共查询到20条相似文献,搜索用时 15 毫秒
1.
Marie-Anne de Graaff † Johan Six David Harris‡ Herbert Blum§ Chris van Kessel 《Global Change Biology》2004,10(11):1922-1935
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization. 相似文献
2.
3.
Assessing elevated CO2 responses using meta-analysis 总被引:1,自引:1,他引:0
4.
Interactions between elevated CO2 concentration, nitrogen and water: effects on growth and water use of six perennial plant species 总被引:1,自引:1,他引:1
Two experiments are described in which plants of six species were grown for one full season in greenhouse compartments with 350 or 560 μ mol mol–1 CO2 . In the first experiment two levels of nitrogen supply were applied to study the interaction between CO2 and nitrogen. In the second experiment two levels of water supply were added to the experimental set-up to investigate the three-way interaction between CO2 , nitrogen and water. Biomass and biomass distribution were determined at harvests, while water use and soil moisture were monitored throughout the experiments. In both experiments a positive effect of CO2 on growth was found at high nitrogen concentrations but not at low nitrogen concentrations. However, plants used much less water in the presence of low nitrogen concentrations. Drought stress increased the relative effect of elevated CO2 on growth. Available soil moisture was used more slowly at high CO2 during drought or at high nitrogen concentrations, while at low nitrogen concentrations decreased water use resulted in an increase in soil moisture. The response to the treatments was similar in all the species used. Although potentially faster growing species appeared to respond better to high CO2 when supplied with a high level of nitrogen, inherently slow-growing species were more successful at low nitrogen concentrations. 相似文献
5.
The effect of CO2 concentration on plant growth and the size of the rhizosphere denitrifier population was investigated for ryegrass grown at 3 different soil pH values (pH 4.3, 5.9 and 7.0). Soil microcosms were planted with ryegrass and maintained under constant growth conditions at either ambient (450ppm) or elevated (720ppm) CO2 concentration. At harvest, the rhizosphere soil was collected and subjected to a potential denitrification assay to provide an estimate of the size of the denitrifier population present. Ryegrass dry matter production varied across the pH range studied and contrary to other studies, elevated CO2 concentration did not consistently increase growth. Plant growth was reduced by ≈ 35% and 23% at pH 4.3 and pH 5.9, respectively, under elevated CO2 concentration. At pH 7.0, however, plant growth was increased by ≈ 45% under elevated CO2. Potential denitrification rates within the rhizosphere followed a similar pattern to plant growth in the different treatments, suggesting that plant growth and the size of denitrifier population within the rhizosphere are coupled. This study investigates the relationship between plant growth and rhizosphere denitrification potential, thereby providing an estimate of the size of the denitrifier population under increased CO2 concentration and soil pH. 相似文献
6.
Water repellency is a widespread characteristic of soils that can modify soil moisture content and distribution and is implicated in important processes such as aggregation and carbon sequestration. Repellency arises as a consequence of organic matter inputs; as elevated atmospheric CO2 is known to modify such inputs, we tested the repellency of a grassland soil after 5 years of exposure to elevated CO2 in a free air carbon dioxide enrichment experiment. Using a water droplet penetration time test, we found a significant reduction in repellency at elevated CO2 in samples at field moisture content. As many of the processes potentially influenced by repellency have been shown to be modified at elevated CO2 (e.g. soil aggregation, C sequestration, recruitment from seed), we suggest that further exploration of this phenomenon could enhance our understanding of CO2 effects on ecosystem function. The mechanism responsible for the change in repellency has not been identified. 相似文献
7.
8.
The turnover of carbon pools contributing to soil CO2 and soil respiration in a temperate forest exposed to elevated CO2 concentration 总被引:2,自引:0,他引:2
LINA TANEVA JEFFREY S. PIPPEN† WILLIAM H. SCHLESINGER† MIQUEL A. GONZALEZ-MELER 《Global Change Biology》2006,12(6):983-994
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times. 相似文献
9.
Kees-Jan Van Groenigen Johan Six David Harris‡ Herbert Blum§ Chris Van Kessel 《Global Change Biology》2003,9(12):1751-1762
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system. 相似文献
10.
11.
We summarize the impacts of elevated CO2 on the N concentration of plant tissues and present data to support the hypothesis that reductions in the quality of plant tissue commonly occur when plants are grown under elevated CO2. Synthesis of existing data showed an average 14% reduction of N concentrations in plant tissue generated under elevated CO2 regimes. However, elevated CO2 appeared to have different effects on the N concentrations of different plant types, as the reported reductions in N have been larger in C3 plants than in C4 plants and N2-fixers. Under elevated CO2 plants changed their allocation of N between above- and below-ground components: root N concentrations were reduced by an average of 9% compared to a 14% average reduction for above-ground tissues. Although the concentration of CO2 treatments represented a significant source of variance for plant N concentration, no consistent trends were observed between them. 相似文献
12.
D. J. Ross K. R. Tate P. C. D. Newton † R. H. Wilde H. Clark† 《Global Change Biology》2000,6(7):779-790
The growth and chemical composition of most plants are influenced by elevated CO2, but accompanying effects on soil organic matter pools and mineralization are less clearly defined, partly because of the short‐term nature of most studies. Herein we describe soil properties from a naturally occurring cold CO2 spring (Hakanoa) in Northland, New Zealand, at which the surrounding vegetation has been exposed to elevated CO2 for at least several decades. The mean annual temperature at this site is ≈ 15.5 °C and rainfall ≈ 1550 mm. The site was unfertilized and ungrazed, with a vegetation of mainly C3 and C4 grasses, and had moderate levels of ‘available’ P. Two soils were present ? a gley soil and an organic soil – but only the gley soil is examined here. Average atmospheric CO2 concentrations at 17 sampling locations in the gley soil area ranged from 372 to 670 ppmv. In samples at 0–5 cm depth, pH averaged 5.4; average values for organic C were 150 g, total N 11 g, microbial C 3.50 g, and microbial N 0.65 g kg?1, respectively. Under standardized moisture conditions at 25 °C, average rates of CO2‐C production (7–14 days) were 5.4 mg kg?1 h?1 and of net mineral‐N production (14 ?42 days) 0.40 mg kg?1 h?1. These properties were all correlated positively and significantly (P < 0.10) with atmospheric CO2 concentrations, but not with soil moisture (except for CO2‐C production) or with clay content; they were, however, correlated negatively and mainly significantly with soil pH. In spite of uncertainties associated with the uncontrolled environment of naturally occurring springs, we conclude that storage of C and N can increase under prolonged exposure to elevated CO2, and may include an appreciable labile fraction in mineral soil with an adequate nutrient supply. 相似文献
13.
Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming 总被引:3,自引:0,他引:3
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1 ) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2 +↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction. 相似文献
14.
Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2 总被引:1,自引:0,他引:1
Soil organic matter (SOM) dynamics ultimately govern the ability of soil to provide long‐term C sequestration and the nutrients required for ecosystem productivity. Predicting belowground responses to elevated CO2 requires an integrated understanding of SOM transformations and the microbial activity that governs them. It remains unclear how the microorganisms upon which these transformations depend will function in an elevated CO2 world. This study examines SOM transformations and microbial metabolism in soils from the Duke Free Air Carbon Enrichment site in North Carolina, USA. We assessed microbial respiration and net nitrogen (N) mineralization in soils with and without elevated CO2 exposure during a 100‐day incubation. We also traced the depleted C isotopic signature of the supplemental CO2 into SOM and the soils' phospholipid fatty acids (PLFA), which serve as biomarkers for living cells. Cumulative net N mineralization in elevated CO2 soils was 50% that in control soils after a 100‐day incubation. Respiration was not altered with elevated CO2. C : N ratios of bulk SOM did not change with elevated CO2, but incubation data suggest that the C : N ratios of mineralized organic matter increased with elevated CO2. Values of SOM δ13C were depleted with elevated CO2 (?26.7±0.2 vs. ?30.2±0.3‰), reflecting the depleted signature of the supplemental CO2. We compared δ13C of individual PLFA with the δ13C of SOM to discern incorporation of the depleted C isotopic signature into soil microbial groups in elevated CO2 plots. PLFA i15:0, a15:0, and 10Met18:0 reflected significant incorporation of recently produced photosynthate, suggesting that the bacterial groups defined by these biomarkers are active metabolizers in elevated CO2 soils. At least one of these groups (actinomycetes, 10Met18:0) specializes in metabolizing less labile substrates. Because control plots did not receive an equivalent 13C tracer, we cannot determine from these data whether this group of organisms was stimulated by elevated CO2 compared with these organisms in control soils. Stimulation of this group, if it occurred in the elevated CO2 plot, would be consistent with a decline in the availability of mineralizable organic matter with elevated CO2, which incubation data suggest may be the case in these soils. 相似文献
15.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol − 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant − 1 h − 1 compared with 367 ± 46 ng 15N fixed plant − 1 h − 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant − 1 h − 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes. 相似文献
16.
17.
Effects of elevated [CO2 ] on photosynthesis in European forest species: a meta-analysis of model parameters 总被引:6,自引:6,他引:6
B. E. Medlyn F. -W. Badeck D. G. G. De Pury C. V. M. Barton M. Broadmeadow R. Ceulemans P. De Angelis M. Forstreuter M. E. Jach S. Kellomäki E. Laitat M. Marek S. Philippot A. Rey J. Strassemeyer K. Laitinen R. Liozon B. Portier P. Roberntz K. Wang & P. G. Jstbid 《Plant, cell & environment》1999,22(12):1475-1495
The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given. 相似文献
18.
The global environment is changing with increasing temperature and atmospheric carbon dioxide concentration, [CO2 ]. Because these two factors are concomitant, and the global [CO2 ] rise will affect all biomes across the full global range of temperatures, it is essential to review the theory and observations on effects of temperature and [CO2 ] interactions on plant carbon balance, growth, development, biomass accumulation and yield. Although there are sound theoretical reasons for expecting a larger stimulation of net CO2 assimilation rates by increased [CO2 ] at higher temperatures, this does not necessarily mean that the pattern of biomass and yield responses to increasing [CO2 ] and temperature is determined by this response. This paper reviews the interactions between the effects of [CO2 ] and temperature on plants. There is little unequivocal evidence for large differences in response to [CO2 ] at different temperatures, as studies are confounded by the different responses of species adapted and acclimated to different temperatures, and the interspecific differences in growth form and development pattern. We conclude by stressing the importance of initiation and expansion of meristems and organs and the balance between assimilate supply and sink activity in determining the growth response to increasing [CO2 ] and temperature. 相似文献
19.
The effects of elevated atmospheric CO2 concentration on plant-fungi and plant-insect interactions were studied in an emergent marsh in the Chesapeake Bay. Stands of the C3 sedge Scirpus olneyi Grey, and the C4 grass Spartina patens (Ait.) Muhl. have been exposed to elevated atmospheric CO2 concentrations during each growing season since 1987. In August 1991 the severities of fungal infections and insect infestations were quantified. Shoot nitrogen concentration ([N]) and water content (WC) were determined. In elevated concentrations of atmospheric CO2, 32% fewer S. olneyi plants were infested by insects, and there was a 37% reduction in the severity of a pathogenic fungal infection, compared with plants grown in ambient CO2 concentrations. S. olneyi also had reduced [N], which correlated positively with the severities of fungal infections and insect infestations. Conversely, S. patens had increased WC but unchanged [N] in elevated concentrations of atmospheric CO2 and the severity of fungal infection increased. Elevated atmospheric CO2 concentration increased or decreased the severity of fungal infection depending on at least two interacting factors, [N] and WC; but it did not change the number of plants that were infected with fungi. In contrast, the major results for insects were that the number of plants infected with insects decreased, and that the amount of tissue that each insect ate also decreased. 相似文献
20.
Anne Kasurinen Paula Kokko-Gonzales Johanna Riikonen † Elina Vapaavuori† Toini Holopainen 《Global Change Biology》2004,10(10):1654-1665
In the present open‐top chamber experiment, two silver birch clones (Betula pendula Roth, clone 4 and clone 80) were exposed to elevated levels of carbon dioxide (CO2) and ozone (O3), singly and in combination, and soil CO2 efflux was measured 14 times during three consecutive growing seasons (1999–2001). In the beginning of the experiment, all experimental trees were 7 years old and during the experiment the trees were growing in sandy field soil and fertilized regularly. In general, elevated O3 caused soil CO2 efflux stimulation during most measurement days and this stimulation enhanced towards the end of the experiment. The overall soil respiration response to CO2 was dependent on the genotype, as the soil CO2 efflux below clone 80 trees was enhanced and below clone 4 trees was decreased under elevated CO2 treatments. Like the O3 impact, this clonal difference in soil respiration response to CO2 increased as the experiment progressed. Although the O3 impact did not differ significantly between clones, a significant time × clone × CO2× O3 interaction revealed that the O3‐induced stimulation of soil respiration was counteracted by elevated CO2 in clone 4 on most measurement days, whereas in clone 80, the effect of elevated CO2 and O3 in combination was almost constantly additive during the 3‐year experiment. Altogether, the root or above‐ground biomass results were only partly parallel with the observed soil CO2 efflux responses. In conclusion, our data show that O3 impacts may appear first in the below‐ground processes and that relatively long‐term O3 exposure had a cumulative effect on soil CO2 efflux. Although the soil respiration response to elevated CO2 depended on the tree genotype as a result of which the O3 stress response might vary considerably within a single tree species under elevated CO2, the present experiment nonetheless indicates that O3 stress is a significant factor affecting the carbon cycling in northern forest ecosystems. 相似文献