion. We demonstrated that the irreversibility is due to the acyl chains in the HlyA, as shown by the protein transfer from multilamellar liposomes composed of palmitoyl-oleoyl-phosphatidylcholine (POPC) to large unilamellar vesicles containing POPC-doxyl as protein fluorescence quencher.  相似文献   

10.
It is well established that Alzheimer's amyloid beta-peptides reduce the membrane barrier to ion transport. The prevailing model ascribes the resulting interference with ion homeostasis to the formation of peptide pores across the bilayer. In this work, we examine the interaction of soluble prefibrillar amyloid beta (Abeta(1-42))-oligomers with bilayer models, observing also dramatic increases in ion current at micromolar peptide concentrations. We demonstrate that the Abeta-induced ion conductances across free-standing membranes and across substrate-supported "tethered" bilayers are quantitatively similar and depend on membrane composition. However, characteristic signatures of the molecular transport mechanism were distinctly different from ion transfer through water-filled pores, as shown by a quantitative comparison of the membrane response to Abeta-oligomers and to the bacterial toxin alpha-hemolysin. Neutron reflection from tethered membranes showed that Abeta-oligomers insert into the bilayer, affecting both membrane leaflets. By measuring the capacitance of peptide-free membranes, as well as their geometrical thicknesses, the dielectric constants in the aliphatic cores of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-diphytanoyl-sn-glycero-3-phosphocholine bilayers were determined to be epsilon = 2.8 and 2.2, respectively. The magnitude of the Abeta-induced increase in epsilon indicates that Abeta-oligomers affect membranes by inducing lateral heterogeneity in the bilayers, but an increase in the water content of the bilayers was not observed. The activation energy for Abeta-induced ion transport across the membrane is at least three times higher than that measured for membranes reconstituted with alpha-hemolysin pores, E(a) = 36.8 vs. 9.9 kJ/mol, indicating that the molecular mechanisms underlying both transport processes are fundamentally different. The Abeta-induced membrane conductance shows a nonlinear dependence on the peptide concentration in the membrane. Moreover, E(a) depends on peptide concentration. These observations suggest that cooperativity and/or conformational changes of the Abeta-oligomer particles upon transfer from the aqueous to the hydrocarbon environment play a prominent role in the interaction of the peptide with the membrane. A model in which Abeta-oligomers insert into the hydrophobic core of the membrane-where they lead to a local increase in epsilon and a concomitant reduction of the membrane barrier-describes the experimental data quantitatively.  相似文献   

11.
Hydration and fluidity of lipid bilayers in different phase states were studied using fluorescent probes selectively located at the interface. The probe of hydration was a recently developed 3-hydroxyflavone derivative, which is highly sensitive to the environment, whereas the probe of fluidity was the diphenylhexatriene derivative, 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene. By variation of the cholesterol content and temperature in large unilamellar vesicles composed of sphingomyelin or dipalmitoylphosphatidlycholine, we generated different phases: gel, liquid ordered (raft), liquid crystalline, and liquid disordered (considered as liquid crystalline phase with cholesterol). For these four phases, the hydration increases in the following order: liquid ordered < gel approximately liquid disordered < liquid crystalline. The membrane fluidity shows a somewhat different trend, namely liquid ordered approximately gel < liquid disordered < liquid crystalline. Thus, gel and liquid ordered phases exhibit similar fluidity, whereas the last phase is significantly less hydrated. We expect that cholesterol due to its specific H-bonding interactions with lipids and its ability to fill the voids in lipid bilayers expels efficiently water molecules from the highly ordered gel phase to form the liquid ordered phase. In this study, the liquid ordered (raft) and gel phases are for the first time clearly distinguished by their strong difference in hydration.  相似文献   

12.
There is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the accumulation of beta-amyloid peptides into senile plaques, one of the hallmarks of Alzheimer's disease (AD). With the aim to clarify the molecular basis of the interaction between amyloid peptides and cellular membranes, we investigated the interaction between a cytotoxic fragment of Abeta(1-42), i.e., Abeta(25-35), and phospholipid bilayer membranes. These systems were studied by Electron Paramagnetic Resonance (EPR) spectroscopy, using phospholipids spin-labeled on the acyl chain. The effect of inclusion of charged phospholipids or/and cholesterol in the bilayer composition was considered in relation to the peptide/membrane interaction. The results show that Abeta(25-35) inserts in bilayers formed by the zwitterionic phospholipid dilauroyl phosphatidylcholine (DLPC), positioning between the outer part of the hydrophobic core and the external hydrophilic layer. This process is not significantly influenced by the inclusion of the anionic phospholipid phosphatidylglycerol (DLPG) in the bilayer, indicating the peptide insertion to be driven by hydrophobic rather than electrostatic interactions. Cholesterol plays a fundamental role in regulating the peptide/membrane association, inducing a membrane transition from a fluid-disordered to a fluid-ordered phase. At low cholesterol content, in the fluid-disordered phase, the insertion of the peptide in the membrane causes a displacement of cholesterol towards the more external part of the membrane. The crowding of cholesterol enhances its rigidifying effect on this region of the bilayer. Finally, the cholesterol-rich fluid-ordered membrane looses the ability to include Abeta(25-35).  相似文献   

13.
Fluorescence probe partitioning between Lo/Ld phases in lipid membranes   总被引:2,自引:0,他引:2  
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (L(d)) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (L(o)) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.  相似文献   

14.
Fluorescence microscopy imaging is an important technique for studying lipid membranes and is increasingly being used for examining lipid bilayer membranes, especially those showing macroscopic coexisting domains. Lipid phase coexistence is a phenomenon of potential biological significance. The identification of lipid membrane heterogeneity by fluorescence microscopy relies on membrane markers with well-defined partitioning behavior. While the partitioning of fluorophores between gel and liquid-disordered phases has been extensively characterized, the same is not true for coexisting liquid phases. We have used fluorescence microscopy imaging to examine a large variety of lipid membrane markers for their liquid phase partitioning in membranes with various lipid compositions. Most fluorescent lipid analogs are found to partition strongly into the liquid-disordered (Ld) phase. In contrast, some fluorescent polycyclic aromatic hydrocarbons with a flat ring system were found to partition equally, but others partition preferentially into liquid-ordered (Lo) phases. We have found these fluorescent markers effective for identification of coexisting macroscopic membrane phases in ternary lipid systems composed of phospholipids and cholesterol.  相似文献   

15.
Use of cyclodextrin for AFM monitoring of model raft formation   总被引:5,自引:0,他引:5       下载免费PDF全文
The lipid rafts membrane microdomains, enriched in sphingolipids and cholesterol, are implicated in numerous functions of biological membranes. Using atomic force microscopy, we have examined the effects of cholesterol-loaded methyl-beta-cyclodextrin (MbetaCD-Chl) addition to liquid disordered (l(d))-gel phase separated dioleoylphosphatidylcholine (DOPC)/sphingomyelin (SM) and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC)/SM supported bilayers. We observed that incubation with MbetaCD-Chl led to the disappearance of domains with the formation of a homogeneously flat bilayer, most likely in the liquid-ordered (l(o)) state. However, intermediate stages differed with the passage through the coexistence of l(o)-l(d) phases for DOPC/SM samples and of l(o)-gel phases for POPC/SM bilayers. Thus, gel phase SM domains surrounded by a l(o) matrix rich in cholesterol and POPC could be observed just before reaching the uniform l(o) state. This suggests that raft formation in biological membranes could occur not only via liquid-liquid but also via gel-liquid immiscibility. The data also demonstrate that MbetaCD-Chl as well as the unloaded cyclodextrin MbetaCD make holes and preferentially extract SM in supported bilayers. This strongly suggests that interpretation of MbetaCD and MbetaCD-Chl effects on cell membranes only in terms of cholesterol movements have to be treated with caution.  相似文献   

16.
Model membranes composed of cholesterol plus one of two phosphatidylcholines (PC), each containing a saturated and a dienoic acyl chain, have been studied by differential scanning calorimetry. The gel to liquid-crystalline phase transition temperature of 1-palmitoyl-2-linoleoyl PC was -19.5 degrees C and that of 1-stearoyl-2-linoleoyl PC was -13.7 degrees C. The addition of cholesterol to the phosphatidylcholines in aqueous dispersion resulted in the progressive removal of the phase transition as observed by differential scanning calorimetry. Per mole of sterol in the membrane, cholesterol was more effective at reducing the enthalpy change of the phase transitions of these bilayers containing dienoic phosphatidylcholines than it is in eliminating the transition of membranes made with other phospholipids that contain more saturated chains. No transitions in membranes made with palmitoyl-linoleoyl PC or stearoyl-linoleoyl PC could be detected calorimetrically when 17 mol% cholesterol was present.  相似文献   

17.
Several integral membrane proteins can be inserted sequentially into preformed unilamellar vesicles (ULV's) composed of dimyristoylphosphatidylcholine (DMPC) and cholesterol in a gel phase. Thus, proteoliposomes of DMPC, cholesterol, and bacteriorhodopsin from Halobacterium halobium rapidly incorporate UDPglucuronosyltransferase (EC 2.4.1.17) from pig liver microsomes, cytochrome oxidase from beef heart mitochondria, and additional bacteriorhodopsin, added sequentially. This process of spontaneous incorporation can be regulated to produce complex artificial membranes that contain phospholipids and proteins at ratios (mol/mol) equivalent to what is found in biological membranes. The ability of the lipid-protein bilayers to incorporate additional integral membrane proteins is not affected by annealing of the proteoliposomes at 37 degrees C nor by the order of addition of the proteins. Bacteriorhodopsin-containing vesicles formed by the sequential addition of integral membrane proteins demonstrate light-driven proton pumping. Therefore, they have retained a vesicular structure. Vesicles containing one or two different proteins will fuse with each other at 21 degrees C or with ULV's devoid of proteins. Incorporation of bacteriorhodopsin or UDPglucuronosyltransferase into proteoliposomes containing DMPC, with or without cholesterol as impurity, also occurs above the phase transition for DMPC. The presence of a protein in a liquid-crystalline bilayer provides the necessary condition for promoting the spontaneous incorporation of other membrane proteins into preformed bilayers.  相似文献   

18.
Benzyl alcohol (BA) has a well-known fluidizing effect on both artificial and cellular membranes. BA is also likely to modulate the activities of certain membrane proteins by decreasing the membrane order. This phenomenon is presumably related to the ability of BA to interrupt interactions between membrane proteins and the surrounding lipids by fluidizing the lipid bilayer. The components of biological membranes are laterally diversified into transient assemblies of varying content and order, and many proteins are suggested to be activated or inactivated by their localization in or out of membrane domains displaying different physical phases. We studied the ability of BA to fluidize artificial bilayer membranes representing liquid-disordered, cholesterol-enriched and gel phases. Multilamellar vesicles were studied by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and trans-parinaric acid, which display different phase partitioning. Domains of different degree of order and thermal stability showed varying abilities to resist fluidization by BA. In bilayers composed of mixtures of an unsaturated phosphatidylcholine, a saturated high melting temperature lipid (sphingomyelin or phosphatidylcholine) and cholesterol, BA fluidized and lowered the melting temperature of the ordered and gel phase domains. In general, cholesterol-enriched domains were more resistant to BA than pure gel phase domains. In contrast, bilayers containing high melting temperature gel phase domains containing a ceramide or a galactosylceramide proved to be the most effective in resisting fluidization. The results of our study suggest that the ability of BA to affect the fluidity and lateral organization of the membranes was dependent on the characteristic features of the membrane compositions studied and related to the intermolecular cohesion in the domains.  相似文献   

19.
Enterovirus 2B viroporin has been involved in membrane permeabilization processes occurring late during cell infection. Even though 2B lacks an obvious signal sequence for translocation, the presence of a Lys-based amphipathic domain suggests that this product bears the intrinsic capacity for partitioning into negatively charged cytofacial membrane surfaces. Pore formation by poliovirus 2B attached to a maltose-binding protein (MBP) has been indeed demonstrated in pure lipid vesicles, a fact supporting spontaneous insertion into and direct permeabilization of membranes. Here, biochemical evidence is presented indicating that both processes are modulated by phosphatidylinositol and phosphatidylserine, the main anionic phospholipids existing in membranes of target organelles. Insertion into lipid monolayers and partitioning into phospholipid bilayers were sustained by both phospholipids. However, MBP-2B inserted into phosphatidylserine bilayers did not promote membrane permeabilization and addition of this lipid inhibited the leakage observed in phosphatidylinositol vesicles. Mathematical modelling of pore formation in membranes containing increasing phosphatidylserine percentages was consistent with its inhibitory effect arising from a higher reversibility of MBP-2B surface aggregation. These results support that 2B insertion and pore-opening are mechanistically distinguishable events modulated by the target membrane anionic phospholipids.  相似文献   

20.
Curcumin, a polyphenol molecule, presents a wide range of biological activities as antioxidant, anticancer, anti-inflammatory, antimicrobial and wound healing. Although some strengths attributed to curcumin derive from promiscuous biological activity, possibly because curcumin can interfere on many membrane located processes, knowledge of underlying interactions are lacking. Mammalian cell membranes characteristically contain 25 to 50% cholesterol/phospholipid ratio; however, most studies involving lipid bilayers and curcumin consider pure phosphatidylcholine and compare effects of curcumin on membranes with those of cholesterol. We investigated the interaction of curcumin with lipid bilayers containing cholesterol mimicking mammalian cells, and used spectroscopy techniques to determine partition coefficients, rigidity parameters and lytic activity. We found that curcumin partitions into different lipid bilayers (104 order coefficients that vary by less than a factor of two), containing cholesterol or not, and in the presence of sphingomyelin or phosphatidylserine. Curcumin decreases rigidity in all tested compositions, except that containing 40% cholesterol in which it increases the lipid packing order. In addition, curcumin induces leakage from giant unilamellar vesicles on a cholesterol concentration dependent way. Our results are compatible with the hypothesis of curcumin interaction with membranes being modulated by the liquid disordered phase and by the coexistence of liquid-ordered/liquid disordered phases. In bilayers containing cholesterol, curcumin assumes a more superficial location, drastically stiffens the 40% cholesterol bilayer and decreases the lytic effect. Our study may help researchers in the analysis of the biological effects of curcumin and curcumin-derived formulations by calling the attention to the discriminating role of the cholesterol content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号