首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
G Luo  A H Herrera  R Horowits 《Biochemistry》1999,38(19):6135-6143
N-RAP is a recently discovered muscle-specific protein that is concentrated at the myotendon junctions in skeletal muscle and at the intercalated disks in cardiac muscle. The C-terminal half of N-RAP contains a region with sequence homology to nebulin, while a LIM domain is found at its N-terminus. N-RAP is hypothesized to perform an anchoring function, linking the terminal actin filaments of myofibrils to protein complexes located beneath the sarcolemma. We used a solid-phase assay to screen myofibrillar and junctional proteins for binding to several recombinant fragments of N-RAP, including the nebulin-like super repeat region (N-RAP-SR), the N-terminal half including the LIM domain (N-RAP-NH), and the region of N-RAP between the super repeat region and the LIM domain (N-RAP-IB). Actin is the only myofibrillar protein tested that exhibits specific binding to N-RAP, with high-affinity binding to N-RAP super repeats, and 10-fold weaker binding to N-RAP-IB. In contrast, myosin, isolated myosin heads, tropomyosin, and troponin exhibited no specific interaction with N-RAP domains. A recombinant fragment corresponding to the C-terminal one-fourth of vinculin also binds specifically to N-RAP super repeats, while no specific N-RAP binding activity was observed for other regions of the vinculin molecule. Finally, talin binds with high affinity to the LIM domain of N-RAP. These results support our hypothesis that N-RAP is part of a complex of proteins that anchors the terminal actin filaments of the myofibril to the membrane, and functions in transmitting tension from the myofibrils to the extracellular matrix.  相似文献   

3.
J Q Zhang  B Elzey  G Williams  S Lu  D J Law  R Horowits 《Biochemistry》2001,40(49):14898-14906
N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.  相似文献   

4.
Linkage analysis identifies 10q24-26 as a disease locus for dilated cardiomyopathy (DCM), a region including the N-RAP gene. N-RAP is a nebulin-like LIM protein that may mediate force transmission and myofibril assembly in cardiomyocytes. We describe the sequence, genomic structure, and expression of human N-RAP, as well as an initial screen to determine whether N-RAP mutations cause cardiomyopathy. Human expressed sequence tag databases were searched with the published 3,528-bp mouse N-RAP open reading frame (ORF). Putative cDNA sequences were interrogated by direct sequencing from cardiac and skeletal muscle RNA. We identified two human N-RAP isoforms with ORFs of 5,085 bp (isoform C) and 5,190 bp (isoform S), encoding products of 193-197 kDa. Genomic database searches localize N-RAP to human chromosome 10q25.3 and match isoforms C and S to 41 and 42 exons. Only isoform C is detected in human cardiac RNA; in skeletal muscle, approximately 10% is isoform C and approximately 90% is isoform S. We investigated apparent differences between human N-RAP cDNA and mouse sequences. Two mouse N-RAP isoforms with ORFs of 5,079 and 5,184 bp were identified with approximately 85% similarity to human isoforms; published mouse sequences include cloning artifacts truncating the ORF. Murine and human isoforms have similar gene structure, tissue specificity, and size. N-RAP is especially conserved within its nebulin-like and LIM domains. We expressed both N-RAP isoforms and the previously described truncated N-RAP in embryonic chick cardiomyocytes. All constructs targeted to myofibril precursors and the cell periphery, and inhibited myofibril assembly. Several human N-RAP polymorphisms were detected, but none were unique to cardiomyopathy patients. N-RAP is highly conserved and exclusively expressed in cardiac and skeletal muscle. Genetic abnormalities remain excellent candidate causes for cardiac and skeletal myopathies.  相似文献   

5.
Previous work has shown that mutations in muscle LIM protein (MLP) can cause hypertrophic cardiomyopathy (HCM). In order to gain an insight into the molecular basis of the disease phenotype, we analysed the binding characteristics of wild-type MLP and of the (C58G) mutant MLP that causes hypertrophic cardiomyopathy. We show that MLP can form a ternary complex with two of its previously documented myofibrillar ligand proteins, N-RAP and -actinin, which indicates the presence of distinct, non-overlapping binding sites. Our data also show that, in comparison to wild-type MLP, the capacity of the mutated MLP protein to bind both N-RAP and -actinin is significantly decreased. In addition, this single point mutation prevents zinc coordination and proper folding of the second zinc-finger in the first LIM domain, which consequently renders the protein less stable and more susceptible to proteolysis. The molecular basis for HCM-causing mutations in the MLP gene might therefore be an alteration in the equilibrium of interactions of the ternary complex MLP–N-RAP–-actinin. This assumption is supported by the previous observation that in the pathological situation accompanied by MLP down regulation, cardiomyocytes try to compensate for the decreased stability of MLP protein by increasing the expression of its ligand N-RAP, which might finally result in the development of myocyte disarray that is characteristic of this disease.This study was supported by a grant from the Deutsche Forschungsgemeinschaft to D.O.F.  相似文献   

6.
Muscle LIM protein (MLP) is constitutively expressed in slow, but undetectable in fast, muscles of the rat. Here we show that MLP was upregulated at both the mRNA and protein levels under experimental conditions leading to transitions from fast to slower phenotypes. Chronic low-frequency stimulation and mechanical overloading by synergist removal both induced fast-to-slow shifts in myosin heavy chain (MHC) isoforms and expression of MLP in fast muscles. High amounts of MLP mRNA and protein were also present in fast muscles of the myotonic, hyperactive ADR mouse. Hypothyroidism evoked shifts in myosin composition toward slower isoforms and increased the MLP protein content of soleus (SOL) muscle but failed to induce MLP in fast muscles. Unweighting by hindlimb suspension elicited slow-to-fast transitions in MHC expression without altering MLP levels in SOL muscle. Hyperthyroidism shifted the MHC pattern toward faster isoforms but did not affect MLP content in SOL muscle. We conclude that alterations in MLP expression are associated with transitions from fast to slower phenotypes but not with slow-to-fast muscle fiber transitions.  相似文献   

7.
Dilated cardiomyopathy (DCM) is a myocardial disorder that is characterized by dilation and dysfunction of the left ventricle (LV). Accumulating evidence has implicated aberrant Ca2+ signaling and oxidative stress in the progression of DCM, but the molecular details are unknown. In the present study, we report that inhibition of the transient receptor potential canonical 3 (TRPC3) channels partially prevents LV dilation and dysfunction in muscle LIM protein-deficient (MLP (−/−)) mice, a murine model of DCM. The expression level of TRPC3 and the activity of Ca2+/calmodulin-dependent kinase II (CaMKII) were increased in MLP (−/−) mouse hearts. Acitivity of Rac1, a small GTP-binding protein that participates in NADPH oxidase (Nox) activation, and the production of reactive oxygen species (ROS) were also increased in MLP (−/−) mouse hearts. Treatment with pyrazole-3, a TRPC3 selective inhibitor, strongly suppressed the increased activities of CaMKII and Rac1, as well as ROS production. In contrast, activation of TRPC3 by 1-oleoyl-2-acetyl-sn-glycerol (OAG), or by mechanical stretch, induced ROS production in rat neonatal cardiomyocytes. These results suggest that up-regulation of TRPC3 is responsible for the increase in CaMKII activity and the Nox-mediated ROS production in MLP (−/−) mouse cardiomyocytes, and that inhibition of TRPC3 is an effective therapeutic strategy to prevent the progression of DCM.  相似文献   

8.
家蚕MLP基因的克隆及其结构分析   总被引:1,自引:0,他引:1  
利用生物信息学的方法快速获得家蚕MLP (Muscle LIM protein, MLP)基因cDNA电子序列, 经RT-PCR生物验证正确, 登录GenBank (No. DQ311195)。MLP基因cDNA长2 327 bp, ORF全长1 485 bp, 编码产生494个氨基酸。该MLP基因组DNA含有11个外显子, 10个内含子, 所有内含子/外显子边界都符合典型的GT/AG剪切模式。MLP基因编码的蛋白富含Gly (14.4%), 分子量约为53.03 kDa, 等电点(PI)为8.29。通过BLAST分析发现该基因编码的家蚕肌肉LIM蛋白, 含有5个保守的LIM结构域, 家蚕的另一种LIM蛋白(AAR23823)含一个LIM结构域, 两者可能是通过可变剪切产生; 后者可能通过竞争作用调节前者在肌细胞中的功能。MLP的克隆为进一步研究其体内功能奠定了基础。  相似文献   

9.
Eccentric contractions (ECs), in which a muscle is forced to lengthen while activated, result in muscle injury and, eventually, muscle strengthening and prevention of further injury. Although the mechanical basis of EC-induced injury has been studied in detail, the biological response of muscle is less well characterized. This study presents the development of a minimally invasive model of EC injury in the mouse, follows the time course of torque recovery after an injurious bout of ECs, and uses Affymetrix microarrays to compare the gene expression profile 48 h after ECs to both isometrically stimulated muscles and contralateral muscles. Torque dropped by 55% immediately after the exercise bout and recovered to initial levels 7 days later. Thirty-six known genes were upregulated after ECs compared with contralateral and isometrically stimulated muscles, including five muscle-specific genes: muscle LIM protein (MLP), muscle ankyrin repeat proteins (MARP1 and -2; also known as cardiac ankyrin repeat protein and Arpp/Ankrd2, respectively), Xin, and myosin binding protein H. The time courses of MLP and MARP expression after the injury bout (determined by quantitative real-time polymerase chain reaction) indicate that these genes are rapidly induced, reaching a peak expression level of 6–11 times contralateral values 12–24 h after the EC bout and returning to baseline within 72 h. Very little gene induction was seen after either isometric activation or passive stretch, indicating that the MLP and MARP genes may play an important and specific role in the biological response of muscle to EC-induced injury. muscle LIM protein; cardiac ankyrin repeat protein; muscle ankyrin repeat protein; microarray  相似文献   

10.
The expression of N-RAP was investigated in immuofluorescently stained embryonic chick cardiomyocyte cultures. After 1 day in culture, the cardiomyocytes were spherical and N-RAP, titin, alpha-actinin, and vinculin were all diffusely distributed. As the cardiomyocytes spread and formed myofibrils and cell contacts, N-RAP became localized to distinct areas in the cells. During myofibrillogenesis, N-RAP was found concentrated in premyofibrils. As the premyofibrils transformed into bundles of mature myofibrils, N-RAP became concentrated at the longitundal ends of the cells, and was not found in the mature sarcomeres. At sites of cell-cell contacts, N-RAP was localized to the cell junction even in cells without any significant myofibril formation. As the cell-cell contacts became more extensive and formed structures resembling the intercalated disks found in hearts, N-RAP became even more specifically concentrated at these junctions. The results show that myofibrillogenesis and cell contact formation can each independently target N-RAP to the longitudinal ends of cardiomyocytes.  相似文献   

11.
The Z-line is a multifunctional macromolecular complex that anchors sarcomeric actin filaments, mediates interactions with intermediate filaments and costameres, and recruits signaling molecules. Antiparallel alpha-actinin homodimers, present at Z-lines, cross-link overlapping actin filaments and also bind other cytoskeletal and signaling elements. Two LIM domain containing proteins, alpha-actinin associated LIM protein (ALP) and muscle LIM protein (MLP), interact with alpha-actinin, distribute in vivo to Z-lines or costameres, respectively, and, when absent, are associated with heart disease. Here we describe the behavior of ALP and MLP during myofibrillogenesis in cultured embryonic chick cardiomyocytes. As myofibrils develop, ALP and MLP are observed in distinct distribution patterns in the cell. ALP is coincident with alpha-actinin from the first stage of myofibrillogenesis and co-distributes with alpha-actinin to Z-lines and intercalated discs in mature myofibrils. Interestingly, we also demonstrate using ALP-GFP transfection experiments and an in vitro binding assay that the ALP-alpha-actinin binding interaction is not required to target ALP to the Z-line. In contrast, MLP localization is not co-incident with that of alpha-actinin until late stages of myofibrillogenesis; however, it is present in premyofibrils and nascent myofibrils prior to the incorporation of other costameric components such as vinculin, vimentin, or desmin. Our observations support the view that ALP function is required specifically at actin anchorage sites. The subcellular distribution pattern of MLP during myofibrillogenesis suggests that it functions during differentiation prior to the establishment of costameres.  相似文献   

12.
Muscle cells respond to mechanical stretch stimuli by triggering downstream signals for myocyte growth and survival. The molecular components of the muscle stretch sensor are unknown, and their role in muscle disease is unclear. Here, we present biophysical/biochemical studies in muscle LIM protein (MLP) deficient cardiac muscle that support a selective role for this Z disc protein in mechanical stretch sensing. MLP interacts with and colocalizes with telethonin (T-cap), a titin interacting protein. Further, a human MLP mutation (W4R) associated with dilated cardiomyopathy (DCM) results in a marked defect in T-cap interaction/localization. We propose that a Z disc MLP/T-cap complex is a key component of the in vivo cardiomyocyte stretch sensor machinery, and that defects in the complex can lead to human DCM and associated heart failure.  相似文献   

13.
Transgenic male mice bearing inactive mutations of the receptor tyrosine kinase c-ros lack the initial segment of the epididymis and are infertile. Several techniques were applied to determine differences in gene expression in the epididymal caput of heterozygous fertile (HET) and infertile homozygous knockout (KO) males that may explain the infertility. Complementary DNA arrays, gene chips, Northern and Western blots, and immunohistochemistry indicated that some proteins were downregulated, including the initial segment/proximal caput-specific genes c-ros, cystatin-related epididymal-spermatogenic (CRES), and lipocalin mouse epididymal protein 17 (MEP17), whereas other caput-enriched genes (glutathione peroxidase 5, a disintegrin and metalloproteinase [ADAM7], bone morphogenetic proteins 7 and 8a, A-raf, CCAAT/enhancer binding protein beta, PEA3) were unchanged. Genes normally absent from the initial segment (gamma-glutamyltranspeptidase, prostaglandin D2 synthetase, alkaline phosphatase) were expressed in the undifferentiated proximal caput of the KO. More distally, lipocalin 2 (24p3), CRISP1 (formerly MEP7), PEBP (MEP9), and mE-RABP (MEP10) were unchanged in expression. Immunohistochemistry and Western blots confirmed the absence of CRES in epididymal tissue and fluid and the continued presence of CRES in spermatozoa of the KO mouse. The glutamate transporters EAAC1 (EAAT3) and EAAT5 were downregulated and upregulated, respectively. The genes of over 70 transporters, channels, and pores were detected in the caput epididymidis, but in the KO, only three were downregulated and six upregulated. The changes in these genes could affect sperm function by modifying the composition of epididymal fluid and explain the infertility of the KO males. These genes may be targets for a posttesticular contraceptive.  相似文献   

14.
15.
Muscle LIM protein (MLP) has been suggested to be an important mediator of mechanical stress in cardiac tissue, but the role that it plays in skeletal muscle remains unclear. Previous studies have shown that it is dramatically upregulated in fast-to-slow fiber-type transformation and also after eccentric contraction (EC)-induced muscle injury. The functional consequences of this upregulation, if any, are unclear. In the present study, we have examined the skeletal muscle phenotype of MLP-knockout (MLPKO) mice in terms of their response to EC-induced muscle injuries. The data suggest that while the MLPKO mice recover completely after EC-induced injury, their torque production lags behind that of heterozygous littermates in the early stages of the recovery process. This lag is accompanied by decreased expression of the muscle regulatory factor MyoD, suggesting that MLP may influence gene expression. In addition, there is evidence of type I fiber atrophy and a shorter resting sarcomere length in the MLPKO mice, but no significant differences in fiber type distribution. In summary, MLP appears to play a subtle role in the maintenance of normal muscle characteristics and in the early events of the recovery process of skeletal muscle to injury, serving both structural and gene-regulatory roles. eccentric contractions; passive tension  相似文献   

16.
Molecular data on development/differentiation and on comparative genomics allow insights into the genetic basis of the evolution of a bodyplan. Sponges (phylum Porifera) are animals that are the (still extant) stem group with the hypothetical Urmetazoa as the earliest common ancestor of all metazoans; they possess the basic features of the characteristic metazoan bodyplan also valid for the animals of the crown taxa. Here we describe three homeobox genes from the demosponge Suberites domuncula whose deduced proteins (HOXa1_SUBDO, HOXb1_SUBDO, HOXc1_SUBDO) are to be grouped with the Antennapedia class of homeoproteins (subclasses TIx-Hox11 and NK-2). In addition, a cDNA encoding a LIM/homeobox protein has been isolated which comprises high sequence similarity to the related LIM homeodomain (HD) proteins in its LIM as well as in its HD domains. To elucidate the potential function of these proteins in the sponge a new in vitro system was developed. Primmorphs which are formed from dissociated cells were grown on a homologous galectin matrix. This galectin cDNA was cloned and the recombinant protein was used for the preparation of the matrix. The galectin/polylysine matrix induced in primmorphs the formation of channels, one major morphogenetic process in sponges. Under such conditions the expression of the gene encoding the LIM/homeobox protein is strongly upregulated, while the expression of the other homeobox genes remains unchanged or is even downregulated. Competition experiments with galactosylceramides isolated from S. domuncula were performed. They revealed that a beta-galactosylceramide, named Sdgal-1, prevented the expression of the LIM gene on the galectin matrix, while Sdgal-2, a diglycosylceramide having a terminal alpha-glycosidically linked galactose, caused no effect on the formation of channels in primmorphs or on LIM expression. This study demonstrates for the first time that an extracellular matrix molecule, galectin, induces a morphogenetic process in sponges which is very likely caused by a LIM/homeobox protein. Furthermore, a new model is introduced (galectin-caused channel formation in sponge primmorphs) to investigate basic pathways, thus allowing new insights into the functional molecular evolution of Metazoa.  相似文献   

17.
Heart failure and dilated cardiomyopathy develop in mice that lack the muscle LIM protein (MLP) gene (MLP(-/-)). The character and extent of the heart failure that occurs in MLP(-/-) mice were investigated using echocardiography and in vivo pressure-volume (P-V) loop measurements. P-V loop data were obtained with a new method for mice (sonomicrometry) using two pairs of orthogonal piezoelectric crystals implanted in the endocardial wall. Sonomicrometry revealed right-shifted P-V loops in MLP(-/-) mice, depressed systolic contractility, and additional evidence of heart failure. Cellular changes in MLP(-/-) mice were examined in isolated single cells using patch-clamp and confocal Ca(2+) concentration ([Ca(2+)]) imaging techniques. This cellular investigation revealed unchanged Ca(2+) currents and Ca(2+) spark characteristics but decreased intracellular [Ca(2+)] transients and contractile responses and a defect in excitation-contraction coupling. Normal cellular and whole heart function was restored in MLP(-/-) mice that express a cardiac-targeted transgene, which blocks the function of beta-adrenergic receptor (beta-AR) kinase-1 (betaARK1). These data suggest that, despite the persistent stimulus to develop heart failure in MLP(-/-) mice (i.e., loss of the structural protein MLP), downregulation and desensitization of the beta-ARs may play a pivotal role in the pathogenesis. Furthermore, this work suggests that the inhibition of betaARK1 action may prove an effective therapy for heart failure.  相似文献   

18.
The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking.  相似文献   

19.
The actinin-associated LIM protein, ALP, is the prototype of a large family of proteins containing an N-terminal PDZ domain and a C-terminal LIM domain. These PDZ-LIM proteins are components of the muscle cytoskeleton and occur along the Z lines owing to interaction of the PDZ domain with the spectrin-like repeats of alpha-actinin. Because PDZ and LIM domains are typically found in proteins that mediate cellular signaling, PDZ-LIM proteins are suspected to participate in muscle development. Interestingly the ALP gene occurs at 4q35 near the heterochromatic region mutated in facioscapulohumeral muscular dystrophy, indicating a possible role for ALP in this disease. Here, we describe the generation and analysis of mice lacking the ALP gene. Surprisingly, the ALP knockout mice show no gross histological abnormalities and maintain sarcolemmal integrity as determined by serum pyruvate kinase assays. The absence of a dystrophic phenotype in these mice suggests that down-regulation of ALP does not participate in facioscapulohumeral muscular dystrophy. These data suggest that ALP does not participate in muscle development or that an alternative PDZ-LIM protein can compensate for the lack of ALP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号