首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsatellite repeat loci can provide informative markers for genetic linkage. Currently, the human chromosome 2 genetic linkage map has very few highly polymorphic markers. Being such a large chromosome, it will require a large number of informative markers for the dense coverage desired to allow disease genes to be mapped quickly and accurately. Dinucleotide repeat loci from two anonymous chromosome 2 genomic DNA clones were sequenced so that oligonucleotide primers could be designed for amplifying each locus using the polymerase chain reaction (PCR). Five sets of PCR primers were also generated from nucleotide sequences in the GenBank Database of chromosome 2 genes containing dinucleotide repeats. In addition, one PCR primer pair was made that amplifies a restriction fragment length polymorphism on the TNP1 gene (Hoth and Engel, 1991). These markers were placed on the CEPH genetic linkage map by screening the CEPH reference DNA panel with each primer set, combining these data with those of other markers previously placed on the map, and analyzing the combined data set using CRI-MAP and LINKAGE. The microsatellite loci are highly informative markers and the TNP1 locus, as expected, is only moderately informative. A map was constructed with 38 ordered loci (odds 1000:1) spanning 296 cM (male) and 476 cM (female) of chromosome 2 compared with 306 cM (male) and 529 cM (female) for a previous map of 20 markers.  相似文献   

2.
The root knot nematode resistance gene Mi in tomato has been mapped in the pericentromeric region of chromosome 6. With the objective of isolating Mi through a map-based cloning approach, we have previously identified and ordered into a high-resolution genetic linkage map a variety of tightly linked molecular markers. Using pulsed-field gelelectrophoresis and various rarely cutting restriction enzymes in single, double and partial digestions, we now report long-range physical maps of the two closest flanking markers, acid phosphatase-1 (Aps-1) and GP79, which span over 400 and 800 kb, respectively. It is concluded that the physical distance between both markers is larger than predicted on the basis of genetic linkage analysis. Furthermore, two RFLP markers (H3F8 and H4H10) which map genetically to the same locus as Aps-1 do not show physical linkage, indicating severe suppression of recombination in this region of the chromosome. Finally, no evidence was obtained showing the presence of a CpG island near Aps-1.  相似文献   

3.
A map of 22 loci on human chromosome 22.   总被引:7,自引:0,他引:7  
We constructed a genetic linkage map of the entire long arm of human chromosome 22 with 30 polymorphic markers, defining 22 loci. The map consists of a continuous linkage group 110 cM long, when male and female recombination fractions are combined; average distance between the loci is 5.2 cM. All loci were placed on the map with high support against alternative orders (odds in excess of 1000:1). The order of loci presented in our map is in full agreement with that of the previous linkage maps of chromosome 22 and with the physical assignment of markers. Two markers included in this map, KI-831 (D22S212) and pEFZ31 (D22S32), allowed us to better define the region of the (11;22) translocation breakpoint specific for Ewing sarcoma. Ten additional polymorphic markers were placed on the 22-loci map with odds lower than 1000:1 against alternative locations. In total, we have introduced 29 new markers on the linkage map of chromosome 22.  相似文献   

4.
This paper describes the Centre d'Etude du Polymorphisme Humain (CEPH) consortium linkage map of chromosome 2. The map contains 36 loci defined by genotyping generated from the CEPH family DNAs. A total of 73 different markers were typed by 14 contributing laboratories; of these, 36 loci are ordered on the map with likelihood support of at least 1000:1. Markers are placed along the length of the chromosome but no markers were available to anchor the map at either telomere or the centromere. Multilocus linkage analysis has produced male, female, and sex-averaged maps extending for 261, 430, and 328 cM, respectively. The sex-averaged map contains five intervals greater than 15 cM and the mean genetic distance between the 36 uniquely placed loci is 9.1 cM.  相似文献   

5.
This study describes development of a consensus genetic linkage map of bovine chromosome 24 (BTA24). Eight participating laboratories contributed data for 58 unique markers including a total of 25 409 meioses. Eighteen markers, which were typed in more than one reference population, were used as potential anchors to generate a consensus framework map. The framework map contained 16 loci ordered with odds greater than 1000:1 and spanned 79.3 cM. Remaining markers were included in a comprehensive map relative to these anchors. The resulting BTA24 comprehensive map was 98.3 cM in length. Average marker intervals were 6.1 and 2.5 cM for framework and comprehensive maps, respectively. Marker order was generally consistent with previously reported BTA24 linkage maps. Only one discrepancy was found when comparing the comprehensive map with the published USDA-MARC linkage map. Integration of genetic information from different maps provides a high-resolution BTA24 linkage map.  相似文献   

6.
Recent advances in the use of microsatellite markers and the development of comparative gene mapping techniques have made the construction of high resolution genetic maps of livestock species possible. Framework and comprehensive genetic linkage maps of porcine chromosome 6 have resulted from the first international effort to integrate genetic maps from multiple laboratories. Eleven highly polymorphic genetic markers were exchanged and mapped by four independent laboratories on a total of 583 animals derived from four reference populations. The chromosome 6 framework map consists of 10 markers ordered with high local support. The average marker interval of the framework map is 15.1 cM (sex averaged). The framework map is 135, 175 and 109 cM in length (for sex averaged, female and male maps, respectively). The comprehensive map includes a total of 48 type I and type II markers with a sex averaged interval of 3.5 cM and is 166, 196 and 126 cM (for sex averaged, female and male maps, respectively). Additional markers within framework map marker intervals can thus be selected from the comprehensive map for further analysis of quantitive trait loci (QTL) located on chromosome 6. The resulting maps of swine chromosome 6 provide a valuable tool for analysing and locating QTL.  相似文献   

7.
Brown SE  Severson DW  Smith LA  Knudson DL 《Genetics》2001,157(3):1299-1305
Two approaches were used to correlate the Aedes aegypti genetic linkage map to the physical map. STS markers were developed for previously mapped RFLP-based genetic markers so that large genomic clones from cosmid libraries could be found and placed to the metaphase chromosome physical maps using standard FISH methods. Eight cosmids were identified that contained eight RFLP marker sequences, and these cosmids were located on the metaphase chromosomes. Twenty-one cDNAs were mapped directly to metaphase chromosomes using a FISH amplification procedure. The chromosome numbering schemes of the genetic linkage and physical maps corresponded directly and the orientations of the genetic linkage maps for chromosomes 2 and 3 were inverted relative to the physical maps. While the chromosome 2 linkage map represented essentially 100% of chromosome 2, approximately 65% of the chromosome 1 linkage map mapped to only 36% of the short p-arm and 83% of the chromosome 3 physical map contained the complete genetic linkage map. Since the genetic linkage map is a RFLP cDNA-based map, these data also provide a minimal estimate for the size of the euchromatic regions. The implications of these findings on positional cloning in A. aegypti are discussed.  相似文献   

8.
Application of genetic linkage maps in plant genetics and breeding can be greatly facilitated by integrating the available classical and molecular genetic linkage maps. In rice, Oryza sativa L., the classical linkage map includes about 300 genes which correspond to various important morphological, physiological, biochemical and agronomic characteristics. The molecular maps consist of more than 500 DNA markers which cover most of the genome within relatively short intervals. Little effort has been made to integrate these two genetic maps. In this paper we report preliminary results of an ongoing research project aimed at the complete integration and alignment of the two linkage maps of rice. Six different F2 populations segregating for various phenotypic and RFLP markers were used and a total of 12 morphological and physiological markers (Table 1) were mapped onto our recently constructed molecular map. Six linkage groups (i.e., chr. 1, 3, 7, 9, 11 and 12) on our RFLP map were aligned with the corresponding linkage groups on the classical map, and the previous alignment for chromosome 6 was further confirmed by RFLP mapping of an additional physiological marker on this chromosome. Results from this study, combined with our previous results, indicate that, for most chromosomes in rice, the RFLP map encompasses the classical map. The usefulness of an integrated genetic linkage map for rice genetics and breeding is discussed.Abbreviations RFLP restriction fragment length polymorphism - chr chromosome - cM centiMorgan  相似文献   

9.
A genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization. The average interval between markers is 3.7 cM and the linkage groups collectively span 2772 cM. The 742 markers comprise 734 microsatellite and 8 gene-based markers. The utility of the microsatellite markers for comparative mapping has been significantly enhanced by comparing their flanking sequences with the human genome sequence; this enabled conserved segments between human and horse to be identified. The new map provides a valuable resource for genetically mapping traits of interest in the horse.  相似文献   

10.
A mapped set of DNA markers for human chromosome 17   总被引:32,自引:0,他引:32  
We have developed and mapped by genetic linkage a primary set of markers for chromosome 17. The map consists of 21 loci derived from 27 probe/enzyme systems, including eight highly informative markers at loci containing a variable number of tandemly repeated DNA sequences (VNTRs). The map is continuous from the telomeric region of the short arm to the telomeric region of the long arm, covering estimated genetic distances of 218 cM in males and 279 cM in females. The average heterozygosity among all 21 loci in the population sample analyzed is 58%; 77% heterozygosity was observed among the eight VNTR markers that were highly informative. This map will make it possible to detect by linkage the location of genetic defects associated with chromosome 17 and will also provide anchor points for a high-resolution map of this chromosome.  相似文献   

11.
A resource family of pigs has been constructed by using a boar of Göttingen miniature pig and two sows of Meishan pig as parents. In the construction of the family, two F1 males and 18 F1 females were intercrossed to generate 143 F2 offspring. The members of the family were genotyped using 243 genetic markers including 26 markers developed in our laboratory in order to generate a linkage map of markers for use in detecting quantitative trait loci (QTLs) in the family. The markers consisted of 237 microsatellites, five PRE-1 markers, and one RFLP marker. The linkage map was revealed to cover all 18 autosomes and the X chromosome; and the total length of the sex-averaged linkage map was calculated to be 2561 ·9 c m . Four out of the 26 markers developed in our laboratory ex-ended the current linkage map at the termini of chromosomes 1p, 5p, 11p, and Xq. The linkage maps of all the chromosomes except for chromosome 1 were found to be longer in females than in males. Concerning chromosome 1, the length of the linkage map showed no difference between females and males, which was attributed to low recombination rates between markers localized in the centromeric region in females. The average ratio of female-to-male recombination was calculated to be 1 ·55.  相似文献   

12.
Genetic linkage analyses with genotypic data obtained from four CEPH reference families initially assigned 24 new PCR-based markers to chromosome 17 and located the markers at specific intervals of an existing genetic map of chromosome 17p. Each marker was additionally genotyped with an ordered set of obligate, phase-known recombinant chromosomes. The breakpoint-mapping panels for each family consisted of two parents, one sib with a nonrecombinant chromosome, and one or more sibs with obligate recombinant chromosomes. The relative order of markers was determined by sorting segregation patterns of new markers and ordered anchor markers and by minimizing double-recombination events. Consistency of segregation patterns with multiple flanking loci constituted support for order. A genetic map of chromosome 17p was completed with 39 markers in 23 clusters, with an average space of 3 cM between clusters. The collection of informative genotypes was highly efficient, requiring fivefold fewer genotypes than would be collected with all the CEPH families. Given the availability of large numbers of highly informative PCR-based markers, meiotic breakpoint mapping should facilitate construction of a human genomic map with 1-cM resolution.  相似文献   

13.
Triticum turgidum L. var ‘durum’ cv ‘Langdon’-T. t. var ‘dicoccoides’ chromosome 6A and 6B recombinant substitution lines (RSLs) and a F2 population derived from a ‘Langdon’-T. t. var ‘dicoccoides’ disomic chromosome 6A substitution lineבLangdon’ cross were analyzed with the objective of markedly increasing the number of markers assigned to and the resolution of previously constructed 6A and 6B linkage maps. Fifty-seven markers were added to the 6A RSL-population map, which now consists of 73 markers that span 111 cM, and 40 markers were added to the 6B RSL-population map, which now consists of 56 markers that span 123 cM. With the exception of 2 6B loci, all of the loci on the two RSL-population maps were ordered at a LOD score ≥3.0. Thirty-seven orthologous markers were mapped in the two chromosomes and colinearity between them is strongly indicated. The 6A RSL-population map and the F2-population map are highly similar, indicating that the former population, which consists of 66 lines, can be reliably used for mapping, as was previously demonstrated for the 6B RSL population. In the absence of selection and genetic drift, the lines in a RSL population, except at loci in the substituted/recombined chromosome, should be near-isogenic. An unexpected finding was that at least 26 and possibly 29 of the RFLPs detected in the RSL populations (18% of the markers analyzed) are not located in the substituted/recombined chromosomes. Linkage analysis of the markers disclosed that at least 19 of them are located in six or seven segments that span approximately 10 cM and 17 cM of the genetic lengths of 6B and 6A, respectively, in the 6A and 6B RSL populations, respectively, a finding that suggests that 40 or more alien segments spanning 8–15% of the genetic length of the 13 unsubstituted chromosomes are present in both of the RSL populations. Alien alleles are fixed in many RSLs for most of the markers, in most cases at a frequency consistent with theoretical expectations. Highly distorted segregation favoring the alien allele was detected for all of the markers in 2 of the segments, however. Nine of the markers were among those mapped in the substituted/recombined chromosomes; the linkage data obtained for the other 10 was sufficient to assign them to approximate map positions. Received: 12 June 1997 / Accepted: 6 October 1997  相似文献   

14.
Genetic studies have previously assigned a quantitative trait locus (QTL) for hemoglobin F and F cells to a region of approximately 4 Mb between the markers D6S408 and D6S292 on chromosome 6q23. An initial yeast artificial chromosome contig of 13 clones spanning this region was generated. Further linkage analysis of an extended kindred refined the candidate interval to 1-2 cM, and key recombination events now place the QTL within a region of <800 kb. We describe a high-resolution bacterial clone contig spanning 3 Mb covering this critical region. The map consists of 223 bacterial artificial chromosome (BAC) and 100 P1 artificial chromosome (PAC) clones ordered by sequence-tagged site (STS) content and restriction fragment fingerprinting with a minimum tiling path of 22 BACs and 1 PAC. A total of 194 STSs map to this interval of 3 Mb, giving an average marker resolution of approximately one per 15 kb. About half of the markers were novel and were isolated in the present study, including three CA repeats and 13 single nucleotide polymorphisms. Altogether 24 expressed sequence tags, 6 of which are unique genes, have been mapped to the contig.  相似文献   

15.
Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component and a population lifetime risk of 1%. Our previous work identified a region of human chromosome 4p that showed significant linkage to BPAD in a large pedigree. Here, we report the construction of an accurate, high-resolution physical map of 6.9 Mb of human chromosome 4p15.3-p16.1, which includes an 11-cM (5.8 Mb) critical region for BPAD. The map consists of 460 PAC and BAC clones ordered by a combination of STS content analysis and restriction fragment fingerprinting, with a single approximately 300-kb gap remaining. A total of 289 new and existing markers from a wide range of sources have been localized on the contig, giving an average marker resolution of 1 marker/23 kb. The STSs include 57 ESTs, 9 of which represent known genes. This contig is an essential preliminary to the identification of candidate genes that predispose to bipolar affective disorder, to the completion of the sequence of the region, and to the development of a high-density SNP map.  相似文献   

16.
Zenger KR  McKenzie LM  Cooper DW 《Genetics》2002,162(1):321-330
The production of a marsupial genetic linkage map is perhaps one of the most important objectives in marsupial research. This study used a total of 353 informative meioses and 64 genetic markers to construct a framework genetic linkage map for the tammar wallaby (Macropus eugenii). Nearly all markers (93.8%) formed a significant linkage (LOD > 3.0) with at least one other marker, indicating that the majority of the genome had been mapped. In fact, when compared with chiasmata data, >70% (828 cM) of the genome has been covered. Nine linkage groups were identified, with all but one (LG7; X-linked) allocated to the autosomes. These groups ranged in size from 15.7 to 176.5 cM and have an average distance of 16.2 cM between adjacent markers. Of the autosomal linkage groups (LGs), LG2 and LG3 were assigned to chromosome 1 and LG4 localized to chromosome 3 on the basis of physical localization of genes. Significant sex-specific distortions toward reduced female recombination rates were revealed in 22% of comparisons. When comparing the X chromosome data to closely related species it is apparent that they are conserved in both synteny and gene order.  相似文献   

17.
J Z Lin  K Ritland 《Génome》1996,39(1):63-70
As a first step to mapping quantitative trait loci for mating system differences, a genetic linkage map was generated from an interspecific backcross between Mimulus guttatus and Mimulus platycalyx. The linkage map consists of 99 RAPD and two isozyme markers. Eighty-one of these markers were mapped to 15 linkage groups, spanning 1437 contiguous centiMorgans, and covering 58% of the estimated genome. The genome length of Mimulus is estimated at 2474 +/- 35 cM; bootstrapping indicates that only ca. 40 markers are needed to give an accurate estimate of genome length. Further statistical analyses indicate that many RAPD markers cannot be ordered with certainty and that uncertain linkage groups tend to map nonlinearly even under commonly used mapping functions. Strategies for speeding up the mapping process for a wild species and possible applications of a partial linkage map in evolutionary studies are discussed. Key words : linkage map, mating system, Mimulus, RAPD.  相似文献   

18.
19.
As a prelude to discovery of genes involved in floral dimorphism and incompatibility, a genetic map of distylous Turnera was constructed along with a fine-scale map of the S-locus region. The genetic map consists of 79 PCR-based molecular markers (48 AFLP, 18 RAPD, 9 ISSR, 4 RAMP), 5 isozyme loci, one additional gene, and the S-locus, spanning a total distance of 683.3 cM. The 86 markers are distributed in 5 linkage groups, corresponding to the haploid chromosome number. Molecular markers tightly linked or co-segregating with the S-locus in an initial mapping population of 94 individuals were used to assay an additional 642 progeny to construct a map of the S-locus region. The fine-scale map consists of 2 markers (IS864a and RP45E9) flanking the S-locus at distances of 0.41 and 0.54 cM, respectively, and 3 additional markers (OPK14c, RP45G18, and RP81E18) co-segregating with the S-locus in the total mapping population of 736 individuals. The genetic map constructed will serve as a framework for localization of genes outside the S-locus affecting distyly, while molecular markers of the fine-scale map will be used to initiate chromosome walking to find the genes residing at the S-locus.  相似文献   

20.
We have used a panel of somatic cell hybrids containing different rearrangements of human chromosome 13 to integrate genetic and physical maps of this chromosome. The positions of 17 translocation/deletion breakpoints on human chromosome 13 have been determined relative to the microsatellite markers on the genetic linkage map compiled by Généthon. Because markers on maps from several other Consortium groups have also been analyzed using many of the same hybrids, it was possible to relate these with the Généthon map. The position of all of the chromosome breakpoints have been placed, wherever possible, between two adjacent markers on the genetic linkage maps using PCR analysis for the presence/absence of the markers in the somatic cell hybrids. The positions of the breakpoints have already been determined cytogenetically, and some of these breakpoints are located at landmark positions on the chromosome. The relative density of markers along the chromosome differs between independently derived maps, and, based on the known locations of certain breakpoints in the physical map, inconsistencies in the genetic maps have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号