首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Two new tprD alleles have been identified in Treponema pallidum: tprD2 is found in 7 of 12 T. pallidum subsp. pallidum isolates and 7 of 8 non-pallidum isolates, and tprD3 is found in one T. pallidum subsp. pertenue isolate. Antibodies against TprD2 are found in persons with syphilis, demonstrating that tprD2 is expressed during infection.  相似文献   

7.
Lactoferrin-binding or -associated proteins were identified in Treponema pallidum subspecies pallidum and Treponema denticola by affinity column chromatography using human lactoferrin and detergent-solubilized, radiolabelled spirochaetes. Two discrete polypeptides of T. pallidum with masses of 45 and 40kDa and a broad band from 29-34 kDa exhibited association with human apo- and partially ferrated lactoferrin. T. denticola produced two proteins that associated with a lactoferrin affinity matrix (50 and 35 kDa). T. pallidum and T. denticola did not associate with soluble, human transferrin in parallel experiments. Soluble human lactoferrin competed with all lactoferrin-associated proteins from T. pallidum and T. denticola in competitive-binding assays. However, the T. denticola proteins dissociated from a lacto-ferrin-affinity matrix in the presence of differing concentrations of unlabelled, soluble lactoferrin competitor. Treatment with phospholipase D altered migration of the diffuse 29-34 kDa band of T. pallidum suggesting that the polypeptide was lipid-modified. Each of the lactoferrin-binding proteins from T. pallidum and T. denticola reacted with pooled rabbit syphilitic antisera. The lactoferrin-binding proteins of T. pallidum reacted with human sera from patients at all stages of syphilis. In addition, a monoclonal antibody generated against the 45 kDa polypeptide of T. pallidum crossreacted with the 29–34 kDa protein.  相似文献   

8.
Identification of Treponema pallidum penicillin-binding proteins.   总被引:6,自引:3,他引:3       下载免费PDF全文
Penicillin-binding proteins of 180, 89, 80, 68, 61, 41, and 38 kilodaltons were identified in Treponema pallidum (Nichols) by their covalent binding of [35S]benzylpenicillin. Penicillin-binding proteins are localized in the plasma membranes of many bacterial species and may serve as useful markers for determining plasma membrane intactness in T. pallidum fractionation studies.  相似文献   

9.
Shape of Treponema pallidum   总被引:6,自引:2,他引:4       下载免费PDF全文
Treponema pallidum was found to be not helical, but a flat wave twisted into one to five different planes per cell.  相似文献   

10.
To identify potential opsonic targets of Treponema pallidum subsp. pallidum, a treponemal genomic expression library was constructed and differentially screened with opsonic and non-opsonic T. pallidum antisera. This method identified an immunoreactive clone containing an open reading frame encoding a 356 residue protein. Nucleotide sequence analysis demonstrated the translated protein to be a homologue of glycerophosphodiester phosphodiesterase, a glycerol metabolizing enzyme previously identified in Haemophilus influenzae, Escherichia coli, Bacillus subtilis and Borrelia hermsii. Sequence alignment analyses revealed the T. pallidum and H. influenzae enzymes share a high degree of amino acid sequence similarity (72%), suggesting that in T. pallidum this molecule may be surface exposed and involved in IgD binding as is the case with its counterpart in H. influenzae.  相似文献   

11.
Treponema pallidum fibronectin-binding proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
Putative adhesins were predicted by computer analysis of the Treponema pallidum genome. Two treponemal proteins, Tp0155 and Tp0483, demonstrated specific attachment to fibronectin, blocked bacterial adherence to fibronectin-coated slides, and supported attachment of fibronectin-producing mammalian cells. These results suggest Tp0155 and Tp0483 are fibronectin-binding proteins mediating T. pallidum-host interactions.  相似文献   

12.
Despite more than a century of research, genetic manipulation of Treponema pallidum subsp. pallidum (T. pallidum), the causative agent of syphilis, has not been successful. The lack of genetic engineering tools has severely limited understanding of the mechanisms behind T. pallidum success as a pathogen. A recently described method for in vitro cultivation of T. pallidum, however, has made it possible to experiment with transformation and selection protocols in this pathogen. Here, we describe an approach that successfully replaced the tprA (tp0009) pseudogene in the SS14 T. pallidum strain with a kanamycin resistance (kanR) cassette. A suicide vector was constructed using the pUC57 plasmid backbone. In the vector, the kanR gene was cloned downstream of the tp0574 gene promoter. The tp0574prom-kanR cassette was then placed between two 1-kbp homology arms identical to the sequences upstream and downstream of the tprA pseudogene. To induce homologous recombination and integration of the kanR cassette into the T. pallidum chromosome, in vitro-cultured SS14 strain spirochetes were exposed to the engineered vector in a CaCl2-based transformation buffer and let recover for 24 hours before adding kanamycin-containing selective media. Integration of the kanR cassette was demonstrated by qualitative PCR, droplet digital PCR (ddPCR), and whole-genome sequencing (WGS) of transformed treponemes propagated in vitro and/or in vivo. ddPCR analysis of RNA and mass spectrometry confirmed expression of the kanR message and protein in treponemes propagated in vitro. Moreover, tprA knockout (tprAko-SS14) treponemes grew in kanamycin concentrations that were 64 times higher than the MIC for the wild-type SS14 (wt-SS14) strain and in infected rabbits treated with kanamycin. We demonstrated that genetic manipulation of T. pallidum is attainable. This discovery will allow the application of functional genetics techniques to study syphilis pathogenesis and improve syphilis vaccine development.  相似文献   

13.
The outer membranes from Treponema pallidum subsp. pallidum and Treponema vincentii were isolated by a novel method. Purified outer membranes from T. pallidum and T. vincentii following sucrose gradient centrifugation banded at 7 and 31% (wt/wt) sucrose, respectively. Freeze fracture electron microscopy of purified membrane vesicles from T. pallidum and T. vincentii revealed an extremely low density of protein particles; the particle density of T. pallidum was approximately six times less than that of T. vincentii. The great majority of T. vincentii lipopolysaccharide was found in the outer membrane preparation. The T. vincentii outer membrane also contained proteins of 55 and 65 kDa. 125I-penicillin V labeling demonstrated that t. pallidum penicillin-binding proteins were found exclusively with the protoplasmic cylinders and were not detectable with purified outer membrane material, indicating the absence of inner membrane contamination. Isolated T. pallidum outer membrane was devoid of the 19-kDa 4D protein and the normally abundant 47-kDa lipoprotein known to be associated with the cytoplasmic membrane; only trace amounts of the periplasmic endoflagella were detected. Proteins associated with the T. pallidum outer membrane were identified by one- and two-dimensional electrophoretic analysis using gold staining and immunoblotting. Small amounts of strongly antigenic 17- and 45-kDa proteins were detected and shown to correspond to previously identified lipoproteins which are found principally with the cytoplasmic membrane. Less antigenic proteins of 65, 31 (acidic pI), 31 (basic pI), and 28 kDa were identified. Compared with whole-organism preparations, the 65- and the more basic 31-kDa proteins were found to be highly enriched in the outer membrane preparation, indicating that they may represent the T. pallidum rare outer membrane proteins. Reconstitution of solubilized T. pallidum outer membrane into lipid bilayer membranes revealed porin activity with two estimated channel diameters of 0.35 and 0.68 nm based on the measured single-channel conductances in 1 M KCl of 0.40 and 0.76 nS, respectively.  相似文献   

14.
15.
The genomic DNA fragment which contains ribosomal RNA (rRNA) genes for Treponema phagedenis was cloned into bacteriophage vector lambda EMBL3. A restriction map of the fragment was constructed and the organization of the rRNA genes was determined. The fragment contained at least one copy of the 16S, 23S and 5S sequences and the genes are arranged in the order 16S-23S-5S. Southern hybridization using radiolabeled rRNA gene probes to genomic DNA from T. phagedenis strain Reiter and T. pallidum strain Nichols showed that these organisms have two radioactive fragments which hybridize to the probes in their genome. These results suggest that both pathogenic and non-pathogenic strains of Treponema may carry at least two sets of rRNA genes on their chromosomes.  相似文献   

16.
The nucleotide sequence of a DNA gyrase B subunit gene (gyrB) from Treponema pallidum has been determined. Southern blot analysis of T. pallidum chromosomal DNA indicated that this gene is present as a single copy. The organization of genes flanking the gyrB gene is unique in comparison to that of other bacteria. The gyrB gene encodes a 637 amino acid protein whose deduced sequence has a high degree of homology with type-II topoisomerase ATPase subunits (GyrB and ParE). Five type-II topoisomerase motifs, an ATP-binding site (Walker A), and amino acid residues that putatively interact with ATP, are highly conserved in the T. pallidum GyrB protein.  相似文献   

17.
Three genetically distinct groups of treponemes have been identified by saturation reassociation assays using 125I-labeled treponemal DNAs. The three groups are (i) virulent Treponema pallidum (Nichols strain), (ii) T. phagedenis and its biotypes Reiter and Kazan 5, and (iii) T. refringens biotypes Nichols and Noguchi. There is no detectable DNA sequence homology (less than 5%) among the three groups. The groups have distinct guanine + cytosine contents: 52.4 to 53.7% for T. pallidum, 41.5% for T. refringens, and 38 to 39% for T. phagedenis.  相似文献   

18.
A physical map of the chromosome of Treponema pallidum subsp. pallidum (Nichols), the causative agent of syphilis, was constructed from restriction fragments produced by NotI, SfiI, and SrfI. These rare-cutting restriction endonucleases cleaved the T. pallidum genome into 16, 8, and 15 fragments, respectively. Summation of the physical lengths of the fragments indicates that the chromosome of T. pallidum subsp. pallidum is approximately 1,030 to 1,080 kbp in size. The physical map was constructed by hybridizing a variety of probes to Southern blots of single and double digests of T. pallidum genomic DNA separated by contour-clamped homogeneous electric field electrophoresis. Probes included cosmid clones constructed from T. pallidum subsp. pallidum genomic DNA, restriction fragments excised from gels, and selected genes. Physical mapping confirmed that the chromosome of T. pallidum subsp. pallidum is circular, as the SfiI and SrfI maps formed complete circles. A total of 13 genes, including those encoding five membrane lipoproteins (tpn47, tpn41, tpn29-35, tpn17, and tpn15), a putative outer membrane porin (tpn50), the flagellar sheath and hook proteins (flaA and flgE), the cytoplasmic filament protein (cfpA), 16S rRNA (rrnA), a major sigma factor (rpoD), and a homolog of cysteinyl-tRNA synthetase (cysS), have been localized in the physical map as a first step toward studying the genetic organization of this noncultivable pathogen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号