首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
Discrepancies were noted in the published conductance of the Escherichia coli porin OmpF. Results from various papers are hard to compare because of the use of different channel preparations, salt types and concentrations, and electrophysiological techniques (black lipid membrane (BLM) vs. patch clamp). To reconcile these data, we present a side-by-side comparison of OmpF activity studied with the two techniques on the same preparation of pure protein, and in the same low salt concentrations (150 mM KCl). The novel aspect of OmpF porin behavior revealed by this comparison is the ubiquitous existence of states of smaller conductance than the monomeric conductance (subconductance states), regardless of the techniques or experimental conditions used, and the drastic enhancement of subconductance gating by polyamines. Transitions to subconductance states have received little attention in previous publications, in particular when BLM electrophysiology was used. Monomeric closures are rare in recordings at clamped potentials, at least at voltages lower than ∼100-120 mV. Most closing activity is in the form of subconductance gating, which becomes more dominant in the presence of spermine, with a more frequent and prolonged occupation of these substates. A discussion of the molecular basis for this hallmark behavior of porin is presented.  相似文献   

2.
We studied the effect of cytoplasmic acidosis on the ionic conducting states of ATP-sensitive potassium channels in heart ventricular cells of guinea pigs and rabbits by using a patch-clamp technique with inside-out patch configuration. Under normal conditions (pH 7.4), the channel alternated between a closed state and a main open state in the absence of nucleotides on the cytoplasmic side. As internal pH was reduced below 6.5, the single channel current manifested distinct subconductance levels. The probability of the appearance of these subconductance levels was pH dependent with a greater probability of subconductance states at lower pH. A variance-mean amplitude analysis technique revealed two subconductance levels approximately equally spaced between the main open level and the closed level (63 and 33%). A current-voltage plot of the two subconductance levels and the main level showed that they had similar reversal potentials and rectification properties. An intrinsic flickering gating property characteristic of these ATP-sensitive channels was found unchanged in the 63% subconductance state, suggesting that this subconductance state and the main conductance state share similar ion pore properties (including ion selection and block) and similar gating mechanisms. The appearance of the subconductance states decreased as ionic strength was increased, and the subconductance states were also slightly voltage dependent, suggesting an electrostatic interaction between the protons and the negative surface charge in the vicinity of the binding sites, which may be close to the inner entrance of the ion pore. Proteolytic modification of the channel on the cytoplasmic side with trypsin did not abolish the subconductance levels. External acidosis did not induce subconductance levels. These results suggest that protons bound to the negatively charged group at the inner entrance of the channel ion pore may induce conformational changes, leading to partially reduced conductance states.  相似文献   

3.
The temperature and voltage dependence of gating and conductance of sarcoplasmic reticulum K+ channels (S-R K+) isolated from adult canine hearts were studied using the reconstituted bilayer technique. Fusion of vesicles from this preparation frequently resulted in the incorporation of a single channel. Only bilayers into which a single S-R K+ channel had fused were studied. The three conductance states of the channel, fully open (O2), substate conductance (O1), and closed (C) were studied as a function of voltage (-50 to +50 mV) and temperature (16 to 37 degrees C). Permeation through the O1 state showed the same temperature dependence as the O2 state corresponding to an enthalpy of permeation of 4.1-4.2 kcal/mol, which is similar to that for K+ diffusion through water. As expected, increased temperature increased the frequency of gating transitions and shortened the average dwell time spent in any conductance state. Over the range of 25 to 37 degrees C, the average dwell time spent in the O1, O2, and C states decreased by 44 +/- 11, 36 +/- 13, and 78 +/- 7% (n = 3 to 4 channels), respectively. The ratio of probabilities between the various conductance states was not strongly temperature sensitive. Analysis of the voltage dependence of this channel was carried out at 37 degrees C and revealed that the dwell times of the O1 and O2 states were voltage insensitive and the probability ratio (PO2:PO1) was approximately 7 and was voltage insensitive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In this paper I describe the occurrence and properties of a subconductance state of the cation-selective channel of the sarcoplasmic reticulum. The substate conductance is 60% of the major state conductance in every salt solution examined. When single channel conductance is plotted vs. ion concentration (for potassium or thallium salt solutions) the Michaelis-Menten constant is nearly the same for both conductance states, while the maximum conductance is reduced for the subconductance state. Both conductance states show anomalous conductance behavior in mixed potassium-thallium solutions that may be modeled in the same way. These results indicate that the ionic selectivity of the channel is the same for both open states.  相似文献   

5.
Cholinergic synaptic vesicles were isolated from the electric organ of Torpedo californica. Vesicle membrane proteins were reconstituted into planar lipid bilayers by the nystatin/ergosterol fusion technique. After fusion, a variety of ion channels were observed. Here we identify four channels and describe two of them in detail. The two channels share a conductance of 13 pS. The first is anion selective and strongly voltage dependent, with a 50% open probability at membrane potentials of -15 mV. The second channel is slightly cation selective and voltage independent. It has a high open probability and a subconductance state. A third channel has a conductance of 4-7 pS, similar to the subconductance state of the second channel. This channel is fairly nonselective and has gating kinetics different from those of the cation channel. Finally, an approximately 10-pS, slightly cation selective channel was also observed. The data indicate that there are one or two copies of each of the above channels in every synaptic vesicle, for a total of six channels per vesicle. These observations confirm the existence of ion channels in synaptic vesicle membranes. It is hypothesized that these channels are involved in vesicle recycling and filling.  相似文献   

6.
Summary We have reconstituted into liposomes outer-membrane fractions fromEscherichia coil strains which express OmpC porins with altered pore properties. Single-channel experiments were performed with the patch-clamp technique on blisters generated from the reconstituted liposomes. Our goal was to identify positively the activity pattern of OmpC in our reconstituted system. The properties of the parent strain were compared to those of a strain whose OmpC porin has a single amino acid substitution in a postulated transmembrane segment. The parent and the mutant strain each exhibit a cation-selective channel of high open probability and gating to closed levels of various amplitudes. However, the mutant channel appeared to be 9 to 30% larger in unit conductance. It tended to close and reopen most often in groups of three units, as opposed to two units in the parent channel. The results are discussed in terms of the observed phenotype and of their implication as to the structure-function relationship of the porin channels.  相似文献   

7.
A detailed characterization of the properties of the channel formed by tetanus toxin in planar lipid bilayers is presented. Channel formation proceeds at neutral pH. However, an acidic pH is required to detect the presence of channels in the membrane rapidly and effectively. Acid pH markedly lowers the single-channel conductance, for phosphatidylserine at 0.5 M KCl gamma = 89 pS at pH 7.0 while at pH 4.8, gamma = 30 pS. The toxin channel is cation selective without significant selectivity between potassium and sodium (gamma [K+]/gamma [Na+] greater than or equal to 1.35). In all the lipids studied gamma is larger at positive than at negative voltages. The toxin channel is voltage dependent both at neutral and acidic pH: for phosphatidylserine membranes, the probability of the channel being open is much greater at positive than at negative voltage. In different phospholipids the channel exhibits different voltage dependence. In phosphatidylserine membranes the channel is inactivated at negative voltages, whereas in diphytanoylphosphatidylcholine membranes channels are more active at negative voltages than at positive. The presence of acidic phospholipids in the bilayers increases both the single-channel conductance as well as the probability of the channel being open at positive voltage. A subconductance state is readily identifiable in the single-channel recordings. Accordingly, single-channel conductance histograms are best fitted with a sum of 3 Gaussian distributions corresponding to the closed state, the open subconductance state and the full open state. Channel activity occurs in bursts of openings separated by long closings. Probability density analysis of the open dwell times of the toxin channel indicate the existence of a single open state with a lifetime greater than or equal to 1 ms in all lipids studied. Analysis of intra-bursts closing lifetimes reveals the existence of two components; the slow component is of the order of 1 ms, the fast one is less than or equal to 0.5 ms. The channel activity induced by tetanus toxin in lipid bilayers suggests a mechanism for its neurotoxicity: a voltage dependent, cation selective channel inserted in the postsynaptic membrane would lead to continuous depolarization and, therefore, persistent activation of the postsynaptic cell.  相似文献   

8.
New methods are described to detect subconductance levels and to analyse ion channel gating. These methods are applied to simulated and experimental data. Single chloride channel records from inside-out membrane patches excised from human umbilical venous endothelial cells (HUVEC) exhibit, in addition to the full closed and full open configurations, intermediate subconductance levels which are multiple of an elementary conductance of 112.5 pS. Analysis of transitions from one state to another and the comparison of real data with simulated data leads to the proposal of a cooperative model of gating for the observed subunits of a chloride channel.  相似文献   

9.
Single-channel records often show frequent currents at a main conductance level and occasional currents at subconductance levels. In some instances, the conductances occur at regular levels that are multiples of a minimum conductance. It is well-appreciated that multiple conductance levels may arise either from the co-operative gating of more than one pore or from changes that occur in a single pore. In this paper, we used theoretical models of ion permeation to examine subconductances arising in a single-pore channel. In particular, the work focuses on the following question: how can an ion channel that provides only one aqueous pore through the membrane produce regular subconductances and a main conductance that all have the same selectivity and the same ion binding affinity? The three types of ion permeation models used in this study showed that a single-pore channel can have subconductances because of long-lived conformational states, because of alterations in rapid fluctuations between conformational states, or because of slight alterations in the electrostatic properties in the channel's entrance vestibules. Regular subconductances with the same selectivity and binding affinity can arise in a single pore even if the energy profile changes do not meet the constant peak offset condition. The results show that the appearance of regular subconductance levels in a single-channel recording is not sufficient evidence to conclude that identical pores have co-operative gating, as would arise in a channel that is a multi-pore complex.  相似文献   

10.
All-atom molecular dynamics simulations of the ion current through OmpF, the major porin in the outer membrane of Escherichia coli, were performed. Starting from the crystal structure, the all-atom modeling allows us to calculate a parameter-free ion conductance in semiquantitative agreement with experiment. Discrepancies between modeling and experiment occur, e.g., at salt concentrations above 1 M KCl or at high temperatures. At lower salt concentrations, the ions have separate pathways along the channel surface. The constriction zone in the channel contains, on one side, a series of positively charges (R42, R82, R132), and on the opposite side, two negatively charged residues (D113, E117). Mutations generated in the constriction zone by removing cationic residues enhance the otherwise small cation selectivity, whereas removing the anionic residues reverses the selectivity. Reduction of the negatively charged residues decreases the conductance by half, whereas cationic residues enhance the conductance. Experiments on mutants confirm the results of the molecular-level simulations.  相似文献   

11.
X Hu  G Dahl 《FEBS letters》1999,451(2):113-117
Gap junction channels span the membranes of two adjacent cells and allow the gated transit of molecules as large as second messengers from cell to cell. The structure of the gap junction channel pore is not resolved. For identification of pore determinants we used a chimera of two connexins, cx46 and cx32E(1)43, that form membrane channels with distinct unit conductances and channel kinetics. Exchange of the first transmembrane segment (M1) between these connexins resulted in a chimera that exhibited most of the channel properties of the M1 donor, including single channel conductance, channel kinetics, and the preference to dwell at a subconductance level. The M1 segment thus appears to be an important determinant of conductance and gating properties of connexin channels.  相似文献   

12.
Sarcoplasmic reticulum (SR) K+ channels are voltage-regulated channels that are thought to be actively gating when the membrane potential across the SR is close to zero as is expected physiologically. A characteristic of SR K+ channels is that they gate to subconductance open states but the relevance of the subconductance events and their contribution to the overall current flowing through the channels at physiological membrane potentials is not known. We have investigated the relationship between subconductance and full conductance openings and developed kinetic models to describe the voltage sensitivity of channel gating. Because there may be two subtypes of SR K+ channels (TRIC-A and TRIC-B) present in most tissues, to conduct our study on a homogeneous population of SR K+ channels, we incorporated SR vesicles derived from Tric-a knockout mice into artificial membranes to examine the remaining SR K+ channel (TRIC-B) function. The channels displayed very low open probability (Po) at negative potentials (≤0 mV) and opened predominantly to subconductance open states. Positive holding potentials primarily increased the frequency of subconductance state openings and thereby increased the number of subsequent transitions into the full open state, although a slowing of transitions back to the sublevels was also important. We investigated whether the subconductance gating could arise as an artifact of incomplete resolution of rapid transitions between full open and closed states; however, we were not able to produce a model that could fit the data as well as one that included multiple distinct current amplitudes. Our results suggest that the apparent subconductance openings will provide most of the K+ flux when the SR membrane potential is close to zero. The relative contribution played by openings to the full open state would increase if negative charge developed within the SR thus increasing the capacity of the channel to compensate for ionic imbalances.  相似文献   

13.
Transport at the nanoscale: temperature dependence of ion conductance   总被引:1,自引:0,他引:1  
Temperature dependent ion conductance in nanopores is measured in a wide range of electrolyte concentrations and compared with molecular modeling. Single outer membrane protein F (OmpF) channels from E. coli are reconstituted into planar lipid bilayers. In qualitative agreement with the experimental data, applied-field molecular dynamics unraveled atomistic details of the ion transport. Comparing the temperature dependence of the channel conductance with that of the bulk conductivity in the range from 0 to 90°C revealed that at low salt concentrations the transport is mainly driven along the pore surface. Increasing the salt concentration saturates the surface charge transport and induces ion transport in the center of the nanopore. The confinement of the nanopore then favors the formation of ion pairs. Stepping up the temperature reduces the life time of the ion pairs and increases the channel conductance more than expected from the bulk behavior.  相似文献   

14.
The purified Ca(2+)-release/ryanodine receptor channel of the sheep cardiac muscle sarcoplasmic reticulum (SR) functions as a calcium-activated cation-selective channel under voltage clamp conditions following reconstitution into planar phospholipid bilayers. We have investigated the effect of large tetraalkyl ammonium (TAA) cations, (CnH2n+1)4N+ (n = 4 and 5) on monovalent cation conduction. These cations modify the conductance of the receptor channel at positive holding potentials from the cytosolic side of the channel. Under these conditions, openings are resolved as a mixture of normal full amplitude events and events of reduced conductance. The amplitude of the reduced conductance state is a fixed proportion of the normal open state. As a proportion of all open events, the occurrence of the tetrabutyl ammonium (TBA+) related subconductance state increases with concentration and increasingly positive holding potential. The TBA+ related subconductance state displays similar conduction properties to the unmodified channel; with a linear current-voltage relationship, a similar affinity for K+ and voltage-dependent block by TEA+. A method was used to quantify the voltage dependence of the occurrence of the TBA+ effect, which yielded an effective gating charge of 1.66. A second method based on kinetic analysis of the voltage dependence of transitions between the full open state and the TBA+ related subconductance state produced a similar value. In addition, this analysis revealed that the bulk of the voltage-dependence resided in the off rate. TBA+ related subconductance events, expressed as a proportion of all open events, saturated with increasing TBA+ concentration. Kinetic analysis revealed that this could be entirely accounted for by changes in the on rate. Tetrapentyl ammonium (TPeA+) causes a qualitatively similar effect with a subconductance state of lower amplitude. The voltage-dependence of the effect was comparable to that displayed by TBA+. These findings are interpreted as a form of partial block in which more than one large TAA cation binds at the extremity of the voltage drop to produce an electrostatic barrier for ion translocation.  相似文献   

15.
Single channel recordings from the locust muscle D-glutamate receptor channel were obtained using glutamate concentrations ranging from 10-6 to 10-2 M. Channel kinetics were analyzed to aid in the development of a model for the gating mechanism. Analysis of channel dwell time histograms demonstrated that the channel possessed multiple open and closed states at concentrations of glutamate between 10-5 and 10-2 M. Correlations between successive dwell times showed that the gating mechanism was nonlinear (i.e., branched or cyclic) over the same glutamate concentration range. The glutamate concentration dependence of the channel open probability, and of the event frequency, was used to explore two possible allosteric gating mechanisms in more detail.  相似文献   

16.
Nanomolar to micromolar ryanodine alters the gating kinetics of the Ca2+ release channel from skeletal sarcoplasmic reticulum (SR) fused with bilayer lipid membranes (BLM). In the presence of asymmetric CsCl and 100 microM CaCl2 cis, ryanodine (RY) (5-40 nM) activates the channel, increasing the open probability (po; maximum 300% of control) without changing unitary conductance (468 picosiemens (pS)). Statistical analyses of gating kinetics reveal that open and closed dwell times exhibit biexponential distributions and are significantly modified by nanomolar RY. Altered channel gating kinetics with low nanomolar RY is fully reversible and correlates well with binding kinetics of nanomolar [3H]RY with its high affinity site (Kd1 = 0.7 nM) under identical experimental conditions. RY (20-50 nM) induces occasional 1/2 conductance fluctuations which correlate with [3H]RY binding to a second site having lower affinity (Kd2 = 23 nM). RY (5-50 nM) in the presence of 500 mM CsCl significantly enhances Ca(2+)-induced Ca2+ release from actively loaded SR vesicles. Ryanodine > or = 50 nM stabilizes the channel in a 234-pS subconductance which is not readily reversible. RY (> or = 70 microM) produces a unidirectional transition from the 1/2 to a 1/4 conductance fluctuation, whereas RY > or = 200 microM causes complete closure of the channel. The RY required for stabilizing 1/4 conductance transitions and channel closure do not quantitatively correlate with [3H]RY equilibrium binding constants and is attributed to significant reduction in association kinetics with > 200 nM [3H]RY in the presence of 500 mM CsCl. These results demonstrate that RY stabilizes four discrete states of the SR release channel and supports the existence of multiple interacting RY effector sites on the channel protein.  相似文献   

17.
The kinetic properties of main and subconductance states of a mutant mouse N-methyl-d-aspartate (NMDA) receptor channel were examined. Recombinant receptors made of ζ-ε2 (NR1-NR2B) subunits having asparagine-to-glutamine mutations in the M2 segment (ζN598Q /ε2N589Q) were expressed in Xenopus oocytes. Single channel currents recorded from outside-out patches were analyzed using hidden Markov model techniques. In Ca2+-free solutions, an open receptor channel occupies a main conductance (93 pS) and a subconductance (62 pS) with about equal probability. There are both brief and long-lived subconductance states, but only a single main level state. At −80 mV, the lifetime of the main and the longer-lived sub level are both ∼3.3 ms. The gating of the pore and the transition between conductance levels are essentially independent processes. Surprisingly, hyperpolarization speeds both the sub-to-main and main-to-sub transition rate constants (∼120 mV/e-fold change), but does not alter the equilibrium occupancies. Extracellular Ca2+ does not influence the transition rate constants. We conclude that the subconductance levels arise from fluctuations in the energetics of ion permeation through a single pore, and that the voltage dependence of these fluctuations reflects the modulation by the membrane potential of the barrier between the main and subconductance conformations of the pore.  相似文献   

18.
We examined ion channels derived from a chloroform extract of isolated, dehydrated rat liver mitochondria. The extraction method was previously used to isolate a channel-forming complex containing poly-3-hydroxybutyrate and calcium polyphosphate from Escherichia coli. This complex is also present in eukaryotic membranes, and is located primarily in mitochondria. Reconstituted channels showed multiple subconductance levels and were voltage-dependent, showing an increased probability of higher conductance states at voltages near zero. In symmetric 150 mM KCl, the maximal conductance of the channel ranged from 350 pS to 750 pS. For voltages >+/-60 mV, conductance fluctuated in the range of approximately 50- approximately 200 pS. In the presence of a 1:3 gradient of KCl, at pH = 7.4, selectivity periodically switched between different states ranging from weakly anion-selective (V(rev) approximately -15 mV) to ideally cation-selective (V(rev) approximately +29 mV), without a significant change in its conductance. Overall, the diverse, but highly reproducible, channel activity most closely resembled the behavior of the permeability transition pore channel seen in patch-clamp experiments on native mitoplasts. We suggest that the isolated complex may represent the ion-conducting module from the permeability transition pore.  相似文献   

19.
We have tested the hypothesis that a high density of negative charge at the luminal mouth of the RyR2 pore plays a pivotal role in the high cation conductance and limited selectivity observed in this channel by introducing into each monomer a double point mutation to neutralize acidic residues in this region of the mouse RyR2 channel. The resultant channel, ED4832AA, is capable of functioning as a calcium-release channel in situ. Consistent with our hypothesis, the ED4832AA mutation altered the ion handling characteristics of single RyR2 channels. The mutant channel retains the ability to discriminate between cations and anions but cation conductance is altered significantly. Unitary K+ conductance is reduced at low levels of activity but increases dramatically as activity is raised and shows little sign of saturation. ED4832AA no longer discriminates between divalent and monovalent cations. In addition, the gating characteristics of single RyR2 channels are altered markedly by residue neutralization. Open probability in the ED4832AA channel is substantially higher than that of the wild-type channel. Moreover, at holding potentials in excess of ±50 mV several subconductance states become apparent in ED4832AA and are more prevalent at very high holding potentials. These observations are discussed within the structural framework provided by a previously developed model of the RyR2 pore. Our data indicates that neutralization of acidic residues in the luminal mouth of the pore produces wide-ranging changes in the electric field in the pore, the interaction energies of permeant ions in the pore and the stability of the selectivity filter region of the pore, which together contribute to the observed changes ion handling and gating.  相似文献   

20.
Summary Ion channels permeable to barium and calcium were reconstituted from theAplysia nervous system into phospholipid bilayers formed on the tips of patch electrodes. With asymmetrical concentrations of barium or calcium on the two sides of the bilayer, the single-channel currents reversed at the calculated barium or calcium reversal potentials, indicating that the channels were cation selective. Channels with conductances of 10, 25 and 36 pS were routinely observed. Calcium and barium were equally effective as charge carriers for the 36-pS channel, whereas magnesium was at least fifteenfold less effective. The gating of all three channels was independent of the voltage across the bilayer, but was affected by the dihydropyridine calcium channel agonist Bay K 8644 (Bay K). In the presence of Bay K but not in its absence, long discrete gating events were routinely observed, suggesting that the dihydropyridine increased the probability of long open states as it does for calcium channels in other systems.Bilayers invariably contained more than a single channel (or conductance state). This was observed even when theAplysia nervous system membranes were prepared in the presence of cytoskeleton disrupting agents, or when the membrane proteins were diluted extensively with exogenous phospholipid. Furthermore, transitions between conductance levels were observed with high frequency. These findings, together with the fact that all of the conductance states share certain properties including voltage-independence and sensitivity to Bay K, suggest that the apparent multiple channel types may in fact represent subconductance states of a single ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号