首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1994,127(6):1671-1681
Two microtubule-stimulated ATPases, cytoplasmic dynein, and kinesin, are believed to be responsible for the intracellular movement of membrane-bound organelles in opposite directions along microtubules. An unresolved component of this model is the mechanism by which cells regulate these two motors to direct various membrane-bound organelles to their proper locations. To determine if phosphorylation may play a role in the regulation of cytoplasmic dynein, the in vivo phosphorylation state of cytoplasmic dynein from two cellular pools was examined. The entire cellular pool of brain cytoplasmic dynein was metabolically labeled by the infusion of [32P]orthophosphate into the cerebrospinal fluid of rat brain ventricles. To characterize the phosphorylation of dynein associated with anterograde membrane-bound organelles, the optic nerve fast axonal transport system was used. Using a monoclonal antibody to the 74-kD polypeptide of brain cytoplasmic dynein, the native dynein complex was immunoprecipitated from the radiolabled tissue extracts. Autoradiographs of one and two dimensional gels showed labeling of nearly all of the polypeptide isoforms of cytoplasmic dynein from rat brain. These polypeptides are phosphorylated on serine residues. Comparison of the amount of 32P incorporated into the dynein polypeptides revealed differences in the phosphorylation of dynein polypeptides from the anterograde and the cellular pools. Most interestingly, the 530-kD heavy chain of dynein appears to be phosphorylated to a lesser extent in the anterograde pool than in the cellular pool. Since the anterograde pool contains inactive dynein, while the entire cellular pool contains both inactive and active dynein, these results are consistent with the hypothesis that phosphorylation regulates the functional activity of cytoplasmic dynein.  相似文献   

2.
Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence.  相似文献   

3.
Lysosomes labeled by uptake of extracellular horseradish peroxidase display remarkable changes in shape and cellular distribution when cytoplasmic pH is experimentally altered. Normally, lysosomes in macrophages and fibroblasts cluster around the cell center. However, when the cytoplasmic pH is lowered to approximately pH 6.5 by applying acetate or by various other means, lysosomes promptly move outward and accumulate in tight clusters at the very edge of the cell, particularly in regions that are actively ruffling before acidification but become quiescent. This movement follows the distribution of microtubules in these cells, and does not occur if microtubules are depolymerized with nocodazole before acidification. Subsequent removal of acetate or the other stimuli to acidification results in prompt resumption of ruffling activity and return of lysosomes into a tight cluster at the cell center. This is correlated with a rebound alkalinization of the cytoplasm. Correspondingly, direct application of weak bases also causes hyperruffling and unusually complete withdrawal of lysosomes to the cell center. Thus, lysosomes appear to be acted upon by microtubule-based motors of both the anterograde (kinesin) type as well as the retrograde (dynein) type, or else they possess bidirectional motors that are reversed by changes in cytoplasmic pH. During the outward movements induced by acidification, lysosomes also appear to be smaller and more predominantly vesicular than normal, while during inward movements they appear to be more confluent and elongated than normal, often becoming even more tubular than in phorbol-treated macrophages (Phaire-Washington, L., S. C. Silverstein, and E. Wang. 1980. J. Cell Biol. 86:641-655). These size and shape changes suggest that cytoplasmic pH also affects the fusion/fission properties of lysosomes. Combined with pH effects on their movement, the net result during recovery from acidification is a stretching of lysosomes into tubular forms along microtubules.  相似文献   

4.
It is four years since the discovery that a cytoplasmic form of dynein was able to produce force along microtubules in the opposite direction to kinesin. Recent evidence has supported a role for this cytoplasmic dynein in retrograde organelle transport, as well as other forms of intracellular motility.  相似文献   

5.
BACKGROUND: Kinesin and cytoplasmic dynein are force-generating molecules that move in opposite directions along microtubules. They have been implicated in the directed transport of a wide variety of cellular organelles, but it is unclear whether they have overlapping or largely independent functions. RESULTS: We analyzed organelle transport in kinesin and dynein single mutants, and in a kinesin and dynein double mutant of Neurospora crassa. Remarkably, the simultaneous mutation of kinesin and dynein was not lethal and resulted in an additive phenotype that combined the features of the single mutants. The mutation of kinesin and dynein had opposite effects on the apical and retrograde transport, respectively, of vesicular organelles. In the kinesin mutant, apical movement of submicroscopic, secretory vesicles to the Spitzenk?rper - an organelle in the hyphal apex - was defective, whereas the predominantly retrograde movement of microscopic organelles was only slightly reduced. In contrast, the dynein mutant still had a prominent Spitzenk?rper, demonstrating that apical transport was intact, but retrograde transport was essentially inhibited completely. A major defect in vacuole formation and dynamics was also evident. In agreement with the observations on apical transport, protein secretion into the medium was markedly inhibited in the kinesin mutant but not in the dynein mutant. CONCLUSIONS: Transport of secretory vesicles is necessary but not sufficient for normal apical extension. A component of retrograde transport, presumably precursors of the vacuole system, is also essential. Our findings provide new information on the role microtubule motors play in cell morphogenesis and suggest that kinesin and cytoplasmic dynein have largely independent functions within separate pathways.  相似文献   

6.
Autophagy is an essential cellular degradation pathway in neurons; defects in autophagy are sufficient to induce neurodegeneration. In this paper, we investigate autophagosome dynamics in primary dorsal root ganglion neurons. Autophagosome biogenesis occurs distally in a constitutive process at the neurite tip. Autophagosomes initially move bidirectionally and then switch to unidirectional, processive movement toward the cell soma driven by dynein. Autophagosomes copurify with anterograde and retrograde motors, suggesting that the activity of bound kinesin motors is effectively down-regulated to yield robust retrograde motility driven by dynein. Both organelle and soluble cargoes are internalized into autophagosomes, including mitochondria and ubiquitin. As autophagosomes move distally to proximally, they undergo maturation and become increasingly acidified, consistent with the formation of an autolysosomal compartment that may more efficiently degrade cargo. This maturation is accompanied by a switch to bidirectional motility characteristic of lysosomes. Together, autophagosome biogenesis and maturation in primary neurons is a constitutive process that is spatially and temporally regulated along the axon.  相似文献   

7.
A microtubule associated protein from brain tissue (MAP 1C), has been found to possess many properties in common with ciliary and flagellar dyneins (Paschal et al.:J. Cell Biol. 105:1273-1282, 1987). However, this protein, now designated as cytoplasmic dynein, exhibited several properties which distinguish it from axonemal forms of the enzyme. We have investigated these characteristics further in a study of cytoplasmic dyneins from non-neuronal tissues. Rat liver and testis in particular were found to contain high levels of cytoplasmic dynein. The yield of dynein from testis was over 70 micrograms/g of tissue, making this the best source of cytoplasmic dynein of all tissues so far examined. The characterization of dynein from these sources has confirmed and extended our previous observations concerning the unique properties of cytoplasmic dynein. Activation of liver and testis dynein occurred at low (less than 1 mg/ml) tubulin concentration. Polypeptides identified as subunits of brain cytoplasmic dynein (74, 59, 57, 55, and 53 kDa) were present in liver and testis preparations. In addition, polypeptides at 150 and 45 kDa were found to copurify with the non-neuronal dyneins. The liver and testis enzyme hydrolyzed pyrimidine nucleotides at rates up to 12.5 times faster than ATP, though the relative affinity of cytoplasmic dynein for CTP was much lower (Km = 1.0 mM) than that for ATP. The properties of the testis enzyme were consistent with its identification as a cytoplasmic dynein rather than a sperm axonemal precursor. These data indicate that cytoplasmic dyneins may be widespread in distribution and that they share certain biochemical properties unique from those of axonemal dyneins. These characteristics are consistent with the proposal that cytoplasmic dynein plays a universal role in retrograde organelle motility.  相似文献   

8.
Detection of intracellular phosphatidylserine in living cells   总被引:2,自引:0,他引:2  
To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.  相似文献   

9.
To address questions about mechanisms of filament-based organelle transport, a system was developed to image and track mitochondria in an intact Drosophila nervous system. Mutant analyses suggest that the primary motors for mitochondrial movement in larval motor axons are kinesin-1 (anterograde) and cytoplasmic dynein (retrograde), and interestingly that kinesin-1 is critical for retrograde transport by dynein. During transport, there was little evidence that force production by the two opposing motors was competitive, suggesting a mechanism for alternate coordination. Tests of the possible coordination factor P150(Glued) suggested that it indeed influenced both motors on axonal mitochondria, but there was no evidence that its function was critical for the motor coordination mechanism. Observation of organelle-filled axonal swellings ("organelle jams" or "clogs") caused by kinesin and dynein mutations showed that mitochondria could move vigorously within and pass through them, indicating that they were not the simple steric transport blockades suggested previously. We speculate that axonal swellings may instead reflect sites of autophagocytosis of senescent mitochondria that are stranded in axons by retrograde transport failure; a protective process aimed at suppressing cell death signals and neurodegeneration.  相似文献   

10.
Membrane-bound organelles move bidirectionally along microtubules in the freshwater ameba, Reticulomyxa. We have examined the nucleotide requirements for transport in a lysed cell model and compared them with kinesin and dynein-driven motility in other systems. Both anterograde and retrograde transport in Reticulomyxa show features characteristic of dynein but not of kinesin-powered movements: organelle transport is reactivated only by ATP and no other nucleoside triphosphates; the Km and Vmax of the ATP-driven movements are similar to values obtained for dynein rather than kinesin-driven movement; and of 15 ATP analogues tested for their ability to promote organelle transport, only 4 of them did. This narrow specificity resembles that of dynein-mediated in vitro transport and is dissimilar to the broad specificity of the kinesin motor (Shimizu, T., K. Furusawa, S. Ohashi, Y. Y. Toyoshima, M. Okuno, F. Malik, and R. D. Vale. 1991. J. Cell Biol. 112: 1189-1197). Remarkably, anterograde and retrograde organelle transport cannot be distinguished at all with respect to nucleotide specificity, kinetics of movement, and the ability to use the ATP analogues. Since the "kinetic fingerprints" of the motors driving transport in opposite directions are indistinguishable, the same type of motor(s) may be involved in the two directions of movement.  相似文献   

11.
Calcium store depletion activates multiple ion channels, including calcium-selective and nonselective channels. Endothelial cells express TRPC1 and TRPC4 proteins that contribute to a calcium-selective store-operated current, I(SOC). Whereas thapsigargin activates the I(SOC) in pulmonary artery endothelial cells (PAECs), it does not activate I(SOC) in pulmonary microvascular endothelial cells (PMVECs), despite inducing a significant rise in global cytosolic calcium. Endoplasmic reticulum exhibits retrograde distribution in PMVECs when compared with PAECs. We therefore sought to determine whether endoplasmic reticulum-to-plasma membrane coupling represents an important determinant of I(SOC) activation in PAECs and PMVECs. Endoplasmic reticulum organization is controlled by microtubules, because nocodozole induced microtubule disassembly and caused retrograde endoplasmic reticulum collapse in PMVECs. In PMVECs, rolipram treatment produced anterograde endoplasmic reticulum distribution and revealed a thapsigargin-activated I(SOC) that was abolished by nocodozole and taxol. Microtubule motors control organelle distribution along microtubule tracks, with the dynein motor causing retrograde movement and the kinesin motor causing anterograde movement. Dynamitin expression reduces dynein motor function inducing anterograde endoplasmic reticulum transport, which allows for direct activation of I(SOC) by thapsigargin in PMVECs. In contrast, expression of dominant negative kinesin light chain reduces kinesin motor function and induces retrograde endoplasmic reticulum transport; dominant negative kinesin light chain expression prevented the direct activation of I(SOC) by thapsigargin in PAECs. I(SOC) activation is an important step leading to disruption of cell-cell adhesion and increased macromolecular permeability. Thus, microtubule motor function plays an essential role in activating cytosolic calcium transitions through the membrane I(SOC) channel leading to endothelial barrier disruption.  相似文献   

12.
Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles.  相似文献   

13.
14.
Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1–Ndel1–Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine‐tuning the activity of the retrograde motor cytoplasmic dynein.  相似文献   

15.
Autophagy is a bulk degradation system within cells through which cytoplasmic components are degraded within lysosomes. Primary roles of autophagy are starvation adaptation and intracellular protein quality control. In contrast to the ubiquitin-proteasome system, autophagy can also degrade organelles. Here we examined a possible role of autophagy in organelle degradation during lens and erythroid differentiation. We observed that autophagy occurs in embryonic lens cells. However, organelle degradation in lens and erythroid cells occurred normally in autophagy-deficient Atg5(-/-) mice. Our data suggest that degradation system(s) other than autophagy play major roles in organelle degradation during these processes.  相似文献   

16.
A high molecular weight microtubule binding protein has been isolated from homogenates of Dictyostelium. Because of its sedimentation velocity (20s), ATP-sensitive binding to microtubules, UV-vanadate-ATP mediated fragmentation, prominent CTPase activity, and its ability to produce limited microtubule movement in vitro, we consider this protein to be a form of cytoplasmic dynein. A polyclonal antibody monospecific to this protein was produced, and dynein's intracellular distribution in ameboid cells was examined by immunofluorescence. The antibody labels a punctate cytoplasmic pattern, localizes to a spherical region adjacent to the nucleus, and also appears to label the nuclei. The punctate staining pattern is consistent with cytoplasmic dynein's proposed function in organelle transport. The spherical juxtanuclear object stained is coincident with this cell's microtubule organizing center, an obvious termination point for minus-end directed microtubule motors. By immunofluorescence, there does not appear to be a substantial amount of dynein in the intranuclear mitotic spindles of Dictyostelium. These data provide evidence for localization of cytoplasmic dynein in cells, and suggest that Dictyostelium will be a useful system in which to study the molecular biology of microtubule-associated motor enzymes.  相似文献   

17.
Cytoplasmic dynein is a vesicle protein.   总被引:5,自引:0,他引:5  
Microtubule-based organelle transport is thought to be mediated by the force-generating proteins cytoplasmic dynein and kinesin. These motor proteins have been characterized based on their ability to associate with and translocate microtubules. We show here that cytoplasmic dynein is also present as a peripheral membrane protein of purified synaptic vesicles. The vesicle-associated cytoplasmic dynein is identified by its photo-induced cleavage in the presence of ATP and vanadate. Purified, soluble cytoplasmic dynein is competent to bind to vesicle membranes stripped of endogenous peripheral membrane proteins by alkaline pH. Dynein binding to membranes is saturable at a concentration of 1.00 +/- 0.15 pmol/micrograms vesicle protein and has a dissociation constant of 22.3 +/- 2.4 nM. The association of cytoplasmic dynein with the membrane cannot be reversed by incubation with ATP. Furthermore, following binding to membranes, dynein retains its ability to bind ATP and to be photo-cleaved in the presence of vanadate. The presence of cytoplasmic dynein on synaptic vesicles and its ability to bind to extracted membranes supports current models of microtubule-based organelle translocation.  相似文献   

18.
The metabolic and signaling functions of lysosomes depend on their intracellular positioning and trafficking, but the underlying mechanisms are little understood. Here, we have discovered a novel septin GTPase–based mechanism for retrograde lysosome transport. We found that septin 9 (SEPT9) associates with lysosomes, promoting the perinuclear localization of lysosomes in a Rab7-independent manner. SEPT9 targeting to mitochondria and peroxisomes is sufficient to recruit dynein and cause perinuclear clustering. We show that SEPT9 interacts with both dynein and dynactin through its GTPase domain and N-terminal extension, respectively. Strikingly, SEPT9 associates preferentially with the dynein intermediate chain (DIC) in its GDP-bound state, which favors dimerization and assembly into septin multimers. In response to oxidative cell stress induced by arsenite, SEPT9 localization to lysosomes is enhanced, promoting the perinuclear clustering of lysosomes. We posit that septins function as GDP-activated scaffolds for the cooperative assembly of dynein–dynactin, providing an alternative mechanism of retrograde lysosome transport at steady state and during cellular adaptation to stress.  相似文献   

19.
Dynactin is a multisubunit complex that plays an accessory role in cytoplasmic dynein function. Overexpression in mammalian cells of one dynactin subunit, dynamitin, disrupts the complex, resulting in dissociation of cytoplasmic dynein from prometaphase kinetochores, with consequent perturbation of mitosis (Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. J. Cell Biol. 132:617–634). Based on these results, dynactin was proposed to play a role in linking cytoplasmic dynein to kinetochores and, potentially, to membrane organelles. The current study reports on the dynamitin interphase phenotype. In dynamitin-overexpressing cells, early endosomes (labeled with antitransferrin receptor), as well as late endosomes and lysosomes (labeled with anti–lysosome-associated membrane protein-1 [LAMP-1]), were redistributed to the cell periphery. This redistribution was disrupted by nocodazole, implicating an underlying plus end–directed microtubule motor activity. The Golgi stack, monitored using sialyltransferase, galactosyltransferase, and N-acetylglucosaminyltransferase I, was dramatically disrupted into scattered structures that colocalized with components of the intermediate compartment (ERGIC-53 and ERD-2). The disrupted Golgi elements were revealed by EM to represent short stacks similar to those formed by microtubule-depolymerizing agents. Golgi-to-ER traffic of stack markers induced by brefeldin A was not inhibited by dynamitin overexpression. Time-lapse observations of dynamitin-overexpressing cells recovering from brefeldin A treatment revealed that the scattered Golgi elements do not undergo microtubule-based transport as seen in control cells, but rather, remain stationary at or near their ER exit sites. These results indicate that dynactin is specifically required for ongoing centripetal movement of endocytic organelles and components of the intermediate compartment. Results similar to those of dynamitin overexpression were obtained by microinjection with antidynein intermediate chain antibody, consistent with a role for dynactin in mediating interactions of cytoplasmic dynein with specific membrane organelles. These results suggest that dynamitin plays a pivotal role in regulating organelle movement at the level of motor–cargo binding.  相似文献   

20.
Cytoplasmic dynein is a minus end-directed microtubule motor that performs distinct functions in interphase and mitosis. In interphase, dynein transports organelles along microtubules, whereas in metaphase this motor has been implicated in mitotic spindle formation and orientation as well as chromosome segregation. The manner in which dynein activity is regulated during the cell cycle, however, has not been resolved. In this study, we have examined the mechanism by which organelle transport is controlled by the cell cycle in extracts of Xenopus laevis eggs. Here, we show that photocleavage of the dynein heavy chain dramatically inhibits minus end-directed organelle transport and that purified dynein restores this motility, indicating that dynein is the predominant minus end-directed membrane motor in Xenopus egg extracts. By measuring the amount of dynein associated with isolated membranes, we find that cytoplasmic dynein and its activator dynactin detach from the membrane surface in metaphase extracts. The sevenfold decrease in membrane-associated dynein correlated well with the eightfold reduction in minus end-directed membrane transport observed in metaphase versus interphase extracts. Although dynein heavy or intermediate chain phosphorylation did not change in a cell cycle- dependent manner, the dynein light intermediate chain incorporated approximately 12-fold more radiolabeled phosphate in metaphase than in interphase extracts. These studies suggest that cell cycle-dependent phosphorylation of cytoplasmic dynein may regulate organelle transport by modulating the association of this motor with membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号