首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seeds of six woody species of Oleaceae representing three genera, contain high concentrations of water-soluble glucosides, with major absorption maxima below 240 nanometers. In Fraxinus americana seeds three of these compounds, designated GL-3, GL-5, and GL-6, account for almost 10% of the dry weight. They are found in the endosperm and embryo but not in the pericarp. While the level of GL-5 is not particularly influenced by the physiological state of the embryo, that of GL-3 and GL-6 decreases as a result of germination and growth during a 10-day period. As the concentrations of GL-3 and GL-6 decrease, new ultraviolet-absorbing compounds are formed. The changes in the concentration of the ultraviolet-absorbing glucosides during cold temperature after-ripening, prior to germination, are small. When germination of dormant embryos is induced with gibberellic acid, the concentrations of GL-3 and GL-6 decrease in a manner similar to that observed with nondormant embryos. In the presence of abscisic acid no losses of GL-3 and GL-6 were observed. It is suggested that GL-3 and GL-6 fulfill some definite functions in the germination and growth of F. americana embryos, and that gibberellic acid and abscisic acid can exert a regulatory effect on the metabolism of these glucosides.  相似文献   

2.
The occurrence of various species of Brassicaceae with indehiscent fruits in the cold deserts of NW China suggests that there are adaptive advantages of this trait. We hypothesized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo expansion and thus prevents germination for 1 or more years. Thus, our aim was to investigate the role of the pericarp in seed dormancy and germination of this species. The effects of afterripening, treatment with gibberellic acid (GA3) and cold stratification on seed dormancy-break were tested using intact silicles and isolated seeds, and germination phenology was monitored in an experimental garden. The pericarp has a role in mechanically inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil began to germinate earlier in autumn and germinated to higher percentages than isolated seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of the seeds have nondeep physiological dormancy (PD) and 75–80% intermediate PD. Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if the soil is moist. Afterripening during summer significantly decreased the amount of cold stratification required to break intermediate PD. The presence of both nondeep and intermediate PD in the seed cohort may be a bet-hedging strategy.  相似文献   

3.
Ni BR  Bradford KJ 《Plant physiology》1992,98(3):1057-1068
Mathematical models were developed to characterize the physiological bases of the responses of tomato (Lycopersicon esculentum Mill. cv T5) seed germination to water potential (ψ) and abscisic acid (ABA). Using probit analysis, three parameters were derived that can describe the germination time courses of a seed population at different ψ or ABA levels. For the response of seed germination to reduced ψ, these parameters are the mean base water potential (¯ψb, MPa), the standard deviation of the base water potential among seeds in the population (σψb, MPa), and the “hydrotime constant” (θH, MPa·h). For the response to ABA, they are the log of the mean base ABA concentration ([unk]ABAb, m), the standard deviation of the base ABA concentration among seeds in the population (σABAb, log[m]), and the “ABA-time constant” (θABA, log[m]·h). The values of ¯ψb and [unk]ABAb provide quantitative estimates of the mean sensitivity of germination rate to ψ or ABA, whereas σψb and σABAb account for the variation in sensitivity among seeds in the population. The time constants, θH and θABA, indicate the extent to which germination rate will be affected by a given change in ψ or ABA. Using only these parameters, germination time courses can be predicted with reasonable accuracy at any medium ψ according to the equation probit(g) = [ψ - (θH/tg) - ¯ψb]/σψb, or at any ABA concentration according to the equation probit(g) = [log[ABA] - (θABA/tg) - log[[unk]ABAb]]/σABAb, where tg is the time to radicle emergence of percentage g, and ABA is the ABA concentration (m) in the incubation solution. In the presence of both ABA and reduced ψ, the same parameters can be used to predict seed germination time courses based upon strictly additive effects of ψ and ABA in delaying the time of radicle emergence. Further analysis indicates that ABA and ψ can act both independently and interactively to influence physiological processes preparatory for radicle growth, such as the accumulation of osmotic solutes in the embryo. The models provide quantitative values for the sensitivity of germination to ABA or ψ, allow evaluation of independent and interactive effects of the two factors, and have implications for understanding how ABA and ψ may regulate growth and development.  相似文献   

4.
运用系统溶剂法和生物测定法,以栎属7种植物种子为材料,研究了其种皮、胚(胚及周围部分子叶)和子叶(远离胚端2/3子叶)1.0 g/mL和0.5 g/mL浓度甲醇等浸提液以及各有机相对白菜种子萌发的影响。结果表明:栓皮栎、锐齿栎、蒙古栎、沼生栎和麻栎甲醇浸提液均能显著降低白菜种子发芽率、根长和苗高,且对发芽率的抑制作用逐渐降低;夏栎和房山栎甲醇浸提液对白菜种子发芽率没有显著影响,但对根长和苗高有一定的抑制作用;种子不同部位甲醇浸提液的抑制作用表现为胚>子叶>种皮,且甲醇高浓度浸提液的抑制作用大于低浓度的抑制作用;甲醇相对白菜种子发芽率、苗高或根长的抑制作用最强,其次是乙酸乙酯相,其它溶剂相萃取液的抑制作用不明显。栎属种子甲醇浸提液及各有机相对白菜种子苗高和根长的抑制作用强于对发芽率的影响,说明栎属种子中所含抑制物质主要是限制自身根和芽的生长,可能是造成延迟萌发和出苗不整齐的原因。  相似文献   

5.

Aims

Soil fungal pathogens can result in the failure of seedling establishment, but the effects of fungicide applications on seed/seedling survival have differed among studies. We assumed that the variation may relate to seed dormancy/germination characteristics and hypothesized that nondormant germinating seeds are more likely to be killed by fungal pathogens than dormant seeds.

Methods

Dormant and nondormant seeds of Stipa bungeana and Lespedeza davurica were inoculated with a pathogenic fungus Fusarium tricinctum under laboratory and field conditions. The outcomes of seed/seedling fate and other parameters were evaluated.

Results

In the laboratory, nondormant seeds inoculated with F. tricinctum developed white tufts of mycelium on the radicles of germinating seeds causing them to quickly die, but dormant seeds remained intact. In contrast, in the field inoculation with F. tricinctum did not cause higher mortality of nondormant than dormant seeds but resulted in higher percentages of seedling death before they emerged from soil than the controls.

Conclusions

Our results suggest that dormancy protects seeds from being attacked by some pathogens by preventing germination, but the protection is lost once germination has commenced. Further study involving various plant species with more seeds is needed to assess the generality of this pathogen-seed interaction hypothesis.
  相似文献   

6.
7.
Dormancy in Ambrosia artemisiifolia seeds was broken by 8 weeks of stratification. Germination of nondormant seeds was greater in light than in continuous darkness. Embryos of freshly harvested seeds were nondormant. Leaching and scarification did not stimulate germination of the dormant seeds. Exogenous gibberellin (GA3) slightly increased germination of intact dormant seeds, and the effect was greatly increased by scarification. Germination was greater in the light in both tests. Exogenous indoleacetic acid did not stimulate germination of dormant seeds. Endogenous gibberellin and auxin content increased during stratification, and there was also a significant increase in GA during post-stratification at a favorable germination temperature. Inhibitors in the dormant seeds decreased during stratification and post-stratification. The high concentration of chlorogenic acid present in dormant seeds increased slightly during stratification. An unknown phenol very similar to chlorogenic acid in fluorescence and U.V. absorption significantly increased after 2 weeks of stratification. A significant decrease in the concentration of a second unidentified phenol occurred after 2 weeks of stratification. It is proposed that dormancy in Ambrosia artemisiifolia may be controlled by an inhibitor-promoter complex. The dormant seed is characterized by high inhibitor and low promoter levels. In the nondormant seed the balance was shifted to favor the promoter. Evidence suggests that the inhibitor involved may be abscisic acid and the promoters may be gibberellin and auxin. The content of auxin may be partially controlled by the concentration of phenols.  相似文献   

8.
In flooded habitats, inundations affect important forest regeneration processes, such as seed dispersal and germination. The main seed dispersal mechanism used by species in Austral South American temperate swamp and riparian forests is endozoochory, which releases seeds from the fleshy pericarp. Endozoochory could be favorable or unfavorable in wetland habitats, since this mechanism exposes seeds directly to water and can, in some cases, be detrimental to germination. In this study, we studied whether or not the fleshy pericarp favors germination after the flooding period's end. Furthermore, we quantified if the number of days which the fruit was found to be floating related to its germination success. We used the seeds of three common fleshy fruit species of flooded habitats from southern Chile, the trees Luma apiculata and Rhaphithamnus spinosus, and the vine Luzuriaga radicans. We simulated flooding periods of 7, 15, 30 and 45 days submerging seeds, with and without pericarps, in water. We found that the pericarp's presence significantly increased Luma's germination success and significantly decreased that of Luzuriaga. The germination of Rhaphithamnus was low after periods of flooding in both seed treatments, with no significant differences found between them. The fruits could float for an average of one to four weeks, depending on the species, which did not relate to their germination success. These results show that germination was affected by the presence of fleshy pericarps in flooded conditions and furthermore, that flotation allows for hydrochory from one week to one month. We suggest that in swamp forests multiple seed dispersal mechanisms are advantageous, especially for fleshy-fruited species.  相似文献   

9.
Esashi Y  Katoh H 《Plant physiology》1977,59(2):117-121
Germination of nondormant but impotent small cocklebur seeds (Xanthium pennsylvanicum Wallr.) was promoted profoundly with thiourea or benzyladenine, and slightly with gibberellic acid. Gibberellic acid was ineffective in causing the germination of dormant cocklebur seeds, although thiourea and benzyladenine were effective. Experiments with excised seed pieces showed that the promotive effects of thiourea, benzyladenine, and gibberellic acid on cocklebur seed germination were associated with the enhancement of growth of seed parts; thiourea stimulated predominantly the axial growth, whereas benzyladenine stimulated predominantly the cotyledonary growth.  相似文献   

10.
Respiratory Transition during Seed Germination   总被引:10,自引:14,他引:10       下载免费PDF全文
Experiments with germinating seeds of Wayne soybean (Glycine max Merr.) show that between the 4th and the 8th hour of germination, respiration experiences a transition from predominantly “alternate” respiration, which is sensitive to salicylhydroxamic acid, to a cyanide-sensitive respiration. The dependence of early germination stages on alternate respiration is reflected in several types of seed functions, including subsequent root growth rate, chlorophyll synthesis, and germination itself. The early period of germination is shown to require a normal O2 tension, which is no longer a requirement at later stages. The changing sensitivity to cyanide and to salicylhydroxamic acid is found to be common to seven different types of germinating seeds. It is proposed that the alternate pathway of respiration provides something essential for the completion of the earliest stages of seed germination.  相似文献   

11.
Lettuce (Lactuca sativa ‘Salinas’) seeds fail to germinate when imbibed at temperatures above 25°C to 30°C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37°C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.  相似文献   

12.
Seed of Avena fatua were shown to exhibit a characteristic loss of dormancy during dry storage at 25 C, whereas similar seed stored at 5 C maintained dormancy. 2-Chloroethylphosphonic acid was shown to increase germination of partly dormant seed imbibed under certain temperature regimes; a similar effect could not be established for fully dormant or fully nondormant seed. Using gas-liquid chromatography, natural ethylene levels were followed during imbibition of fully dormant and nondormant seed. A large peak in production was observed in the period prior to radicle emergence in the case of the nondormant seed. Measurements of ethylene production taken at 15 C, following periods of after-ripening in moist soil at either 5 or 25 C, indicated that endogenous production was unlikely to be a main cause of dormancy breakage in this species. The possibility that endogenous ethylene could play a role in natural dormancy breakage in aged seeds is discussed. The practical possibilities of 2-chloroethylphosphonic acid as a dormancy breaking agent in a field situation are outlined.  相似文献   

13.
The hypothesis that endogenous short chain fatty acids (C 6-C 10) are important in maintaining seeds of wild oat (Avena fatua L.) in the dormant state by acting as natural germination inhibitors (Berrie, Buller, Don, Parker, 1979 Plant Physiol 63: 758-764) was investigated. When germination of nondormant seeds was inhibited by treatment with short chain fatty acids, the seeds did not revert to a similar biochemical and physiological state as exhibited by dormant seeds. First, nonanoic acid-induced inhibition of seed germination was not reversed by hormone treatments which normally break dormancy in wild oat seeds. Second, nondormant seeds treated with short chain fatty acids maintained similar relative proportions of the pentose phosphate pathway and the Embden-Meyerhoff-Parnas pathway for respiratory glucose metabolism as that found in the nondormant controls. Seeds imbibed in the presence of nonanoic acid lost more amino acids and proteins into the imbibition solution than did the untreated controls, suggesting membrane damage had occurred. Inasmuch as increasing concentrations of nonanoic acid also progressively reduced the growth of the coleoptile and roots of intact seedlings until all growth ceased and no germination occurred, the inhibition of seed germination could be due to a nonspecific inhibition of growth of the embryo, perhaps because of disruption of membrane structure and function. Finally, no correlation between endogenous levels of short chain fatty acids in seeds or isolated embryonic axes and seed dormancy could be demonstrated.  相似文献   

14.

Background and Aims

Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination.

Methods

Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC.

Key Results

During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied.

Conclusions

The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators.  相似文献   

15.
Roses are known to produce seeds with high concentrations of abscisic acid (ABA), both in the pericarp and in the testa tissues of the seed coat. No studies on roses have documented embryo morphological differentiation or the concentration of ABA in the embryo, which is known to inhibit premature germination. In this study, hip and seed growth of two hybrid roses were characterised from 3 to 60 days after pollination (DAP). An increase of about five times the hip mass at 3 DAP was necessary to obtain fully developed seeds. Fully developed embryos were found at 15 DAP and completely developed seeds at 30 DAP. The same pattern of hip mass increase was shown in both genotypes. In parallel, quantification of ABA in the developing embryos was carried out by ELISA. An exponential decay in ABA concentration was found in embryos of both genotypes, with basal levels (<0.5 pmol mg?1) registered at 30 DAP. These changes in ABA, during the embryo development, could be used to formulate time points for embryo rescue and understanding of the pollination to seedling stage.  相似文献   

16.
Muskmelon (Cucumis melo L.) seeds are germinable 15 to 20 days before fruit maturity and are held at relatively high water content within the fruit, yet little precocious germination is observed. To investigate two possible factors preventing precocious germination, the inhibitory effects of abscisic acid and osmoticum on muskmelon seed germination were determined throughout development. Seeds were harvested at 5-day intervals from 30 to 65 days after anthesis (DAA) and incubated either fresh or after drying on factorial combinations of 0, 1, 3.3, 10, or 33 micromolar abscisic acid (ABA) and 0, −0.2, −0.4, −0.6, or −0.8 megapascals polyethylene glycol 8000 solutions at 30°C. Radicle emergence was scored at 12-hour intervals for 10 days. In the absence of ABA, the water potential (Ψ) required to inhibit fresh seed germination by 50% decreased from −0.3 to −0.8 megapascals between 30 and 60 DAA. The Ψ inside developing fruits was from 0.4 to 1.4 megapascals lower than that required for germination at all stages of development, indicating that the fruit Ψ is sufficiently low to prevent precocious germination. At 0 megapascal, the ABA concentration required to inhibit germination by 50% was approximately 10 micromolar up to 50 DAA and increased to >33 micromolar thereafter. Dehydration improved subsequent germination of immature seeds in ABA or low Ψ. There was a linear additive interaction between ABA and Ψ such that 10 micromolar ABA or −0.5 megapascal osmotic potential resulted in equivalent, and additive, reductions in germination rate and percentage of mature seeds. Abscisic acid had no effect on embryo solute potential or water content, but increased the apparent minimum turgor required for germination. ABA and osmoticum appear to influence germination rates and percentages by reducing the embryo growth potential (turgor in excess of a minimum threshold turgor) but via different mechanisms. Abscisic acid apparently increases the minimum turgor threshold, while low Ψ reduces turgor by reducing seed water content.  相似文献   

17.
18.
花魔芋球茎发芽抑制物质的提取、分离与鉴定   总被引:1,自引:0,他引:1  
从休眠花魔芋球茎中获得挥发性、酸性、酚类、碱性和中性5类提取物,分别用它们及其硅胶薄层层析带处理小白菜种子和已解除休眠的魔芋种子,其中酸性提取物对两种种子发芽均有显著的抑制作用。酸性提取物用DEAE-纤维素柱层析和硅胶薄层层析分离纯化,气谱-质谱联用仪鉴定含有脱落酸、阿魏酸和油酸。用其外源有机酸溶液分别处理已解除休眠的魔芋球茎,ABA和阿魏酸对球茎顶芽萌发及生长有明显的抑制作用。  相似文献   

19.
The role of abscisic acid (ABA) in the dormancy induction of tomato (Lycopersicon esculentum) seeds was studied by comparison of the germination behavior of the ABA-deficient sitiens mutant with that of the isogenic wild-type genotype. Freshly harvested mutant seeds, in contrast to wild-type seeds, always readily germinate and even exhibit viviparous germination in overripe fruits. Crosses between mutant and wild-type and self-pollination of heterozygous plants show that in particular the ABA fraction of embryo and endosperm is decisive for the induction of dormancy. After-ripened wild-type seeds fully germinate in water but are more sensitive toward osmotic inhibition than mutant seeds. Germination of both wild-type and mutant seeds is equally sensitive toward inhibition by exogenous ABA. ABA content of mature wild-type seeds is about 10-fold the level found in mutant seeds. Nevertheless, it is argued that the differences in dormancy between the seeds of both genotypes are not a result of actual ABA levels in the mature seeds or fruits but a result of differences in ABA levels during seed development. It is hypothesized that the high levels of ABA that occur during seed development in wild-type seeds induce an inhibition of cell elongation of the radicle that can still be observed after long periods of dry storage.  相似文献   

20.
Abscisic Acid and its relationship to seed filling in soybeans   总被引:30,自引:10,他引:20       下载免费PDF全文
The effect of exogenous abscisic acid (ABA) on the rate of sucrose uptake by soybean (Glycine max L. Merr.) embryos was evaluated in an in vitro system. In addition, the concentrations of endogenous ABA in seeds of three soybean Plant Introduction (PI) lines, differing in seed size, were commpared to their seed growth rates. ABA (10−7 molar) stimulated in vitro sucrose uptake in soybean (cv `Clay') embryos removed from plants grown in a controlled environment chamber, but not in embryos removed from field-grown plants of the three PI lines. However, the concentration of ABA in seeds of the three field-grown PI lines correlated well with their in situ seed growth rates and in vitro [14C] sucrose uptake rates.

Across genotypes, the concentration of ABA in seeds peaked at 8.5 micrograms per gram fresh weight, corresponding to the time of most rapid seed growth rate, and declined to 1.2 micrograms per gram at physiological maturity. Seeds of the large-seeded genotype maintained an ABA concentration at least 50% greater than that of the small-seeded genotype throughout the latter half of seed filling. A higher concentration of ABA was found in seed coats and cotyledons than in embryonic axes. Seed coats of the large-seeded genotype always had a higher concentration of ABA than seed coats of the small-seeded line. It is suggested that this higher concentration of ABA in seed coats of the large-seeded genotype stimulates sucrose unloading into the seed coat apoplast and that ABA in cotyledons may enhance sucrose uptake by the cotyledons.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号