首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expanded bed adsorption (EBA) chromatography was investigated for clarification and capture of high‐concentration refold pools of Escherichia coli‐based therapeutics. Refolding of denatured inclusion bodies (IBs) at high protein concentration significantly improved product throughput; however, direct filtration of the refold materials became very challenging because of high content of protein precipitates formed during refolding. In addition, irreversible protein precipitation caused by high local concentration was encountered in packed bed capture during cation exchange chromatography elution, which limited column loading capacity and capture step productivity. In this study, the two issues are addressed in one unit operation by using EBA. Specifically, EBA can handle feed streams with significant amount of particles and precipitates, which eliminated the need for refold pool clarification through filtration. The relatively broad EBA elution profile is particularly suitable for proteins of low solubility and can effectively avoid product loss previously associated with on‐column precipitation during capture. As the EBA resin (RHOBUST® FastLine SP IEX) used here has unique properties, it can be operated at high linear velocity (800–1,600 cm/h), while achieving a selectivity and impurity clearance largely comparable to the packed bed resin of the same ligand chemistry (SP Sepharose FF). Furthermore, the filtration of the EBA elution pool is easily manageable within facility capability. Overall, this study demonstrates that the EBA process helps debottleneck the purification of high‐turbidity refold pools by removing precipitates and concurrently capturing the product, which can be applied to other E. coli‐based therapeutics that also requires refolding of IBs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:113–123, 2014  相似文献   

2.
Prepacked chromatography columns and cassette filtration units offer many advantages in bioprocessing. These include reduced labor costs and processing times, ease of storage, and enhanced process flexibility. Rectangular formats are particularly attractive as they can be easily stacked and multiplexed together for continuous processing. Cylindrical chromatography beds have dominated bioprocessing even though their bed support and pressure-flow performance vary with bed dimensions. This work presents the performance of novel, rhombohedral chromatography devices with internally supported beds. They are compatible with existing chromatography workstations and can be packed with any standard commercial resin. The devices offer pressure-flow characteristics independent of container-volume, simple multiplexing, and separation performance comparable to cylindrical columns. Their bi-planar, internal bed support allows mechanically less-rigid resins to be used at up to four times higher maximal linear velocities, and productivities approaching 200 g/L/h for affinity resins, compared to the 20 g/L/h typical of many column-based devices. Three 5 L devices should allow processing of up to 3 kg of monoclonal antibody per hour.  相似文献   

3.
Ligand density is an important factor in determining the binding capacity and separation efficiency for affinity chromatography. A molecular analysis method based on the three-dimensional structure of protein and protein-ligand interactions was introduced to optimize the dye-ligand density for target protein separation. Expanded-bed adsorption (EBA) of L-lactate dehydrogenase (LDH) from rabbit muscle crude extract with Procion Red HE-3B as the dye-ligand was used as the model. After the analysis of LDH three-dimensional molecular structure and dye-protein interaction modes, the rational dye-ligand distance was predicted at about 20 A for efficiently binding LDH. A series of dye-ligand adsorbents with different ligand densities were prepared, and the isotherm adsorption equilibria of LDH were measured. High adsorption capacity of LDH was achieved at about 1600 U/mL adsorbent. Packed-bed chromatography was performed, and the elution effects were investigated. Finally, an EBA process was achieved to capture the LDH directly from rabbit muscle crude extract. The method established in the present work could be expanded to guide the screening of ligand density for other affinity chromatographic processes.  相似文献   

4.
Expanded bed adsorption (EBA) was examined as the initial capture/purification step in the purification of monoclonal antibodies from Chinese hamster ovary (CHO) cultures. Two process alternatives each using EBA were compared to a conventional Protein A process without EBA. One alternative used Protein A affinity EBA followed by packed-bed cation and anion-exchange steps. The other alternative used cation-exchange EBA as the capture step followed by packed-bed Protein A and anion-exchange steps. The process using Protein A EBA produced comparable purity (host cell protein, DNA, Protein A, antibody aggregate) to the conventional process. However, the Protein A EBA column showed a significant decrease in dynamic capacity with a limited number of cycles. The process using cation EBA achieved comparable levels of host cell proteins (HCP) and DNA but not antibody aggregate or leached Protein A compared to the conventional process.  相似文献   

5.
Topical treatments of chronic infections with monoclonal antibodies will require large quantities of antibodies. Because plants have been proven capable of producing multisubunit antibodies and provide for large-scale production, they are likely hosts to enable such applications. Recovery costs must also be low because of the relatively high dosages required. Hence, we have examined the purification of a human secretory antibody from corn endosperm extracts by processing alternatives of packed bed and expanded bed adsorption (EBA). Because of the limited availability of the transgenic corn host, the system was modeled by adding the antibody to extracts of nontransgenic corn endosperm. Complete clarification of a crude extract followed by packed bed adsorption provided antibody product in 75% yield with 2.3-fold purification (with antibody accounting for 24% of total protein). The small size of the packed bed, cation-exchange resin SP-Sepharose FF and the absence of a dense core (present in EBA resins) allowed for more favorable breakthrough performance compared to EBA resins evaluated. Four adsorbents specifically designed for EBA operation, with different physical properties (size and density), chemical properties (ligand), and base matrices were tested: SP-steel core resin (UpFront Chromatography), Streamline SP and Streamline DEAE (Amersham Biosciences), and CM Hyper-Z (BioSepra/Ciphergen Biosystems). Of these, the small hyperdiffuse-style resin from BioSepra had the most favorable adsorption characteristics. However, it could not be utilized with crude feeds due to severe interactions with corn endosperm solids that led to bed collapse. UpFront SP-steel core resin, because of its relatively smaller size and hence lower internal mass transfer resistance, was superior to the Streamline resins and operated successfully with application of a crude corn extract filtered to remove all solids of >44 microm. However, the EBA performance with this adsorbent provided a yield of only 61% and purification factor of 2.1 (with antibody being 22% of total protein). Process simulation showed that capital costs were roughly equal between packed and expanded bed processes, but the EBA design required four times greater operating expenditures. The use of corn endosperm as the starting tissue proved advantageous as the amount of contaminating protein was reduced approximately 80 times compared to corn germ and approximately 600 times compared to canola. Finally, three different inlet designs (mesh, glass beads, and mechanical mixing) were evaluated on the basis of their ability to produce efficient flow distribution as measured by residence time distribution analysis. All three provided adequate distribution (axial mixing was not as limiting as mass transfer to the adsorption process), while resins with different physical properties did not influence flow distribution efficiency values (i.e., Peclet number and HETP) when operated with the same inlet design.  相似文献   

6.
For improved interfacing of the Pichia pastoris fed-batch cultivation process with expanded bed adsorption (EBA) technique, a modified cultivation technique was developed. The modification included the reduction of the medium salt concentration, which was then kept constant by regulating the medium conductivity at low value (about 8 mS/cm) by salt feeding. Before loading, the low conductivity culture broth was diluted only to reduce viscosity, caused by high cell density. The concept was applied to a one-step recovery and purification procedure for a fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A fused to lipase B from Candida antarctica (CALB). The modified cultivation technique resulted in lower cell death and consequently lower concentration of proteases and other contaminating proteins in the culture broth. Flow cytometry analysis showed 1% dead (propidium-stained) cells compared to 3.5% in the reference process. During the whole process of cultivation and recovery, no proteolysis was detected and in the end of the cultivation, the product constituted 87% of the total supernatant protein. The lipase activity in the culture supernatant increased at an almost constant rate up to a value corresponding to 2.2 g/L of CBM-CALB. In the EBA process, no cell-adsorbent interaction was detected but the cell density had to be reduced by a two-times dilution to keep a proper bed expansion. At flow velocity of 400 cm/h, the breakthrough capacity was 12.4 g/L, the product yield 98%, the concentration factor 3.6 times, the purity about 90%, and the productivity 2.1 g/L x h.  相似文献   

7.
Insulin-like growth factors I and II have been isolated from Cohn fraction IV-1 of human plasma using gel permeation chromatography, ion exchange chromatography, reversed phase chromatography, isoelectric focusing (IEF) and high performance liquid chromatography(HPLC). IGF I of specific activity 89 U/g, as measured by the isolated rat adipocyte assay, and IGF II, of specific activity 78 U/g, were obtained in yields of 16 micrograms and 34 micrograms respectively per 100g of Cohn fraction. Although this process yields IGF I which is contaminated with IGF II (due to the relatively large amount of the latter present in the original plasma), the IGF II preparations appear to be relatively free from IGF I. This separation was mainly achieved with IEF since the two factors elute close together on HPLC. Nevertheless, HPLC is important for their subsequent purification. The process is thus especially suitable for the preparation of IGF II and appears to give better yields than those obtained by earlier methods which used acid-ethanol extraction, gel permeation chromatography and polyacrylamide gel electrophoresis.  相似文献   

8.
While expanded-bed adsorption (EBA) units have been used to recover proteins from whole cell cultures, the development of a more efficient, on-line process could streamline the traditional multistep process. This study implements a bench-scale on-line purification system in which whole cell cultures are loaded directly into a chromatography column to capture a monoclonal antibody (mAb) in a single step. The on-line purification system used here integrates a stirred-tank reactor (STR) and an EBA unit into a new hybrid (STR-EBA) system. To conduct this work, first, column and buffer conditions were optimized to capture immunoglobulin G from a hybridoma cell culture. A high cell removal (>95%) was achieved in part by removing the top flow distributor and mesh. Then, the 95% extent of removal was sustained for four successive cycles, each using PBS. With 20 mM phosphate buffer, however, the removal decreased from 95% to 75% stepwise. Next, the operational constraints of the EBA system were determined for the hybridoma cell culture, focusing on the effects of cell viability and density on cell removal. This study shows that the cell removal was not significantly different in the range of 80% to 0% viability. Cell density was also varied between 1 x 10(6) and 1 x 10(8) cells/mL. From 0.1 to 6 x 10(7) cells/mL, cell retention in the column was less than 5% and product recovery remained high, approximately 95%. After characterizing the working conditions of the EBA system, on-line purification was performed. With 1.1 L of culture containing 3 x 10(6) cells/mL and 100 mg/L of IgG, repeated-batch cultures were implemented. Half of the culture volume (550 mL) was directly sent to the EBA system every day, for 11 days, and the same amount of fresh medium was fed into the STR. During on-line purification, productivity was 58 mg of IgG/cycle (day) and purity was greater than 95%. Simple batch culture alone produced 17 mg of IgG/day. This result suggests that the on-line STR-EBA system can achieve higher and faster production compared with STR batch and off-line EBA purification. Overall, the STR-EBA system with repeated-batch mode was an effective and flexible system for bench-scale mAb production.  相似文献   

9.
A 1.5 μL ion exchange chromatography column to accommodate resins used for biopharmaceutical processing has been designed to produce breakthrough curves and to quantify dynamic and maximum protein binding capacities. Channels within a glass chip were fabricated using photolithography and isotropic etching. The design includes a 1 cm long microfluidic column in which compressible, polydispersed porous agarose beads (70 μm mean diameter) were packed using a keystone method where particles aggregate in a narrow channel. The depth of the column is such that two bead layers exist. The fabrication technique used forms Cartesian geometries as opposed to circular cross sections found in standard columns. The voidage was therefore higher than standard values when measured by 3D confocal microscopy. In conjunction with microscopic techniques, the column allows visualization of events within the bed such as adsorption profiles that would otherwise be difficult to observe. In this work, the binding of fluorescently labeled protein during isocratic loading was used to generate breakthrough from the microcolumn. Useful breakthrough curves were achieved using mobile phase velocities from 60 to 270 cm h?1. Calculated dynamic binding capacities were compared well with previously published data on conventional scale columns. The microfluidic chromatography column described here thus allows study of process scale chromatography behavior at scales 20,000 times smaller than in current practice. The work described in this article is representative of the proof of principle of a potentially powerful tool for the generation of microfluidic process bed data for the biopharmaceutical industry. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

10.
A refolding strategy was described for on-column refolding of recombinant human interferon-gamma (rhIFN-gamma) inclusion bodies by expanded bed adsorption (EBA) chromatography. After the denatured rhIFN-gamma protein bound onto the cation exchanger of STREAMLINE SP, the refolding process was performed in expanded bed by gradually decreasing the concentration of urea in the buffer and the refolded rhIFN-gamma protein was recovered by the elution in packed bed mode. It was demonstrated that the denatured rhIFN-gamma protein could be efficiently refolded by this method with high yield. Under appropriate experimental conditions, the protein yield and specific activity of rhIFN-gamma was up to 52.7% and 8.18 x 10(6) IU/mg, respectively.  相似文献   

11.
In the present study, the performances of conventional purification methods, packed bed adsorption (PBA), and expanded bed adsorption (EBA) for the purification of the nucleocapsid protein (NP) of Newcastle disease virus (NDV) from Escherichia coli homogenates were evaluated. The conventional methods for the recovery of NP proteins involved multiple steps, such as centrifugation, precipitation, dialysis, and sucrose gradient ultracentrifugation. For the PBA, clarified feedstock was used for column loading, while in EBA, unclarified feedstock was used. Streamline chelating immobilized with Ni2+ ion was used as an affinity ligand for both PBA and EBA. The final protein yield obtained in conventional and PBA methods was 1.26% and 5.56%, respectively. It was demonstrated that EBA achieved the highest final protein yield of 9.6% with a purification factor of 7. Additionally, the total processing time of the EBA process has been shortened by 8 times compared to that of the conventional method.  相似文献   

12.
Human epidermal growth factor is a polypeptide hormone having many diverse biological functions. This paper first presents the recovery results of human epidermal growth factor (hEGF) immediately from the fermentation broth of recombinant Escherichia coli by using an expanded bed system (a couple of STREAMLINE25 and ÄKTA explorer 100). The influences of operational conditions such as linear flow rate, gradient length of NaCl concentration, pH and sample concentration on the purification performances of hEGF in expanded and packed bed modes with STREAMLINE DEAE resin were systematically evaluated. After optimization, the practical recovery procedure in the expanded bed mode was carried out on a scaled-up system under the conditions of linear flow rates of 183 cm/h (upward) and 37 cm/h (downward), sample volume of 300 ml and column bed height of 13.8 cm which yielded a primary product of hEGF from the cell-free supernatant containing hEGF after centrifugation at 4000 rev/min for 15 min. As a result, the hEGF concentration in the product was higher than 20% (w/v), the concentration factor was greater than 4.3 and the total yield was higher than 80%, respectively. At the same time, the results of hEGF recovery by using expanded bed adsorption (EBA), packed bed chromatography (PBC) and salting out were compared. The results show that the procedure of hEGF recovery in expanded bed adsorption has some advantages over the other two procedures, because of its higher concentration factor, recovery yield, productivity, hEGF concentration in the primary product and shorter duration of purification run.  相似文献   

13.

Background

Little is known about connectivity within the default mode network (DMN) in heroin-dependent individuals (HDIs). In the current study, diffusion-tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) were combined to investigate both structural and functional connectivity within the DMN in HDIs.

Methods

Fourteen HDIs and 14 controls participated in the study. Structural (path length, tracts count, (fractional anisotropy) FA and (mean diffusivity) MD derived from DTI tractography)and functional (temporal correlation coefficient derived from rs-fMRI) DMN connectivity changes were examined in HDIs. Pearson correlation analysis was performed to compare the structural/functional indices and duration of heroin use/Iowa gambling task(IGT) performance in HDIs.

Results

HDIs had lower FA and higher MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN) to right parahippocampal gyrus (PHG), compared to the controls. HDIs also had decreased FA and track count in the tract connecting the PCC/PCUN and medial prefrontal cortex (MPFC), as well as decreased functional connectivity between the PCC/PCUN and bilateral PHG and MPFC, compared to controls. FA values for the tract connecting PCC/PCUN to the right PHG and connecting PCC/PCUN to the MPFC were negatively correlated to the duration of heroin use. The temporal correlation coefficients between the PCC/PCUN and the MPFC, and the FA values for the tract connecting the PCC/PCUN to the MPFC were positively correlated to IGT performance in HDIs.

Conclusions

Structural and functional connectivity within the DMN are both disturbed in HDIs. This disturbance progresses as duration of heroin use increases and is related to deficits in decision making in HDIs.  相似文献   

14.
Formate dehydrogenase (FDH) is an enzyme of industrial interest, which is recombinantly expressed as an intracellular protein in Escherichia coli. In order to establish an efficient and reliable purification protocol, an expanded bed adsorption (EBA) process was developed, starting from the crude bacterial homogenate. EBA process design was performed with the goal of finding operating conditions which, on one hand, allow efficient adsorption of the target protein and which, on the other hand, support the formation of a perfectly classified fluidised bed (expanded bed) in the crude feed solution. A pseudo-affinity ligand (Procion Red HE3B) was used to bind the FDH with high selectivity and reasonable capacity (maximum equilibrium capacity of 30 U/ml). Additionally, a simplified modelling approach, involving small packed beds for generation of process parameters, was employed for defining the operating conditions during sample application. In combination with extended elution studies, a process was set up, which could be scaled up to 7.5 l of adsorbent volume yielding a total amount of 100,000 U of 94% pure FDH per run. On this scale, 19 l of a benzonase-treated E. coli homogenate of 15% wet-weight (pH 7.5, 9 mS/cm conductivity) were loaded to the pseudo-affinity adsorbent (0.25 m sed. bed height, 5 x 10(-4) m/s fluid velocity). After a series of two wash steps, a particle-free eluate pool was obtained with 85% yield of FDH. This excellently demonstrates the suitability of expanded bed adsorption for efficient isolation of proteins by combining solid-liquid separation with adsorptive purification in a single unit operation.  相似文献   

15.
Conventionally, software tools for the design of bioprocesses have provided only limited business-related information for decision-making. There is an industrial need to investigate manufacturing options and to gauge the impact of various decisions from economic as well as process perspectives. This paper describes the development and use of a tool to provide an assessment of whole flowsheets by capturing both process and business aspects. The tool is demonstrated by considering the issues concerned when making decisions between two potential flowsheets for a common product. A case study approach is used to compare the process and business benefits of a conventional process route employing packed chromatography beds and an alternative that uses expanded bed adsorption (EBA). The tool allows direct evaluation of the benefits of capital cost reduction and increased yield offered by EBA against penalties of using potentially more expensive EBA matrix with lower lifetimes. Furthermore, the tool provides the ability to gauge the process robustness of each flowsheet option.  相似文献   

16.
In the course of developing a cost-effective, scaleable process for the purification of a recombinant protein from Chinese hamster ovary (CHO) suspension cell culture, we investigated direct capture of this molecule using expanded bed adsorption (EBA). EBA combines clarification, purification, and concentration of the product into a single step. The unclarified bioreactor material was directly applied to a STREAMLINE 25 column containing an affinity STREAMLINE adsorbent. This work focused on simplifying the EBA operations and minimizing the overall processing time by running the EBA column unidirectionally, eluting in the expanded bed mode, and coupling the EBA column directly with ion exchange or hydrophobic interaction chromatography. Unidirectional EBA was clearly a simpler unit operation and did not require the use of specialized equipment. The increase in the elution pool volume was insignificant, especially when the EBA column was eluted directly onto the downstream column. Scale-down was simple and could be automated. Coupling of unidirectional EBA with a downstream purification step reduced processing time, equipment requirements and cost.  相似文献   

17.
Urinary peptides were roughly fractionated by combined columns of cation and anion exchange resins, and the peptides eluted from each column were further fractionated by a combination of various ion exchange resins and DEAE-cellulose column chromatography, paper chromatography and other methods. From the fractions adsorbed on cation exchange resin, 13 homogeneous peptides could be isolated, and from the ones adsorbed on anion exchange resin, 8 glycopeptides could be found. Their amino acid compositions were analyzed.

Although some fractions remain univestigated, an outline of the whole aspect of main urinary peptides has been clarified by this study.  相似文献   

18.
Expanded bed absorption chromatography (EBA) was used to improve and simplify the purification of several wheat recombinant proteins. Binding and elution conditions were set to allow the purification of the over expressed protein in a single step. In comparison with our previous multi step protocol, same purity was obtained while EBA required less time (one day instead of five) and gave a higher yield (63% instead of 10%). This new procedure was then used for the successful purification of five other wheat ns-LTP. Despite their important polymorphism (identity from 44 to 97 %-pHi from 8 to 10), the EBA protocol allowed their purification in a single step.  相似文献   

19.
This study presents an experimental approach to measure the density distribution of expanded bed adsorption (EBA) matrices. We report on the use of a series of solutions of caesium trifluoroacetate (CsTFA) of varying density spun in a laboratory centrifuge so as to separate representative matrix samples on the basis of bead density. Mass data was used to plot a decumulative density distribution for the matrix. By performing laser light scattering-based measurements on the same samples of matrix the variation in particle size with density was determined. Particle settling velocity distributions were then calculated using these data and compared with a settling velocity distribution calculated on the basis of an assumed constant bead density. The study demonstrates a reliable and simple method for the characterisation of matrix density distribution. For the case of the Streamline matrices tested the particle size distribution is constant with varying bead density. Bead densities varied from 1.5 to 2.1 g/cm3 in the CsTFA solutions. These were then adjusted using bead porosity to give a density range of 1.11-1.33 g/cm3 in aqueous buffer (assumed 1.0 g/cm3) The differences in resultant settling velocity distributions when based upon measured density distribution than when based upon an assumed mean density value were shown to be insignificant. This result confirms experimentally that an assumption of a single constant mean density for EBA particles is acceptable for hydrodynamic modelling and performance prediction purposes.  相似文献   

20.
M D Norris  B W Stewart 《FEBS letters》1988,228(2):223-227
The concentration of caffeine required to elute wholly single-stranded DNA from benzoylated DEAE-cellulose is proportional to the polynucleotide length. The use of benzoylated DEAE-cellulose chromatography for isolating and sizing single-stranded regions in double-stranded DNA has been examined using a series of hybrid molecules. Restriction fragments of the replicating form of bacteriophage luminal diameter X174 were hybridized to the intact 'plus' strand, thereby forming hybrids having single- and/or double-stranded regions in the kilobase range. A series of such hybrid preparations were subject to caffeine concentration gradient elution from benzoylated DEAE-cellulose. After logarithmic transformation, a linear relationship (R = 0.94) could be demonstrated between eluting caffeine concentration and single-stranded length, irrespective of the length of associated double-stranded regions or the location, within a given fragment, of unpaired nucleotides. Benzoylated DEAE-cellulose chromatography may therefore be used to separate and characterize, on a preparative scale, double-stranded DNA containing single-stranded regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号