首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J M Conlon  J W Hicks 《Peptides》1990,11(3):461-466
The chelonians occupy an important position in phylogeny representing a very early branching from the ancestral reptile stock. Hormonal polypeptides in an extract of the pancreas of the red-eared turtle were purified to homogeneity by reversed phase HPLC and their primary structures were determined. Turtle insulin is identical to chicken insulin. Turtle glucagon differs from chicken glucagon by the substitution of a serine by a threonine residue at position 16 and from mammalian glucagon by an additional substitution of an asparagine by a serine residue at position 28. Turtle pancreatic somatostatin is identical to mammalian somatostatin-14. The crocodilians are phylogenetically much closer to the birds than are the chelonians. Alligator insulin, however, contains three amino acid substitutions relative to chicken insulin. Thus, caution is required when inferring phylogenetic relationships based upon a comparison of amino acid sequences of homologous peptides.  相似文献   

2.
The genomic database for a marsupial, the opossum Monodelphis domestica, is highly advanced. This allowed a complete analysis of the keratin I and keratin II gene cluster with some 30 genes in each cluster as well as a comparison with the human keratin clusters. Human and marsupial keratin gene clusters have an astonishingly similar organization. As placental mammals and marsupials are sister groups a corresponding organization is also expected for the archetype mammal. Since hair is a mammalian acquisition the following features of the cluster refer to its origin. In both clusters hair keratin genes arose at an interior position. While we do not know from which epithelial keratin genes the first hair keratins type-I and -II genes evolved, subsequent gene duplications gave rise to a subdomain of the clusters with many neighboring hair keratin genes. A second subdomain accounts in both clusters for 4 neighboring genes encoding the keratins of the inner root sheath (irs) keratins. Finally the hair keratin gene subdomain in the type-I gene cluster is interrupted after the second gene by a region encoding numerous genes for the high/ultrahigh sulfur hair keratin-associated proteins (KAPs). We also propose a tentative synteny relation of opossum and human genes based on maximal sequence conservation of the encoded keratins. The keratin gene clusters of the opossum seem to lack pseudogenes and display a slightly increased number of genes. Opossum keratin genes are usually longer than their human counterparts and also show longer intergenic distances.  相似文献   

3.
Opossum (Didelphis virginiana) "little" and "big" gastrins   总被引:1,自引:0,他引:1  
1. "Little" gastrins from most mammalian species are 17 amino acid peptides and the precursor "big" gastrins are 34 amino acid peptides. 2. "Little" gastrins of the New World hystricomorphs, guinea-pig and chinchilla, are 16 amino acid peptides due to deletion of a glutamic acid in the region 6-9 from their NH2-terminus and the corresponding "big" gastrins are 33 amino acid peptides. 3. Antral gastrins from the opossum, a New World marsupial, have a glutamic acid deletion in the same region as the hystricomorph gastrins. 4. Opossum "big" gastrin is a 33 amino acid peptide with the following sequence: less than ELGPQDLPYLTADLSKKQGPWLEEEEAYGWMDF#.  相似文献   

4.
Mammalian ALDH3 isozymes participate in peroxidic and fatty aldehyde metabolism, and in anterior eye tissue UV-filtration. BLAT analyses were undertaken of the opossum genome using rat ALDH3A1, ALDH3A2, ALDH3B1, and ALDH3B2 amino acid sequences. Two predicted opossum ALDH3A1-like genes and an ALDH3A2-like gene were observed on chromosome 2, as well as an ALDH3B-like gene, which showed similar intron–exon boundaries with other mammalian ALDH3-like genes. Opossum ALDH3 subunit sequences and structures were highly conserved, including residues previously shown to be involved in catalysis and coenzyme binding for rat ALDH3A1. Eleven glycine residues were conserved for all of the opossum ALDH3-like sequences examined, including two glycine residues previously located within the stem of the rat ALDH3A1 active site funnel. Phylogeny studies of human, rat, opossum, and chicken ALDH3-like sequences indicated that the common ancestor for ALDH3A- and ALDH3B-like genes predates the appearance of birds during vertebrate evolution.  相似文献   

5.
Studies on the developing mammalian pancreas have suggested that insulin and glucagon co-exist in a transient cell population and that peptide YY (PYY) marks the earliest developing endocrine cells. We have investigated this in the embryonic avian pancreas, which is characterised by anatomical separation of insulin and glucagon islets. Moreover, we have compared the development of the endocrine cells to that of processing enzymes involved in pancreatic hormone biosynthesis. PYY-like immunoreactivity occurred in islet cells from the youngest stages examined: it increased in amount from approximately 5 days of incubation and was co-localised with glucagon and to a lesser extent with insulin. Insulin and glucagon cells were numerous: co-existence of the two peptides in the same cells was but rarely observed. From the youngest stages examined, prohormone convertase (PC) 1/3-like immunoreactivity was detected in insulin cells and PC2-, 7B2- and carboxypeptidase E-like immunoreactivity in both glucagon and insulin cells. We conclude that: (1) PYY-like immunoreactivity occurs in avian islet cells but generally in lesser amounts than in mammals at the earlier stages, (2) the paucity of cells co-expressing insulin and glucagon indicate that all avian insulin cells do not pass through a stage where they co-express glucagon and (3) the early expression of the enzymes responsible for the processing of prohormones suggests that this process is initiated soon after islet cells first differentiate.  相似文献   

6.
Ovulated opossum oocytes are surrounded by a zona pellucida, but not by cumulus cells. Opossum sperm carry at least four acrosomal hydrolases (hyaluronidase, acrosin, N-acetylhexosaminidase, and arylsulfatase); the functions of these enzymes in opossum fertilization are uncertain. To identify possible substrates for these hydrolases, the ultrastructure of opossum oocytes was examined after fixation in the presence of ruthenium red which stabilizes extracellular matrices. This oocyte is unusual in having a wide perivitelline space containing a highly structured extracellular matrix (ECM). The ECM is comprised of granules and filaments, and it resembles matrices known to contain hyaluronic acid in other systems. Hydrolases, known to be present in opossum acrosomes, were tested for their effect on the ultrastructure of the zona pellucida and matrix of the perivitelline space. Trypsin dissolved the zona pellucida and decreased the size of the granules in the perivitelline space. Streptomyces hyaluronidase, which specifically attacks hyaluronic acid, removed only matrix filaments. Arylsulfatase, N-acetylhexosaminidase, and beta-glucuronidase did not affect the zona pellucida or ECM in our assay. These observations are consistent with the ideas that (1) opossum sperm must penetrate two oocyte investments, the zona pellucida and ECM of the perivitelline space; (2) the ECM contains hyaluronic acid (filaments) and protein (granules); (3) opossum sperm acrosin may function in penetration of the zona pellucida and ECM; and (4) opossum sperm hyaluronidase may function in penetration of the ECM by degrading hyaluronic acid (filaments). Dissolution of the granules and filaments from oocyte microvilli is probably necessary to permit close apposition and fusion of the sperm and oocyte membranes. The evolutionary significance of these results is discussed.  相似文献   

7.
Opossum hemoglobin assumes a T quaternary structure upon NO ligation in the absence of organic phophates at pH 6.7. In addition, stripped opossum hemoglobin exhibits a low oxygen affinity when compared to human hemoglobin and a pH-dependent heme-heme interaction with an n value of 2.14 at pH 7.0 and 2.46 at pH 7.35. These observations indicate that opossum hemoglobin may have a destabilized oxy structure when compared to hemoglobin A due to differences in primary structure. Thus, the strong trans ligand effect of nitric oxide is able to disrupt the proximal histidine-iron bond in the alpha-hemes triggering a conformational transition to the T state. Absence of a distal histidine in the alpha-subunits and, therefore an impaired donor acceptor interaction with the sixth ligand, could contribute to the lack of stability of the R quaternary structure in opossum nitrosylhemoglobin. The reduced oxygen affinity of opossum hemoglobin may be compensated for by other physiological factors such as a reduced phosphate effect.  相似文献   

8.
Opossum methemoglobin differs from methemoglobin A in spectral, spin state, conformational and chemical properties. The primary structural alterations in opossum hemoglobin, including the critical substitution at alpha 58 (E7) His leads to Gln result in the following properties. (a) Major contribution of the spectral transitions due to inositol hexakisphosphate binding arises from the alpha chains. (b) The aquomet to hydroxymet (high-spin to low-spin) transition as a function of pH is slightly retarded resulting in considerable high spin at alkaline pH. (c) The tertiary conformation (t) around the beta hemes, upon transition to a T quaternary state, differs from the known hemoglobin t tertiary structure. (d) Both alpha and beta hemes are susceptible to rapid reduction by ascorbic acid (the reduction rate being tenfold faster than that of methemoglobin A). These properties suggest that the heme environments in both the alpha and beta subunits of opossum hemoglobin are different from those of human hemoglobin A.  相似文献   

9.
The C->U editing of RNA is widely found in plant and animal species. In mammals it is a discrete process confined to the editing of apolipoprotein B (apoB) mRNA in eutherians and the editing of the mitochondrial tRNA for glycine in marsupials. Here we have identified and characterised apoB mRNA editing in the American opossum Monodelphus domestica. The apoB mRNA editing site is highly conserved in the opossum and undergoes complete editing in the small intestine, but not in the liver or other tissues. Opossum APOBEC-1 cDNA was cloned, sequenced and expressed. The encoded protein is similar to APOBEC-1 of eutherians. Motifs previously identified as involved in zinc binding, RNA binding and catalysis, nuclear localisation and a C-terminal leucine-rich domain are all conserved. Opossum APOBEC-1 contains a seven amino acid C-terminal extension also found in humans and rabbits, but not present in rodents. The opossum APOBEC-1 gene has the same intron/exon organisation in the coding sequence as the eutherian gene. Northern blot and RT-PCR analyses and an editing assay indicate that no APOBEC-1 was expressed in the liver. Thus the far upstream promoter responsible for hepatic expression in rodents does not operate in the opossum. An APOBEC-1-like enzyme such as might be involved in C->U RNA editing of tRNA in marsupial mitochondria was not demonstrated. The activity of opossum APOBEC-1 in the presence of both chicken and rodent auxiliary editing proteins was comparable to that of other mammals. These studies extend the origins of APOBEC-1 back 170 000 000 years to marsupials and help bridge the gap in the origins of this RNA editing process between birds and eutherian mammals.  相似文献   

10.
Cells immunoreactive for insulin, glucagon, somatostatin, bovine pancreatic polypeptide and 5-hydroxytryptamine are found in the pancreas of the newborn opossum and of all later stages examined. All immunoreactive cell types are present in primary and secondary islets and within elements of the exocrine pancreas. Cells immunoreactive for glucagon, bovine pancreatic polypeptide, somatostatin and 5-hydroxytryptamine generally are confined to the periphery of secondary (intralobular) islets, whereas insulin-immunoreactive cells occupy the central region. Endocrine cells within primary (interlobular) islets are randomly scattered. A small number of pancreatic-polypeptide-immunoreactive cells are reactive for the amine 5-hydroxytryptamine also, but the reverse is not observed. The endocrine pancreas continues to differentiate and develop throughout postnatal life and into adulthood. Little difference was observed between the head and tail regions of the opossum pancreas for the measurements made.  相似文献   

11.
Chicken glucagon: sequence and potency in receptor assay   总被引:1,自引:0,他引:1  
Glucagon is a 29 amino acid peptide that is generally highly conserved. Among mammalian glucagons the only one that has been shown to differ significantly is that of the guinea pig which differs from the others in 5 of the 9 COOH-terminus amino acids. The amino acid content and partial sequencing of chicken glucagon had been reported earlier. This report describes the purification and complete amino acid sequencing of chicken glucagon and demonstrates that it differs from the usual mammalian glucagon by the replacement of asparagine at position 28 with serine. Chicken glucagon is indistinguishable from porcine glucagon in the rat liver receptor assay system.  相似文献   

12.
BLAT (BLAST-Like Alignment Tool) analyses and interrogations of the recently published opossum genome were undertaken using previously reported rat ADH amino acid sequences. Evidence is presented for six opossum ADH genes localized on chromosome 5 and organized in a comparable ADH gene cluster to that reported for human and rat ADH genes. The predicted amino acid sequences and secondary structures for the opossum ADH subunits and the intron-exon boundaries for opossum ADH genes showed a high degree of similarity with other mammalian ADHs, and four opossum ADH classes were identified, namely ADH1, ADH3, ADH6 and ADH4 (for which three genes were observed: ADH4A, ADH4B and ADH4C). Previous biochemical analyses of opossum ADHs have reported the tissue distribution and properties for these enzymes: ADH1, the major liver enzyme; ADH3, widely distributed in opossum tissues with similar kinetic properties to mammalian class 3 ADHs; and ADH4, for which several forms were localized in extrahepatic tissues, especially in the digestive system and in the eye. These ADHs are likely to perform similar functions to those reported for other mammalian ADHs in the metabolism of ingested and endogenous alcohols and aldehydes. Phylogenetic analyses examined opossum, human, rat, chicken and cod ADHs, and supported the proposed designation of opossum ADHs as class I (ADH1), class III (ADH3), class IV (ADH4A, ADH4B and ADH4C) and class VI (ADH6). Percentage substitution rates were examined for ADHs during vertebrate evolution which indicated that ADH3 is evolving at a much slower rate to that of the other ADH classes.  相似文献   

13.
Polyacrylamide gel isoelectric focusing (PAGE-IEF), cellulose acetate electrophoresis, and histochemical techniques were used to examine the tissue and subcellular distribution, genetics and biochemical properties of aldehyde dehydrogenase (ALDH) isozymes in a didelphid marsupial, the gray short-tail opossum (Monodelphis domestica). At least 14 zones of activity were resolved by PAGE-IEF and divided into five isozyme groups and three ALDH classes, based upon comparisons with properties previously reported for human, baboon, rat, and mouse ALDHs. Opossum liver ALDHs were distributed among cytosol (ALDHs 1 and 5) and large granular (mitochondrial) fractions (ALDHs 2 and 5). Similarly, kidney ALDHs were distributed between the cytosol (ALDH5) and the mitochondrial fractions (ALDHs 2, 4, and 5), whereas a major isozyme (ALDH3), found in high activity in cornea, esophagus, ear pinna, tail, and stomach extracts, was localized predominantly in the cytosol fraction. Phenotypic variants of the latter enzyme were shown to be inherited in a normal Mendelian fashion, with two alleles at a single locus (ALDH3) showing codominant expression. The data provided evidence for genetic identity of corneal, ear pinna, tail, and stomach ALDH3 and supported biochemical evidence from other mammalian species that this enzyme has a dimeric subunit structure.  相似文献   

14.
15.
The endocrine pancreas of the Australian brush-tailed possum (Trichosurus vulpecula) was investigated by means of immunocytochemistry using the avidin-biotin-peroxidase technique. This was a light microscopic study using this established technique. Serial paraffin sections were stained individually with primary antibodies for glucagon, insulin, somatostatin, and pancreatic polypeptide (PP), showing the same islet. Cells immunoreactive to glucagon, insulin, somatostatin and PP were found in endocrine islets. PP cells appear to be scattered amidst the exocrine portion also. Insulin immunoreactive cells were located in the central region of islet, glucagon in the periphery, somatostatin in periphery and had elongated processes. PP cells were more sparse and located both in the periphery of islet and amidst the exocrine tissue. These results can then be related to a similar study in the same marsupial, but using the immunofluorescence technique and to studies in other marsupials such as grey kangaroo (Macropus fuliginosus) fat-tailed dunnart (Sminthopsis crasicaudata) and the American opossum (Didelphis virginiana). These investigations are part of a study in Australian mammals.  相似文献   

16.
Both insulin and glucagon from the pancreas of the holocephalan cartilaginous fish Callorhynchus milii (elephantfish) have been isolated and purified. Two reverse-phase h.p.l.c. steps enabled recovery of sufficient material for gas-phase sequencing of the intact chains as well as peptide digestion products. The elephantfish insulin sequence shows 14 differences from pig insulin, including two unusual substitutions, Val-A14 and Gln-B30, though none of these is thought likely to influence receptor binding significantly. The insulin B-chain contains 31 residues, one more than mammalian insulins, but markedly less than that of the closely related ratfish with which it otherwise exhibits high sequence similarity. Elephantfish and pig glucagons differ at only four positions, but there are six changes from the ratfish glucagon-36 (normal glucagon contains 29 residues) sequence. It is apparent that different prohormone proteolytic processing mechanisms operate in the two holocephalan species.  相似文献   

17.
Opossum adrenal medulla: I. Postnatal development and normal anatomy   总被引:1,自引:0,他引:1  
The anatomy and histology of the adrenal gland in the adult opossum were found to be typical for mammals. The development of the adrenal medulla was also found to follow the typical mammalian pattern. Primitive sympathetic cells were found in both intra- and extra-adrenal locations in the newborn at a time when chromaffin precursor cells were migrating to the adrenal anlage. Pheochromoblasts first appeared within the forming medulla where at a later stage chromaffin cells could be observed forming columns of cells between adjacent sinusoids. Unlike in other mammals, much of this development takes place postnatally when the neonate is in the mother's marsupium. The value of the developing opossum adrenal medulla as an experimental model is stressed, since a significant amount of development takes place in an environment that is accessible to experimental manipulation.  相似文献   

18.
Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release of insulin by 30% and maintained that level for the full 30-min test period. The rate of insulin release returned to the glucose-induced base line after removal of the peptide. The same insulin level was produced by 3 x 10(-9) M glucagon, and at 3 x 10(-7) M glucagon insulin release was enhanced 290% above the glucose base line.  相似文献   

19.
Opossum kidney epithelial cells synthesize and secrete two Cobalamin (Cbl) binding proteins of Mr 66,000 and 43,000. When grown on culture inserts, the apical medium contained both these proteins while the basolateral medium contained only the 43 kDa Cbl binder. Colchicine, a microtubule disruptive drug, increased two fold the apical but not the basolateral secretion of the Cbl binding proteins. Although the opossum Cbl binders did not cross react with anti-serum raised to Cbl binders from other species, the identity based on Cbl binding and size suggest that the 66 kDa and 43 kDa proteins are haptocorrin and transcobalamin II.  相似文献   

20.
DNA replication patterns were determined in the autosomes and sex chromosomes of phytohemagglutinin-stimulated lymphocytes from the opossum (Didelphis virginiana) by employing thymidine-3H labeling and high-resolution radioautography. Opossum chromosomes are desirable experimental material due to their large size, low number (2n = 22), and morphologically distinct sex chromosomes. The autosomes in both sexes began DNA synthesis synchronously and terminated replication asynchronously. One female X chromosome synthesized DNA throughout most of the S phase. Its homologue, however, began replication approximately 3.5 hr later. The two X's terminated DNA synthesis synchronously, slightly later than the autosomes. This form of late replication, in which one X chromosome begins DNA synthesis later than its homologue but completes replication at the same time as its homologue, is apparently unique in the opossum. The male X synthesized DNA throughout S while the Y chromosome exhibited late-replicating characteristics. The two sex chromosomes completed synthesis synchronously, slightly later than the autosomes. Grain counts were performed on all chromosomes to analyze trends in labeling intensity at hourly intervals of S. By analyzing the percent of labeled mitotic figures on radioautographs at various intervals after introduction of arginine-3H, chromosomal protein synthesis was found not to be restricted to any portion of interphase but to increase throughout S and into G2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号