首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous work on rat striated muscle cells a silver-reducing component was found selectively localized at the terminal cistern/transverse tubule system (Tandler and Pellegrino de Iraldi 1989). To further investigate that problem we performed the Hg-Ag argentaffin reaction on a sarcoplasmic reticulum fraction from rat skeletal muscle. Circular profiles corresponding to vesicular structures were found outlined by silver grains. The number of silver "stained" vesicles were less than the total number vesicles stained by conventional procedures. The correlation between argentaffinities in the intact muscle fiber and their subcellular organelles indicated that the Hg-Ag reactive vesicles must be those derived from the terminal cisternae of the sarcoplasmic reticulum. The silver-reducing constituent aggregates in the presence of 1 mM CaCl2 or 0.5 M K cacodylate. The state of aggregation induced by Ca2+ was not affected by incubation with 0.5% Triton X-100 or by 2 mM EDTA, thus suggesting a localization at or near the membrane of the terminal cistern vesicle facing the junctional gap. In Laemmli SDS-acrylamide gels the Hg-Ag reaction stained all proteins in a manner similar to Coomasie blue. It is suggested that the selective histochemical staining is the result of differential reactivities due to steric requirements of the chemical reaction.  相似文献   

2.
Summary Permeability properties and the effects of a changed membrane potential on Ca2+ release of sarcoplasmic reticulum vesicles of rabbit skeletal muscle were investigated by Millipore filtration. The relative permeability of sarcoplasmic reticulum to solutes determined under conditions of isotope exchange at equilibrium and/or under conditions of net flow of solute and water into the vesicles was as follows: sucrose, Ca2+, Mn2+–, choline+, Tris++, Na+, Li+, Cl. Transient membrane potentials were induced by rapidly changing the ionic environment of the vesicles. Knowledge of the relative permeation rates of the above ions allowed prediction of the direction and extent of membrane polarization. Osmotic effects in the polarization measurements due to the rapid influx of solute and water into the vesicles were minimized by using media containing a fast (K+ or Cl) and a relatively slow (gluconate or choline+) penetrating ion.45Ca2+ efflux from vesicles derived from different parts of the sarcoplasmic reticulum structure was not appreciably changed when vesicles were made more positive inside (choline chloride potassium gluconate) or more negative inside (potassium gluconate choline chloride). These studies suggest that part or all of the ion-induced changes in sarcoplasmic reticulum membrane permeability, previously interpreted to indicate depolarization-induced Ca2+ release, may be due to osmotic effects.  相似文献   

3.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

4.
The sites of lead phosphate precipitation in mouse bladder smooth muscle incubated with adenosine triphosphate and lead nitrate were studied by electron microscopy. The media constituents and incubating conditions were independently varied so that we could determine optimal conditions for histochemical demonstration of ATPase activity in agranular endoplasmic reticulum. Specimens of glutaraldehyde-fixed bladder muscle, frozen, cut into 10–40-µ sections, and incubated for 1 hr at 25°C in medium containing 0.025 M ATP, 0.0025 M lead nitrate, 0.05 M magnesium chloride, and 0.09 M sodium acetate buffer at pH 6.2, exhibited microcrystalline deposits in agranular endoplasmic reticulum and pinocytotic vesicles. Lead salt deposition was also noted in terminal cisternae of sarcoplasmic reticulum in skeletal muscle similarly treated, suggesting that the organelle systems in the two types of muscle cells subserve a common function.  相似文献   

5.
Summary The formation and development of synaptic contacts between dissociated chick spinal cord neurons has been investigated. By the 6th day in vitro immature profiles with few vesicles were observed. By 14–18 days mature types with numerous vesicles were found, indistinguishable from those of newly hatched chick spinal cord. After this period degeneration occurred, and was especially marked in the post-synaptic element. Such degeneration could be postponed by the addition of small numbers of somatic muscle cells. The Kanaseki and Kadota (1969) technique was applied to the study of coated vesicles at various stages of synaptic development.  相似文献   

6.
Summary A concentration-dependent localization of octopamine-sensitive adenylate cyclase activity has been demonstrated in skeletal muscle of the locust, Schistocerca gregaria, using an histochemical technique. In the intermediate speed contracting muscle fibres from the fan region of the extensor-tibiae muscle of the locust hindleg, low concentrations of dl-octopamine (10–8 M) induce reaction product preferentially in the sarcoplasmic reticular component of the dyads. At slightly higher concentrations (10–7 and 10–6 M) lower amounts of diffuse reaction product are also found in the non-dyad sarcoplasmic reticulum and at the sarcolemmal membrane, with occassional amounts of a less diffuse, punctate product in the transverse tubule (T-tubule) component of the dyads. At higher concentrations (10–5 and 10–3 M) the predominant product is the dense, plaque-like accumulations of reaction product in the T-tubule component of the dyads. The results are discussed in terms of the likely physiological significance of the accumulation of reaction product in these different locations.  相似文献   

7.
Summary Rat brain microsomal membranes were found to contain high-affinity binding sites for the alkaloid ryanodine (k d 3nm.B max 0.6 pmol per mg protein). Exposure of planar lipid bilayers to microsomal membrane vesicles resulted in the incorporation, apparently by bilayer-vesicle fusion, of at least two types of ion channel. These were selective for Cl and Ca2+, respectively. The reconstituted Ca2+ channels were functionally modified by 1 m ryanodine, which induced a nearly permanently open subconductance state. Unmodified Ca2+ channels had a slope conductance of almost 100 pS in 54mm CaHEPES and a Ca2+/TRIS+ permeability ratio of 11.0. They also conducted other divalent cations (Ba2+>Ca2+>Sr2+>Mg2+) and were markedly activated by ATP and its nonhydrolysable derivative AMPPCP (1mm). Inositol 1,4,5-trisphosphate (1–10 m) partially activated the same channels by increasing their opening rate. Brain microsomes therefore contain ryanodine-sensitive Ca2+ channels, sharing some of the characteristics of Ca2+ channels from striated but not smooth muscle sarcoplasmic reticulum. Evidence is presented to suggest they were incorporated into bilayers following the fusion of endoplasmic reticulum membrane vesicles, and their sensitivity to inositol trisphosphate may be consistent with a role in Ca2+ release from internal membrane stores.  相似文献   

8.
Summary Muscle spindles from lumbricalis muscles of the rat were incubated for acetylcholinesterase with a modified thiocholine-method of Lewis and Shute and examined by light and electron microscopy.All types of motor nerve ending showed heavy deposits of reaction product in the synaptic cleft. The underlying sarcoplasmic reticulum, transverse tubular system, and, when present, the envelope of sole plate nuclei were also stained.In the sensory region, the reaction was negative in the interface between the plasma membranes of the primary sensory terminal and muscle. One of two secondary sensory endings identified showed distinct reaction product in the cleft; the other secondary sensory ending showed no such reaction.Precipitates were present on the sarcolemma of the intrafusal muscle fibers in the polar and adjacent myotube regions, but not at the spindle equator. Extrafusal and intrafusal myelinated -nerve fibers and preterminal motor axons showed staining of the axolemma. Fibers with thick myelin sheaths and preterminal sensory axons were free of acetylcholinesterase activity, as were the unmyelinated nerve fibers.We wish to thank Mrs. D. Schilling and Mrs. Ch. Beyer for technical assistanc  相似文献   

9.
The binding abilities of silver(I) to mammalian MT 1 have been studied and compared with those of copper(I), recently reported [Bofill et al. (2001) J Biol Inorg Chem 6:408–417], with the aim of analyzing the suitability of Ag(I) as a Cu(I) probe in Cu–MT studies. The Zn/Ag replacement in recombinant mouse Zn7–MT 1 and corresponding Zn4-MT 1 and Zn3-MT 1 fragments, as well as the stepwise incorporation of Ag(I) to the corresponding apo-MTs, have been followed in parallel by various spectroscopic techniques including electronic absorption (UV–vis), circular dichroism (CD) and electrospray mass spectrometry coupled to capillary zone electrophoresis (CZE-ESI-MS). A comparative analysis of the sets of data obtained in the titration of Zn7–MT 1, Zn4–MT 1 and Zn3-MT 1 with AgClO4 at pH 7.5 and 2.5 has led to the reaction pathways followed during the incorporation of silver to these proteins under these specific conditions, disclosing unprecedented stoichiometries and structural features for the species formed. Thus, the Zn/Ag replacement in Zn7–MT 1 at pH 7.5 has revealed the subsequent formation of Ag4Zn5–MT, Ag7Zn3–MT, Ag8Zn3–MT, Ag10Zn2–MT, Ag12Zn1–MT, Agx–MT, x=14–19, whose structure consists of two additive domains only if Zn(II) remains coordinated to the protein. A second structural role for Zn(II) has been deduced from the different folding found for the Agx–MT species of the same stoichiometry formed at pH 7.5 or 2.5. Comparison of the binding features of Cu(I) and Ag(I) to the entire MT at pH 7.5 shows that, among all the xZny–MT (0y<7) species found, only MI4Zn5–MT [(Zn4)(4Zn1)] and MI7Zn3–MT [(3Zn2)(4Zn1)], which form during the first stages of the Zn(II)/M(I) metal replacement, show comparable 3D structures; thus, they are the only species where Ag(I) ions can be predicted to be an adequate probe for Cu(I).Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献   

10.
The Ca2+-pumping activity of skeletal sarcoplasmic reticulum vesicles is half-maximallyinhibited by 120 M clomipramine, 250 M desipramine, and 500 M imipramine or trimipramine.The inhibition is attributed to the dihydrodibenzazepine moiety, since3-(dimethylamino)propionitrile, reproducing the aliphatic amine chain, has no inhibitory action. The inhibitionis shown as a marked decrease of Ca2+ binding at equilibrium in theabsence of ATP and asa reduction of phosphorylation of the Ca2+-free conformation byinorganic phosphate. Therefore,the drug effect is consistent with preferential interaction of tricyclic antidepressants withthe Ca2+-free conformation of the nonphosphorylated enzyme. An additional decrease in theapparent rate constant of enzyme dephosphorylation, i.e., in the release of phosphate fromATP during enzyme cycling was also noticed.  相似文献   

11.
Smooth endoplasmic reticulum vesicles from rat liver display an ATP-supported Ca2+ transport which is mediated by a (Ca2+ + Mg2+)-ATPase. During the catalytic cycle the terminal phosphate from ATP is incorporated to form an acid-precipitable reaction product(118 000-Mr in SDS-gel electrophoresis) with stability characteristics of an acylphosphate. Comparative studies with sarcoplasmic reticulum vesicles from fast-twitch skeletal muscle suggest that the 118 000-Mr phosphopeptide may be identified with the phosphorylated reaction intermediate of a Ca2+ transport ATPase in endoplasmic reticulum, similar to that in sarcoplasmic reticulum of muscle.  相似文献   

12.
The plant alkaloids ryanodine and dehydroryanodine are high affinity, biphasic modulators of the intracellularly located, calcium-regulated calcium release channels of a variety of cell types. To date, little is certain about the molecular basis of the interactions that prompt low concentrations of ryanodine (nanomolar to low micromolar) to activate (open) the channels and higher concentrations to deactivate (functionally close) the sarcoplasmic reticulum calcium release channel. In the present study, we approached this question using novel, semi-synthetic C10–Oeq ester derivatives of ryanodine and dehydroryanodine as molecular probes of the ryanodine binding sites on the calcium release channel.Binding affinities of these C10–Oeq ester derivatives of ryanodine and dehydroryanodine with acidic, basic and neutral side chains (Kd values> 53.9 nM, Kd values 0.3–0.7 nM and Kd values 1.3–20.4 nM, compared with 2.3 and 2.8 nM for ryanodine and dehydroryanodine, respectively) were evaluated for their ability to modulate, the patency of the sarcoplasmic reticulum calcium release channel. With the exception of only two derivatives tested to date, all the semi-synthetic C10–Oeq esters selectivelyactivate the Ca2+ release channel. That is, they produce no functional closure of the sarcoplasmic reticulum calcium release channels at the highest concentration, that could be tested. Half-maximal concentrations for activation (EC50act , values) ranged from 0.87–4.2, M, compared with an EC50act of 1.3 M for ryanodine.  相似文献   

13.
Summary The corpora pedunculata of the wood ant (Formica lugubris Zett.) consist of two sharply defined layers: The perikaryon layer and the subjacent neuropil. Synaptic endings are found exclusively in the neuropil. The synapses consist of a central, presynaptic end knob of 1.2–2.5 diameter and a relatively large number of surrounding postsynaptic processes of 0.3–1.1 diameter. These junctions are analogous to axodendritic synapses of the vertebrates. The presynaptic process contains mitochondria and a multitude of light vesicles (300–600 Å diameter). Larger vesicles 700–1000 Å with a dark center are seen more rarely. The synaptic cleft has a diameter of approximately 130 Å and varies somewhat with different fixation methods. With glutaraldehyde-osmium fixation, this relatively wide gap is maintained only in circumscribed areas of the junction, while in adjacent areas it tends to contract and an external compound membrane is formed. The postsynaptic region is characterized by the presence of a subsynaptic network which is revealed only by suitable fixation methods. This and the persistent synaptic cleft are the main structural differentiations found in junctional areas thus far.Cholinesterase is located with the aid of thiolacetic acid (Barnett) and Eserin control studies. The enzyme is found in the cytoplasm immediately adjacent to the pre- and postsynaptic membranes. In two thirds of our observations the reaction is far more concentrated postsynaptically than presynaptically. In one third, the distribution is reversed. Only an insignificant amount of cholinesterase is present within the synaptic cleft. There is no evidence that cholinesterase is evenly distributed along the entire junctional region. In contrast, only small circumscribed areas show a positive reaction and these coincide with the extent of the synaptic cleft and the subsynaptic network. Such areas seem to correspond to the active junctional areas.

Unterstützt durch einen Kredit (Nr.2575) des Schweizer Nationalfonds für Wissenschaftliche Forschung.

Herrn Prof. Dr. W. Bargmann zum 60. Geburtstag gewidmet.  相似文献   

14.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

15.
Summary Potassium and sodium cation permeabilities of skeletal sarcoplasmic reticulum vesicles were characterized by means of3H-choline,22Na+ and86Rb+ isotope efflux and membrane potential measurements. Membrane potentials were generated by diluting K gluconate filled sarcoplasmic reticulum vesicles and liposomes into Tris or Na gluconate media, in the presence or absence of valinomycin, and were measured using the voltage-sensitive membrane probe 3,3-dipentyl-2,2-oxacarbocyanine. About 2/3 of the sarcoplasmic reticulum vesicles, designated Type I, were found to be permeable to Rb+, K+ and Na+. The remaining 1/3, Type II vesicles, were essentially impermeable to these ions. The two types of vesicles were impermeable to larger cations such as choline or Tris. Both were present in about the same ratio in fractions derived from different parts of the reticulum structure. Studies with cations of different size and shape suggested that in Type I vesicles permeation was restricted to molecules fitting through a pore with a cross-section of 4–5 Å by 6 Å or more. When vesicles were sonicated, vesicles permeable to K+ decreased more than those impermeable to K+. These data suggest the existence of K+, Na+ permeable channels which are probably randomly dispersed in the intact reticulum structure at an estimated density of 50 pores/m2. The function of the channel may be to allow rapid K+ movement to counter Ca2+ fluxes during muscle contraction and relaxation.  相似文献   

16.
Lower concentrations of CuSO4 (25–75 M) in the MS medium supplemented with 0.1 mg l–1 IAA+5.0 mg l–1 Kn+500 mg l–1 CH+10 mg l–1 Cyst hyd enhanced the growth of regenerants of Dioscorea bulbifera L. CuSO4 (75 M) induced an appreciable diosgenin yield in the regenerants compared to those obtained on media without Cu. The presence of Cu thus seems to stimulate diosgenin production. The regenerants also differentiated bulbils on lower concentrations of Cu. At CuSO4 (100 M), however, cultures showed poor growth as well as a low diosgenin yield. Increased proline and protein contents were recorded in cultures grown on Cu-enriched media.  相似文献   

17.
J. Sybenga 《Genetica》1965,36(1):243-252
Whilst reliable estimates of chiasma frequencies can usually not be obtained, the probability (b) of a chromosome arm to be bound by at least one chiasma can often be determined. In the absence of interference this probability equals (1–e –2), where 2 is the average chiasma frequency of the chromosome arm and the average crossover frequency or map length. In the presence of interference is shown to retain its genetic meaning as an additive metric that may describe the chromosome arm or other distinctive chromosome segment in terms of genetic recombination. It is a form of potential map length, comparable to, but numerically different from the regular map length. It is termed provisionally crossing-over potential.A chromosome with armsm andn with crossing-over potentials and will form ring bivalents with a frequency (1–e –2).(1–e –2); open bivalents with a frequency (1–e –2).e –2+(1–e –2).e –2; univalent pairs with a frequencye –2.e –2. Estimates of these frequencies yield equations from which and may be solved. In rye (Secale cereale) their ratio (q) is approximately two and differs from the mitotic arm length ratio of 1.4, indicating localization of chiasmata in the long arms.Graphs are given to show how, with constantq, the relation between the probabilitiesb m andb n of the two arms being bound changes with changing averageb.Data are presented on chiasma frequencies in M I, and compared with the frequencies expected in the absence of interference to give an impression of the degree of interference. Apparent fusion of chiasmata simulates interference.  相似文献   

18.
Summary Cryostat sections from rat gracilis muscles were incubated with different biotinylated lectins: Con A (Concanavilin A), WGA (Wheat germ agglutinin), SBA (soybean agglutinin), GS I and GS II (Griffonia simplicifolia agglutinin), LCA (Lens culinaris agglutinin), PNA (peanut agglutinin) and PSA (Pisum sativum agglutinin). The sections were subsequently treated with alkaline phosphatase conjugated avidin. The lectin binding sites were visualized after incubation in substrate media containing: (1) 5-bromo-4-chloro indoxyl phosphate and Nitro Blue tetrazolium or copper sulphate; (2) naphthol AS-MX phosphate or naphthol AS-BI phosphate and various types of diazonium salts; (3) -naphthylphosphate and Fast Blue BB; (4) -glycerophosphate according to the method of Gomori. The results obtained with the alkaline phosphatase methods were compared with those seen with a streptavidin-horseradish peroxidase procedure. Several chromogen protocols for visualizing alkaline phosphatase activity showed differences in the ability to detect lectin binding sites. A sarcoplasmic reaction was evident for Con A, GS II, WGA, LCA, and PSA after incubation in the indoxyl phosphate medium. Sarcoplasmic reaction for GS II was also noticed after incubation with naphthol AS-MX Fast Blue BB and -glycerophosphate. The latter substrate also gave rise to a sarcoplasmic Con A reaction. With the indoxylphosphate tetrazolium salt method some muscle fibres showed a very strong intracellular reaction after incubation with Con A and GS II while the staining intensity was weak in other fibres. The same muscle fibres were stained with PAS. No sarcoplasmic reactions were observed with either naphthol phosphate media or with the diaminobenzidine peroxidase methods. Further, the staining of the muscle fibre periphery, connective tissue, and capillaries was intensified using the indoxyl method. The indoxylphosphate-tetrazolium salt method seems to be suitable for future investigations of lectin binding sites in muscle sections.  相似文献   

19.
Summary The serotonergic innervation of the genital chamber of the female cricket, Acheta domestica, has been investigated applying anti-serotonin (5-HT) immunocyto-chemistry at both light- and electron-microscopic levels as well as using conventional electron microscopy. Whole mount and pre-embedding chopper techniques of immuno-cytochemistry reveal a dense 5-HT-immunoreactive network of varicose fibers in the musculature of the genital chamber. All of these immunoreactive fibers originate from the efferent serotonergic neuron projecting through the nerve 8v to the genital chamber (Hustert and Topel 1986; Elekes et al. 1987). At the electron-microscopic level, 5-HT-immunoreactive nerve terminals, which contain small (50–60 nm) and large ( 100 nm) agranular vesicles as well as granular vesicles (100nm), contact the muscle fibers or the sarcoplasmic processes without establishing specialized neuromuscular connections. In addition to the 5-HT-immunoreactive axons, two types of immunonegative axons can also be found in the musculature. By use of conventional electron microscopy, three ultrastructurally distinct types of axon processes can be observed, one of which resembles 5-HT-immunoreactive axons. While the majority of the varicosities do not synapse on the muscle fibers, terminals containing small (50–60 nm) agranular vesicles occasionally form specialized neuromuscular contacts. It is suggested that the 5-HTergic innervation plays a non-synaptic modulatory role in the regulation circular musculature in the genital chamber of the cricket, while the musculature as a whole may be influenced by both synaptic and modulatory mechanisms.Fellow of the Alexander von Humboldt-Stiftung  相似文献   

20.
Summary Sarcoplasmic reticulum has been isolated from the white muscle of 15 species of teleost fish adapted to diverse thermal environments. Evidence has been obtained that the Ca2+-dependent ATPase of fish sarcoplasmic reticulum has undergone evolutionary modification for function at different temperatures. Compared with tropical fish, cold adapted species have higher rates of Ca2+ transport and Ca2+-ATPase activities at low temperatures. Most species have linear Arrhenius plots over the temperature range 0–30°C. Activation enthalpies (H ) of the ATPase ranged from 53–190 kJ mol–1 and were positively correlated with environment temperature. Activation entropy (S ) varied from negative values in cold adapted species to positive values in tropical fish.In contrast to the Ca2+-ATPase, the basal ATPase of fish sarcoplasmic reticulum showed no relationship between either ATPase activity or thermodynamic activation parameters and environmental temperature.Only the Ca2+-dependent ATPase is coupled to Ca2+ transport. The percentage of total ATPase activity which is Ca2+ activated is higher at low temperatures in cold than in warm adapted species. For example, ratios of Ca2+-dependent/total ATPase at 2°C varied from 80–98% in Arctic, Antarctic and North Sea species to only 2–50% in various tropical fish. Above 20°C, similar ratios in the range 80–98% were obtained for all species. The nature of the basal ATPase and mechanisms of temperature adaptation of fish sarcoplasmic reticulum are discussed.Abbreviations ET environmental temperature - EGTA ethylene glycol-bis (-aminolethyl ether)-N, N-tetraacetic acid - HEPES N-2-hydroxylpiperazine-N-2-ethanesulfonic acid - SR sarcoplasmic reticulum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号