首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior treatment with pertussis toxin of G0-arrested hamster fibroblasts (CCL39) results in a dose-dependent inhibition of two early events of the mitogenic response elicited by alpha-thrombin: accumulation of inositol phosphates in Li+-treated cells, and activation of the Na+/H+ antiport, measured either by the amiloride-sensitive 22Na+ influx or by the increase in intracellular pH. At 10(-1) U/ml of alpha-thrombin, the maximal inhibition was approximately 50% for these two early cellular responses, but the pertussis toxin effect was more pronounced at lower thrombin concentrations. In contrast, pertussis toxin does not affect the Na+/H+ antiport activation induced by phorbol esters or EGF, the action of which is not mediated by the phosphoinositide-metabolizing pathway in CCL39 cells. Therefore, our data suggest the following. A GTP-binding regulatory protein is probably involved in signal transduction between thrombin receptors and the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. This regulation does not seem to be exerted via modulations of cyclic AMP levels. The thrombin-induced activation of Na+/H+ antiport is, at least in part, mediated by the protein kinase C, as a consequence of stimulation of phosphatidylinositol turnover.  相似文献   

2.
To test the hypothesis that agents activating receptors negatively coupled to adenylyl cyclase (AC) can stimulate cell proliferation, we have expressed a human alpha 2-adrenergic receptor (alpha 2-C10) in CCL39 cells and studied the effects of alpha 2-agonists on reinitiation of DNA synthesis in quiescent cells. We report that the alpha 2-agonists epinephrine and clonidine stimulate [3H]-thymidine incorporation in synergy with fibroblast growth factor and that the alpha 2-antagonist yohimbine efficiently inhibits this response. Epinephrine- and clonidine-stimulated DNA synthesis is completely blocked by pertussis toxin and correlates well with the inhibition of prostaglandin E1-stimulated AC. Thus, their action closely resembles the action of serotonin in the same cell system, which is mediated through 5-HT1b receptors. In fact, serotonin- and epinephrine-stimulated DNA synthesis reinitiation is not additive, suggesting that both agents act through a common pathway. Interestingly, alpha 2-agonists also induced a moderate release of inositol phosphates, indicating that alpha 2-adrenergic receptors can interact both with the AC and phospholipase C messenger system. Activation of phosphoinositide (PI) turnover by epinephrine leads to a significant stimulation of Na+/H+ exchange but is insufficient to trigger a mitogenic response in CCL39 cells, as will be discussed. We found no evidence for epinephrine-induced activation of Na+/H+ exchange by a mechanism independent of PI breakdown.Our data show that alpha 2-adrenergic receptors can play a role in the regulation of cell proliferation in an appropriate context; also, the data support the hypothesis that receptors negatively coupled to AC must be taken into account as mediators of growth factor action in fibroblasts, in particular when activated in parallel with receptor tyrosine kinases.  相似文献   

3.
In resting Chinese hamster fibroblasts (CCL39) alpha-thrombin rapidly induces the breakdown of phosphoinositides. Accumulation of inositol phosphates (IP), measured in the presence of Li+, is detectable within 5s (seconds) of thrombin stimulation. Formation of inositol tris- and bisphosphates slightly precedes that of inositol monophosphate, indicating that thrombin activates primarily the phospholipase C-mediated generation of inositol trisphosphate from phosphatidylinositol 4,5-bisphosphate. Initial rates of IP production increase with thrombin concentration, with no apparent saturability over the range 10(-4)-10 U/ml. Thrombin-induced phosphoinositide hydrolysis rapidly desensitizes (t1/2 less than 5 min), but a residual activity, corresponding to about 10% of the initial stimulation is sustained for at least 9 h, in contrast with the undetectable activity of G0-arrested cells. This apparent desensitization may be due to a feedback regulation by protein kinase C, since pretreatment with the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) markedly inhibits (by up to 70%) subsequent thrombin-induced inositol phosphate formation. Conversely, growth factor deprivation of CCL39 cells results in a progressive increase of thrombin-induced phosphoinositide hydrolysis, from the very low level of exponentially growing cells to the maximal level of G0-arrested cells. This "up regulation" was found maximal in A51, a very well growth-arrested CCL39 derivative, and reduced or virtually abolished in two tumoral and growth factor-relaxed derivatives of CCL39. Although preliminary, this observation suggests that a persistent activation of phosphatidyl inositol breakdown might operate in variants selected for autonomous growth.  相似文献   

4.
In resting Chinese hamster fibroblasts (CCL39) alpha-thrombin rapidly stimulates several biochemical events implicated in the mitogenic response, including the breakdown of inositol phospholipids, activation of a plasma membrane Na+/H+ antiporter, phosphorylation of ribosomal protein S6 and increased expression of the proto-oncogene c-myc. Complete removal of the growth factor during cellular G0/G1 transit precludes the re-initiation of DNA synthesis. The present study was designed to examine the fate of alpha-thrombin-activated early events following growth factor inactivation. In cells stimulated for 30 min with alpha-thrombin, neutralization of the growth factor results in: (i) immediate arrest of inositol phosphate formation, (ii) rapid inactivation of Na+/H+ exchange, (iii) deactivation of the S6 phosphorylating system and (iv) strong reduction of c-myc mRNA level. Our findings that commitment for DNA synthesis as well as persistent activation of 'early' cellular events requires continual growth factor stimulation suggest that: (i) growth factor-induced transmembrane signals have a short life and (ii) the generation of these signals during the 8 h of the pre-replicative phase is required for G0-arrested cells to enter the S phase.  相似文献   

5.
Basic or acidic fibroblast growth factor (FGF), alone, was found to be as potent as alpha-thrombin to reinitiate DNA synthesis in G0-arrested Chinese hamster lung fibroblasts (CCL39). Basic FGF at 50 ng/ml or thrombin at 1 unit/ml rapidly initiated early events such as cytoplasmic alkalinization (0.2-0.3 pH units), rise in cytoplasmic Ca2+, phosphorylation of ribosomal protein S6 and increased c-myc expression, followed by a 30-40-fold increase in labeled nuclei. Whereas thrombin is a potent activator of phospholipase C as judged by the rapid release of inositol trisphosphate, inositol bisphosphate and by the massive accumulation of total inositol phosphate (IP) in the presence of 20 mM Li+, FGF failed to induce the breakdown of polyphosphoinositides in quiescent CCL39 cells. Indeed, no inositol trisphosphate nor inositol bisphosphate could be detected in response to FGF; in presence of Li+ the total IP release never exceeded 8% of the IP released by the action of thrombin. Two additional findings indicated that FGF and thrombin activate different signaling pathways. First, we found that, in contrast to thrombin, the FGF-induced rise in the cytoplasmic free Ca2+ concentration measured by quin-2 fluorescence, is strictly dependent upon the presence of Ca2+ in the external medium. Second, we found that FGF failed to activate protein kinase C as judged by the epidermal growth factor-receptor binding assay. Treatment of the cells with either thrombin or phorbol esters, rapidly inhibited 125I-labeled epidermal growth factor binding (50-60%). Basic or acidic FGF had no effect. We conclude that: the FGF-receptor signaling pathway is not coupled to phospholipase C activation, and early mitogenic events and reinitiation of DNA synthesis can be initiated independently of inositol lipid breakdown and protein kinase C activation.  相似文献   

6.
Stimulation of platelets with thrombin, ADP and epinephrine has recently been shown to activate a Na+/H+ antiporter, with a resulting alkalinization of the cytoplasm. Unlike thrombin, however, epinephrine is incapable of directly activating phospholipase C, but is well known to potentiate the effects of thrombin on this enzyme and other subsequent steps of platelet activation. Therefore, we have studied the involvement of the Na+/H+ antiporter in this aspect of epinephrine action to see whether alkalinization of platelet cytosol could be a requirement for agonists to stimulate inositol phospholipid hydrolysis and mobilize cellular Ca2+ stores. Alpha-thrombin induced the rapid formation of inositol trisphosphate with a parallel mobilization of intracellular Ca2+ stores. Epinephrine alone had no effect on either of these parameters. The response to thrombin desensitized over a period of minutes, and after this had occurred, epinephrine was able to activate phospholipase C and induce the release of intracellular Ca2+. This showed that epinephrine was able to recouple thrombin receptors to phospholipase C, and this appeared to be mediated by the same mechanism which is involved in potentiation by epinephrine of thrombin-stimulation of phospholipase C. These effects of epinephrine were not altered by inhibition of the Na+/H+ antiporter with ethylisopropylamiloride or by use of the Na+/H+ ionophore, monensin. We conclude that epinephrine potentiates thrombin-induced responses by a mechanism which is unrelated to its effects on the Na+/H+ antiporter, and this is not a requirement for thrombin-induced phospholipase C activation.  相似文献   

7.
Rabbit platelets were labelled with [3H]inositol and a membrane fraction was isolated in the presence of ATP, MgCl2 and EGTA. Incubation of samples for 10 min with 0.1 microM-Ca2+free released [3H]inositol phosphates equivalent to about 2.0% of the membrane [3H]phosphoinositides. Addition of 10 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) caused an additional formation of [3H]inositol phosphates equivalent to 6.6% of the [3H]phosphoinositides. A half-maximal effect was observed with 0.4 microM-GTP[S]. The [3H]inositol phosphates that accumulated consisted of 10% [3H]inositol monophosphate, 88% [3H]inositol bisphosphate ([3H]IP2) and 2% [3H]inositol trisphosphate ([3H]IP3). Omission of ATP and MgCl2 led to depletion of membrane [3H]polyphosphoinositides and marked decreases in the formation of [3H]inositol phosphates. Thrombin (2 units/ml) or GTP (4-100 microM) alone weakly stimulated [3H]IP2 formation, but together they acted synergistically to exert an effect comparable with that of 10 microM-GTP[S]. The action of thrombin was also potentiated by 0.1 microM-GTP[S]. Guanosine 5'-[beta-thio]diphosphate not only inhibited the effects of GTP[S], GTP and GTP with thrombin, but also blocked the action of thrombin alone, suggesting that this depended on residual GTP. Incubation with either GTP[S] or thrombin and GTP decreased membrane [3H]phosphatidylinositol 4-phosphate ([H]PIP) and prevented an increase in [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PIP2) observed in controls. Addition of unlabelled IP3 to trap [3H]IP3 before it was degraded to [3H]IP2 showed that only about 20% of the additional [3H]inositol phosphates that accumulated with GTP[S] or thrombin and GTP were derived from the action of phospholipase C on [3H]PIP2. The results provide further evidence that guanine-nucleotide-binding protein mediates signal transduction between the thrombin receptor and phospholipase C, and suggest that PIP may be a major substrate of this enzyme in the platelet.  相似文献   

8.
Mutants unable to regulate intracellular pH through the Na+: H+ antiport system were found to evolve tumors less frequently than wild-type CCL39 hamster lung fibroblasts, after transplantation in athymic nude mice. When rare tumors arose, they comprised cells which were transformed in vitro, but which upon retransplantation grew at a lower rate than tumor cells originating from CCL39 cells. Both parental and mutant cells became transformed after transfection of the activated Harvey ras oncogene, but transfectants derived from the mutants had a weaker tumorigenic potential. These results suggest that transformed characteristics can be acquired independently from the Na+: H+ antiporter. However, the presence of this system provides a selective growth advantage when cells are confronted with natural environments, as it occurs during the expansion of tumors in a host.  相似文献   

9.
10.
Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.  相似文献   

11.
Mitogen-induced initiation of DNA synthesis in quiescent Chinese hamster lung fibroblasts (CCL39) is strongly inhibited by 8-Br cAMP and cAMP-evaluating agents (prostaglandin E1, cholera toxin, isobutylmethylxanthine). This inhibition is reversible and occurs very early in G0/G1. As exponential growth is much less affected by increased cAMP, we propose that cAMP inhibits an early signal essential for the exit from G0. CCL39 cells can be stimulated by alpha-thrombin, which activates phosphoinositide (PI) breakdown, as well as by mitogens (FGF or FGF + serotonin) which do not involve the PI pathway. Here we show that the action of both classes of mitogens is likewise inhibited by cAMP. Therefore, although PI breakdown is inhibited by cAMP in CCL39 cells, this effect cannot entirely account for th antimitogenic activity of cAMP. Other early steps of the mitogenic response must be also affected.  相似文献   

12.
Incubation of human platelets with myo-[3H]inositol in a low-glucose Tyrode's solution containing MnCl2 enhanced the labelling of phosphoinositides about sevenfold and greatly facilitated the measurement of [3H]inositol phosphates formed by the activation of phospholipase C. Labelled platelets were permeabilized by high-voltage electric discharges and equilibrated at 0 degree C with ATP, Ca2+ buffers and guanine nucleotides, before incubation in the absence or presence of thrombin. Incubation of these platelets with ATP in the presence or absence of Ca2+ ions led to the conversion of [3H]phosphatidylinositol to [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PtdInsP2). At a pCa of 6, addition of 100 microM GTP[gamma S] both prevented this accumulation of [3H]PtdInsP2 and stimulated its breakdown; the formation of [3H]inositol phosphates was increased ninefold. After 5 min these comprised 70% [3H]inositol monophosphate ([3H]InsP), 28% [3H]inositol bisphosphate ([3H]InsP2) and 2% [3H]inositol trisphosphate ([3H]InsP3). In shorter incubations higher percentages of [3H]InsP2 and [3H]InsP3 were found. In the absence of added Ca2+, the formation of [3H]inositol phosphates was decreased by over 90%. Incubation of permeabilized platelets with GTP[gamma S] in the presence of 10 mM Li+ decreased the accumulation of [3H]InsP and increased that of [3H]InsP2, without affecting [3H]InsP3 levels. Addition of unlabelled InsP3 decreased the intracellular hydrolysis of exogenous [32P]InsP3 but did not trap additional [3H]InsP3. These results and the time course of [3H]inositol phosphate formation suggest that GTP[gamma S] stimulated the action of phospholipase C on a pool of [3H]phosphatidylinositol 4-phosphate that was otherwise converted to [3H]PtdInsP2 and that much less hydrolysis of [3H]phosphatidylinositol to [3H]InsP or of [3H]PtdInsP2 to [3H]InsP3 occurred. At a pCa of 6, addition of thrombin (2 units/ml) to permeabilized platelets caused small increases in the formation of [3H]InsP and [3H]InsP2. This action of thrombin was enhanced twofold by 10-100 microM GTP and much more potently by 4-40 microM GTP[gamma S]. In the presence of the latter, thrombin also increased [3H]InsP3. The total formation of [3H]inositol phosphates by permeabilized platelets incubated with thrombin and GTP[gamma S] was comparable with that observed on addition of thrombin alone to intact platelets. However, HPLC of the [3H]inositol phosphates formed indicated that about 75% of the [3H]InsP accumulating in permeabilized platelets was the 4-phosphate, whereas in intact platelets stimulated by thrombin, up to 80% was the 1-phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
alpha-Thrombin (thrombin) stimulates phospholipase C and modulates the activity of adenylate cyclase in a number of cell types via G protein-coupled receptors. It is also a potent growth factor, notably for a line of hamster fibroblasts (CCL39 cells). Recently, predicted amino acid sequences for human and hamster thrombin receptors have been reported that display a putative thrombin cleavage site in the N-terminal extracellular domain. Synthetic peptides corresponding to 14 residues carboxyl to the presumed thrombin cleavage site of the human receptor have been shown to activate platelets as well as the thrombin receptor expressed in Xenopus oocytes. In the present study we have examined the effects of synthetic peptides corresponding to the same region of the hamster receptor (S-42-L-55) and shorter peptides (2-7 residues) on signal transducing systems in CCL39 cells. Our results indicate that hamster receptor peptides of greater than or equal to 5 residues effectively stimulate phospholipase C in CCL39 cells via the thrombin receptor and induce rapid desensitization of the response. The same peptides also inhibit adenylate cyclase in a pertussis toxin-sensitive manner. Although the peptides are potent agonists of serotonin release in platelets, unlike thrombin, by themselves they are not mitogenic. However, they potentiate DNA synthesis in cooperation with growth factors possessing tyrosine kinase receptors. Hence, we conclude that the potent mitogenic action of thrombin cannot be accounted for solely by the activation of the cloned receptor. We postulate the existence of an additional receptor activated by thrombin, which is required for its full mitogenic potential.  相似文献   

14.
The mitogenic activity of thrombin in endothelial cells is not well understood. The inositide metabolism is an ubiquitous transducing mechanism that seems to be involved in the control of cell growth. Thrombin is a potent stimulant of the release of inositol phosphates in platelets. The data presented here suggest that thrombin is able to induce competence in pig aorta endothelial cells to proliferate in response to insulin. Also thrombin is a potent stimulant of the inositide metabolism what suggests that the activation of this pathway might be at least one of the mechanisms through which thrombin induces competence in this cells.  相似文献   

15.
In order to evaluate the possible contribution of phospholipase D (PLD) stimulation to the mitogenic response, a screening of a variety of different compounds, some of which are known to be potent mitogens, was performed using the well characterized Chinese hamster lung fibroblast (CCL39) cell line. In wild type CCL39 cells, or derivatives expressing high levels of either the human M1 muscarinic receptor (Hm1) or the human epidermal growth factor (EGF) receptor (39M1-81 and 39ER22 clones, respectively), thrombin, a potent mitogen for all three cell types, elicited the rapid activation of PLD (t1/2 activation, 30 s). Carbachol-mediated activation of the Hm1 receptor in the 39M1-81 clone, which is not a mitogenic signal, produced a similarly rapid although greater activation of PLD. Addition of EGF to the 39ER22 clone was able to provoke both a mitogenic response and stimulate PLD, albeit a comparatively small effect. In each case, the stimulation of PLD correlated closely with the ability to stimulate inositol phospholipid breakdown and was entirely dependent on the activation of protein kinase C. Moreover, the ability of both thrombin and carbachol to stimulate PLD was found to be rapidly desensitized, with a similar time course of desensitization (t1/2 desensitization, 90 s). It has recently been reported that an increase in phospholipase C (PLC)-mediated phosphocholine (PC) hydrolysis by either addition of agonist or by extracellular addition of PC-specific PLC enzyme constitutes a mitogenic signal. In this regard, in addition to stimulation of PLD, thrombin and carbachol were both able to stimulate the activity of a phosphocholine-specific phospholipase C (PC-PLC), which did not appear to desensitize within the time course employed. By contrast, EGF was unable to elicit the stimulation of PC-PLC. Ligands such as fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF), which bind to and activate receptors with intrinsic tyrosine kinase activity, are potent mitogens for CCL39 cells but were unable to stimulate either PLD or PC-PLC activity. Furthermore, exogenous addition of purified PC-PLC enzyme, although able to induce a strong and lasting hydrolysis of PC, was unable to produce a mitogenic signal on its own. On the basis of these results, we conclude that the activation of both PLD and PC-PLC is neither sufficient nor required to produce a mitogenic response.  相似文献   

16.
Basic fibroblast growth factor (FGF) and alpha-thrombin can stimulate DNA synthesis in Chinese hamster fibroblasts (CCL39) by two separate signaling pathways (Chambard, J.C., Paris, S., L'Allemain, G., and Pouysségur, J. (1987) Nature 326, 800-803) but can also act synergistically. We have examined whether this synergism might depend upon changes in inositol lipid metabolism. Indeed, FGF, which has no effect on its own on phosphoinositide hydrolysis, potentiates (by up to 2-fold) thrombin-induced formation of inositol phosphates. This enhancing effect is also observed upon direct activation by AIF4- of the GTP-binding protein coupled to phospholipase C, and is best revealed when phospholipase C is weakly stimulated. With low thrombin concentrations or with AIF4-, the formation of inositol phosphates is immediately increased with a marked reduction of the initial lag, whereas at high thrombin concentrations, the stimulation by FGF becomes pronounced only after desensitization of phospholipase C to thrombin. FGF-induced potentiation is not mimicked by calcium ionophores, but is likewise elicited by epidermal growth factor, platelet-derived growth factor, and to a lesser extent by insulin, other growth factors known to activate receptor tyrosine kinases. We therefore propose that the tyrosine kinase-activating growth factors enhance the coupling between GTP-binding protein and phospholipase C, presumably through the phosphorylation of one of these two proteins. Treatment of cells with pertussis toxin attenuates thrombin-induced phospholipase C activity but does not impede the potentiation by FGF. Comparison of the potentiating effects of FGF on inositol phosphate formation and on DNA synthesis suggests than an increased production of second messengers by the inositol lipid pathway in the first hours of stimulation might be, at least in part, responsible for the synergistic actions of FGF and thrombin on DNA synthesis.  相似文献   

17.
Binding of platelet-derived growth factor (PDGF) to the PDGF receptor (PDGFR) beta subunit triggers receptor tyrosine phosphorylation and the stable association of a number of signal transduction molecules, including phospholipase C gamma (PLC gamma), the GTPase activating protein of ras (GAP), and phosphatidylinositol-3 kinase (PI3K). Previous reports have identified three PDGFR tyrosine phosphorylation sites in the kinase insert domain that are important for stable association of GAP and PI3K. Two of them, tyrosine (Y) 740, and Y-751 are required for the stable association of PI3K, while Y-771 is required for binding of GAP. Here we present data for two additional tyrosine phosphorylation sites, Y-1009 and Y-1021, that are both in the carboxy-terminal region of the PDGFR. Characterization of PDGFR mutants in which these phosphorylation sites are substituted with phenylalanine (F) indicated that Y-1021 and Y-1009 were required for the stable association of PLC gamma and a 64-kDa protein, respectively. An F-1009/F-1021 double mutant selectively failed to bind both PLC gamma and the 64-kDa protein, whereas all of the carboxy-terminal mutants bound wild-type levels of GAP and PI3K. The carboxy terminus encodes the complete binding site for PLC gamma, since a phosphorylated carboxy-terminal fusion protein selectively bound PLC gamma. To determine the biological consequences of failure to associate with PLC gamma, we measured PDGF-dependent inositol phosphate production and initiation of DNA synthesis. The PDGFR mutants that failed to associate with PLC gamma were not able to mediate the PDGF-dependent production of inositol phosphates. Since tyrosine phosphorylation of PLC gamma enhances its enzymatic activity, we speculated that PDGFR mutants that failed to activate PLC gamma were unable to mediate its tyrosine phosphorylation. Surprisingly, the F-1021 receptor mediated readily detectable levels of PDGF-dependent PLC gamma tyrosine phosphorylation. Thus, the production of inositol phosphates requires not only PLC gamma tyrosine phosphorylation but also its association with the PDGFR. Comparison of the mutant PDGFRs' abilities to initiate PDGF-dependent DNA synthesis indicated that failure to associate with PLC gamma and produce inositol phosphates diminished the mitogenic response by 30%. In contrast, preventing the PDGFR from binding the 64-kDa protein did not compromise PDGF-triggered DNA synthesis at saturating concentrations of PDGF. Thus, it appears that phosphorylation of the PDGFR at Y-1021 is required for the stable association of PLC gamma to the receptor's carboxy terminus, the production of inositol phosphates, and initiation of the maximal mitogenic response.  相似文献   

18.
The relationship between occupancy of thrombin receptors on platelets and enhanced phosphoinositide hydrolysis was analysed by examination of the dose-response relationship, the effects of thrombin inhibitors and the contribution of secondary effects. Washed human platelets were labelled with [3H]inositol, and agonist-induced accumulation of labelled inositol phosphates was measured. The dose-response curves and the time courses for alpha-thrombin- or gamma-thrombin-induced accumulation of inositol phosphates were similar to those for dense-granule secretion. Addition of the thrombin inhibitor hirudin to thrombin-activated platelets revealed that the continuous presence of active thrombin was required to maintain the accumulation of labelled inositol phosphates; the total production of inositol phosphates increased with longer periods of exposure to thrombin, reaching a maximum between 5 and 10 min. After activation with thrombin, the ability of a second, greater, addition of thrombin to induce additional phosphoinositide hydrolysis decreased with time; it was absent within 10 min after the first addition. The failure to sustain accumulation of labelled inositol phosphates or to respond to a second addition of thrombin beyond 10 min was not due to depletion of the pool of labelled precursors, because the platelets retained their ability to respond to collagen. Addition of ADP-consuming enzymes decreased sensitivity to thrombin, but inhibition of cyclo-oxygenase with indomethacin did not impair the thrombin-induced hydrolysis of phosphoinositides. It was concluded that thrombin-induced hydrolysis of phosphoinositides has characteristics consistent with mediation by a receptor that is similar to that that triggers dense-granule secretion, requires continuous presence of active thrombin to be maintained, is mediated by a receptor that displays thrombin-induced desensitization, and is only partially enhanced by secondary agents.  相似文献   

19.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

20.
An elevation of the intracellular pH and a rise in the cytoplasmic Ca2+ concentration are considered important mitogenic signals which are observed after stimulation by various growth factors. In a preceding report it was demonstrated that the expression of Ha-ras or v-mos in cells transfected with Ha-ras or v-mos, respectively, leads to an activation of the Na+/H+ antiporter and a concomitant rise in intracellular pH (W. Doppler, R. Jaggi, and B. Groner, Gene 54:145-151, 1987). This report describes the effect of the Ha-ras and v-mos oncogenes on intracellular Ca2+ release. The expression of Ha-ras in NIH 3T3 cells carrying a glucocorticoid-inducible transforming Ha-ras gene caused a desensitization of the Ca2+-mobilizing system to serum growth factors. The induction of p21ras in cells carrying the corresponding glucocorticoid-inducible proto-oncogene did not affect the Ca2+ response to growth factors. Conditions leading to the expression of the transforming Ha-ras gene but not those causing the induction of the normal Ha-ras gene yielded an increase in phosphatidylinositol turnover and a concomitant rise in inositol phosphates. Results similar to those obtained with the transforming Ha-ras gene were seen after the expression of v-mos. The data are consistent with a mechanism in which expression of the transforming Ha-ras gene leads to a release of Ca2+ from intracellular stores via elevated levels of inositol trisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号