首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(5):287-290
Epigenetics is the study of hereditable chromatin modifications, such as DNA methylation, histone modifications, and nucleosome-remodelling, which occur without alterations to the DNA sequence. The establishment of different epigenetic states in eukaryotes depends on regulatory mechanisms that induce structural changes in chromatin in response to environmental and cellular cues. Two classes of enzymes modulate chromatin accessibility: chromatin-covalent modifiers and ATP-dependent chromatin remodelling complexes. The first class of enzymes catalyzes covalent modifications of DNA as well as the amino- and carboxy-terminal tails of histones, while the second uses the energy of ATP hydrolysis to reposition nucleosomes along the chromatin fibers or to incorporate histone variants. Thus, epigenetic modifications are reversible nuclear reactions. In the last decade, many studies have strongly indicated that alterations in epigenetic modifications may contribute to the onset and progression of a variety of human diseases such as cancer. Therefore, the enzymes responsible for these chromatin changes are becoming attractive therapeutic targets.  相似文献   

2.
Nucleosomes are the fundamental packing units of the eukaryotic genome. A nucleosome core particle comprises an octameric histone core wrapped around by ~147bp DNA. Histones and DNA are targets for covalent modifications mediated by various chromatin modification enzymes. These modifications play crucial roles in various gene regulation activities. A group of common hypotheses for the mechanisms of gene regulation involves changes in the structure and structural dynamics of chromatin induced by chromatin modifications. We employed single molecule fluorescence methods to test these hypotheses by monitoring the structure and structural dynamics of nucleosomes before and after histone acetylation and DNA methylation, two of the best-conserved chromatin modifications throughout eukaryotes. Our studies revealed that these modifications induce changes in the structure and structural dynamics of nucleosomes that may contribute directly to the formation of open or repressive chromatin conformation.  相似文献   

3.
4.
5.
组蛋白乙酰化与癌症   总被引:17,自引:0,他引:17  
由于组蛋白被修饰所引起的染色质结构的改变,在真核生物基因表达调控中发挥着重要的作用,这些修饰主要包括甲基化、乙酰化、磷酸化和泛素化等,其中组蛋白乙酰化尤为重要.组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)参与决定组蛋白乙酰化状态.HAT通常作为多亚基辅激活物复合体的一部分,催化组蛋白乙酰化,导致染色质结构的松散、激活转录;而HDAC是多亚基辅抑制物复合体的一部分,使组蛋白去乙酰化,导致染色质集缩,并抑制基因的转录. 编码这些酶的基因染色体易位易于导致急性白血病的发生.另一方面,已经确定了一些乙酰化修饰酶的基因在染色体上的位置,它们尤其倾向定位于染色体的断裂处.综述了HAT和HDAC参与的组蛋白乙酰化与癌症发生之间关系的最新进展,以期进一步阐明组蛋白乙酰化修饰酶的生物学功能以及它们在癌症发生过程中的作用.  相似文献   

6.
Alteration of chromatin structure by chromatin modifying and remodelling activities is a key stage in the regulation of many nuclear processes. These activities are frequently interlinked, and many chromatin remodelling enzymes contain motifs that recognise modified histones. Here we adopt a peptide ligation strategy to generate specifically modified chromatin templates and used these to study the interaction of the Chd1, Isw2 and RSC remodelling complexes with differentially acetylated nucleosomes. Specific patterns of histone acetylation are found to alter the rate of chromatin remodelling in different ways. For example, histone H3 lysine 14 acetylation acts to increase recruitment of the RSC complex to nucleosomes. However, histone H4 tetra-acetylation alters the spectrum of remodelled products generated by increasing octamer transfer in trans. In contrast, histone H4 tetra-acetylation was also found to reduce the activity of the Chd1 and Isw2 remodelling enzymes by reducing catalytic turnover without affecting recruitment. These observations illustrate a range of different means by which modifications to histones can influence the action of remodelling enzymes.  相似文献   

7.
Structure and activity of enzymes that remove histone modifications   总被引:2,自引:1,他引:1  
The post-translational modification of histones plays an important role in chromatin regulation, a process that insures the fidelity of gene expression and other DNA transactions. Equally important as the enzymes that generate these modifications are the enzymes that remove them. Recent studies have identified some of the enzymes that remove histone modifications and have characterized their activities. In addition, structural and biochemical studies of these enzymes have focused on the histone lysine deacetylases HDAC8 and sirtuins, and on the arginine and lysine demethylases PAD and BHC110/LSD1, respectively. These new findings may be used as a context to present new information that contributes to our understanding of chromatin regulation, and to pose remaining questions pertaining to the activities of these enzymes and the roles they play in chromatin regulation.  相似文献   

8.
It is well established that chromatin is a destination for signal transduction, affecting many DNA-templated processes. Histone proteins in particular are extensively post-translationally modified. We are interested in how the complex repertoire of histone modifications is coordinately regulated to generate meaningful combinations of "marks" at physiologically relevant genomic locations. One important mechanism is "cross-talk" between pre-existing histone post-translational modifications and enzymes that subsequently add or remove modifications on chromatin. Here, we use chemically defined "designer" nucleosomes to investigate novel enzymatic cross-talk relationships between the most abundant histone ubiquitylation sites, H2AK119ub and H2BK120ub, and two important histone methyltransferases, Dot1L and PRC2. Although the presence of H2Bub in nucleosomes greatly stimulated Dot1L methylation of H3K79, we found that H2Aub did not influence Dot1L activity. In contrast, we show that H2Aub inhibited PRC2 methylation of H3K27, but H2Bub did not influence PRC2 activity. Taken together, these results highlight how the position of nucleosome monoubiquitylation affects the specificity and direction of cross-talk with enzymatic activities on chromatin.  相似文献   

9.
10.
11.
Summary A short review is given on the biochemistry of histone acetylation. Sites of acetylation in nucleosomal histones and enzymes involved in acetylation and deacetylation are discussed. Studies relating to the influence of these modifications on the structure of nucleosomes and chromatin are especially emphasized in this article.  相似文献   

12.
13.
14.
Epigenetic regulation by histone methylation and histone variants   总被引:10,自引:0,他引:10  
Epigenetics is the study of heritable changes in gene expression that are not mediated at the DNA sequence level. Molecular mechanisms that mediate epigenetic regulation include DNA methylation and chromatin/histone modifications. With the identification of key histone-modifying enzymes, the biological functions of many histone posttranslational modifications are now beginning to be elucidated. Histone methylation, in particular, plays critical roles in many epigenetic phenomena. In this review, we provide an overview of recent findings that shape the current paradigms regarding the roles of histone methylation and histone variants in heterochromatin assembly and the maintenance of the boundaries between heterochromatin and euchromatin. We also highlight some of the enzymes that mediate histone methylation and discuss the stability and inheritance of this modification.  相似文献   

15.
《Fly》2013,7(1):36-44
Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.  相似文献   

16.
Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号