首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Subunit ɛ of bacterial and chloroplast FOF1-ATP synthase is responsible for inhibition of ATPase activity. In Bacillus PS3 enzyme, subunit ɛ can adopt two conformations. In the “extended”, inhibitory conformation, its two C-terminal α-helices are stretched along subunit γ. In the “contracted”, noninhibitory conformation, these helices form a hairpin. The transition of subunit ɛ from an extended to a contracted state was studied in ATP synthase incorporated in Bacillus PS3 membranes at 59°C. Fluorescence energy resonance transfer between fluorophores introduced in the C-terminus of subunit ɛ and in the N-terminus of subunit γ was used to follow the conformational transition in real time. It was found that ATP induced the conformational transition from the extended to the contracted state (half-maximum transition extent at 140 μM ATP). ADP could neither prevent nor reverse the ATP-induced conformational change, but it did slow it down. Acid residues in the DELSEED region of subunit β were found to stabilize the extended conformation of ɛ. Binding of ATP directly to ɛ was not essential for the ATP-induced conformational change. The ATP concentration necessary for the half-maximal transition (140 μM) suggests that subunit ɛ probably adopts the extended state and strongly inhibits ATP hydrolysis only when the intracellular ATP level drops significantly below the normal value.  相似文献   

2.
The ϵ subunit of bacterial FoF1-ATP synthase (FoF1), a rotary motor protein, is known to inhibit the ATP hydrolysis reaction of this enzyme. The inhibitory effect is modulated by the conformation of the C-terminal α-helices of ϵ, and the “extended” but not “hairpin-folded” state is responsible for inhibition. Although the inhibition of ATP hydrolysis by the C-terminal domain of ϵ has been extensively studied, the effect on ATP synthesis is not fully understood. In this study, we generated an Escherichia coli FoF1 (EFoF1) mutant in which the ϵ subunit lacked the C-terminal domain (FoF1ϵΔC), and ATP synthesis driven by acid-base transition (ΔpH) and the K+-valinomycin diffusion potential (ΔΨ) was compared in detail with that of the wild-type enzyme (FoF1ϵWT). The turnover numbers (kcat) of FoF1ϵWT were severalfold lower than those of FoF1ϵΔC. FoF1ϵWT showed higher Michaelis constants (Km). The dependence of the activities of FoF1ϵWT and FoF1ϵΔC on various combinations of ΔpH and ΔΨ was similar, suggesting that the rate-limiting step in ATP synthesis was unaltered by the C-terminal domain of ϵ. Solubilized FoF1ϵWT also showed lower kcat and higher Km values for ATP hydrolysis than the corresponding values of FoF1ϵΔC. These results suggest that the C-terminal domain of the ϵ subunit of EFoF1 slows multiple elementary steps in both the ATP synthesis/hydrolysis reactions by restricting the rotation of the γ subunit.  相似文献   

3.
F1-ATPase is a rotary molecular motor in which the γ-subunit rotates against the α3β3 cylinder. The unitary γ-rotation is a 120° step comprising 80 and 40° substeps, each of these initiated by ATP binding and ADP release and by ATP hydrolysis and inorganic phosphate release, respectively. In our previous study on γ-rotation at low temperatures, a highly temperature-sensitive (TS) reaction step of F1-ATPase from thermophilic Bacillus PS3 was found below 9 °C as an intervening pause before the 80° substep at the same angle for ATP binding and ADP release. However, it remains unclear as to which reaction step the TS reaction corresponds. In this study, we found that the mutant F1(βE190D) from thermophilic Bacillus PS3 showed a clear pause of the TS reaction below 18 °C. In an attempt to identify the catalytic state of the TS reaction, the rotation of the hybrid F1, carrying a single copy of βE190D, was observed at 18 °C. The hybrid F1 showed a pause of the TS reaction at the same angle as for the ATP binding of the incorporated βE190D, although kinetic analysis revealed that the TS reaction is not the ATP binding step. These findings suggest that the TS reaction is a structural rearrangement of β before or after ATP binding.F1-ATPase (F1)2 is an ATP-driven rotary motor protein. The subunit composition of the bacterial F1-ATPase is α3β3γδϵ, and the minimum complex of F1-ATPase as a rotary motor is α3β3γ subcomplex. This motor protein forms the FoF1-ATP synthase complex by binding to another rotary motor, namely, Fo, which is driven by the proton flux resulting from the proton motive force across the membranes (14). Under physiological conditions, where the proton motive force is sufficiently large, Fo forcibly rotates F1-ATPase in the reverse direction of F1-ATPase, leading the reverse reaction of ATP hydrolysis, i.e. ATP synthesis from ADP and inorganic phosphate (Pi). When the proton motive force diminishes or F1 is isolated from Fo, F1-ATPase hydrolyzes ATP to rotate the γ-subunit against the α3β3 stator ring in the counterclockwise direction as viewed from the Fo side (5). The catalytic sites are located at the interface of the α- and β-subunits, predominantly on the β-subunit (6). Each β-subunit carries out a single turnover of ATP hydrolysis during the γ-rotation of 360° following the common catalytic reaction pathway, whereas they are 120° different in the catalytic phase. In this manner, the three β-subunits undergo different reaction steps of ATP hydrolysis upon each rotational step. The rotary motion of the γ-subunit has been demonstrated by biochemical (7) and spectroscopic methods (8) and directly proved in single-molecule observation studies (5).Since the establishment of the single-molecule rotation assay, the chemomechanical coupling scheme of F1 has been studied extensively by resolving the rotation into discrete steps. The stepping rotation was first observed under an ATP-limiting condition where F1 makes discrete 120° steps upon ATP binding (9). Then, high speed imaging of the rotation with a small probe of low friction was performed, which revealed that the 120° step comprises 80 and 40° substeps, each initiated by ATP binding, and two unknown consecutive reactions, respectively (10). This finding necessitated the identification of the two reactions that trigger the 40° substep. Hence, the rotation assay was performed using a mutant, namely F1(βE190D), and a slowly hydrolyzed ATP analog, namely ATPγS (11). Glutamate 190 of the β-subunit of F1, derived from thermophilic Bacillus PS3 and the corresponding glutamates from other F1-ATPases (Glu-181 of F1 from Escherichia coli and Glu-188 of F1 from bovine mitochondria), has been identified as one of the most critical catalytic residues for ATP hydrolysis (6, 1215). When this glutamate was substituted with aspartic acid, which has a shorter side chain than that of glutamate, the ATP cleavage step of F1 was drastically slowed. In the rotation assay, this mutant showed a distinct long pause before the 40° substep. ATPγS also caused a long pause before the 40° substep. These observations established that the 40° substep is initiated by hydrolysis. Accordingly, the pause angles before the 80 and 40° substeps are referred to as to the binding angle and the catalytic angle, respectively. Then, the rotation assay was performed in the presence of a high amount of Pi in the solution. It was shown that Pi rebinding caused the long pause at the catalytic angle, suggesting that Pi is released before the 40° substep (16).However, the reaction scheme of F1 cannot be established by simply assigning each reaction step to either the binding angle or the catalytic angle, because each reaction step must be assigned to one of the three binding or catalytic angles when considering the 360° cyclic reaction scheme of each β-subunit. Direct information about the timing of ADP release was obtained by simultaneous imaging of fluorescently labeled nucleotides and γ rotation, which showed that each β retains ADP until the γ rotates 240° after binding of the nucleotide as ATP and releases ADP between 240 and 320° (16, 17). Another powerful approach is the use of a hybrid F1 carrying a mutant β that causes a characteristic pause during the rotation. In a previous study, the hybrid F1 carrying a single copy of β(E190D), α3β2β(E190D)γ, showed a distinct pause caused by the slow hydrolysis of β(E190D) at +200° from the ATP binding angle of the mutant β (18). From this observation, it was confirmed that each β executes the chemical cleavage of the bound ATP at +200° from the angle where the ATP binds to β. The asymmetric feature of the pause of the hybrid F1 was also utilized in other experiments as a marker in the rotational trajectory to correlate the rotational angle and the conformational state of β (19) or to determine the state of F1 in the crystal structures as the pausing state at catalytic angle (20).Recently, we have found a new reaction intermediate of F1 rotation as a clear intervening pause before the 80° substep in the rotation assay below 9 °C (21). Furuike et al. (22) also observed the TS reaction in a high speed imaging experiment. The rate constant of this reaction was remarkably sensitive to temperature, giving a Q10 factor around 19. When ADP was added to solution, the pause before the 80° substep was prolonged, whereas the solution Pi caused a longer pause before the 40° substep (21). Although this result can be explained by assuming that the temperature-sensitive (TS) reaction is ADP release, it was not decisive for the identification of the TS reaction.In this study, we found that the mutant F1(βE190D) also exhibits the distinct pause of the TS reaction but at a higher temperature than for the wild-type F1, i.e. at 18 °C. This feature was advantageous in identifying the angle position of the TS reaction in the catalytic cycle for each β-subunit coupled with the 360° rotation. Taking advantage of the feature of the hybrid F1, we analyzed the rotational behavior of the hybrid F1 at 18 °C in order to assign the angle position of the TS reaction in the catalytic cycle of the 360° rotation, and we have shown that the TS reaction is not directly involved in the ADP release but in some conformational rearrangement before or after ATP binding step.  相似文献   

4.
Mitochondrial F1-ATPase contains a hexamer of alternating α and β subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to β and α. In the absence of Atp11p and Atp12p, the hexamer is not formed, and α and β precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F1 assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486–1493) hypothesized that the chaperones themselves look very much like the α and β subunits, and proposed an exchange of Atp11p for α and of Atp12p for β; the driving force for the exchange was expected to be a higher affinity of α and β for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to β and Atp12p is bound to α, the two F1 subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to α and β prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble α or β, and it is instead the F1 γ subunit that initiates the release of the chaperones from α and β and their further assembly into the mature complex.Mitochondrial F1-ATPase consists of three α and three β subunits occupying alternate positions in a hexamer that surrounds a rod-like element containing one each of γ, δ, and ϵ subunits (13). Three nucleotide-binding catalytic sites (CS)4 and three noncatalytic sites (NCS) alternate at the six α/β interfaces. Early work with respiratory-deficient strains of Saccharomyces cerevisiae (4) revealed that two additional mitochondrial proteins, Atp11p and Atp12p, which are not integral subunits of the enzyme, are nonetheless necessary for the assembly of F1-ATPase. Besides their failure to assemble F1, a particularly interesting feature of atp11 and atp12 mutants is that they accumulate α and β subunits as high molecular weight aggregates (4) that can be recognized as densely stained inclusion bodies in the mitochondrial matrix (5). Subsequent studies in yeast have shown that Atp12p binds to F1 α (6) and that Atp11p binds to β (7); these interactions include binding determinants in the nucleotide binding domains (NBD) of the two F1 subunits. On this basis, it is now recognized that Atp11p and Atp12p are members of two new families of molecular chaperones, pfam06644 and pfam07542 (8), which are required for the assembly of mitochondrial ATP synthase in all eukaryotes. In fact, the first nuclear genetic lesion associated to a defect of mitochondrial ATP synthase in humans was identified in the locus ATPAF2 for Atp12p and was responsible for the death of a 14-month-old infant (9). Atp12p is also present in the α subdivision of Proteobacteria, consistent with the proposed origin of mitochondria from this ancestral line (10).The nature of the interactions between the F1 subunits and Atp11p and Atp12p has remained elusive because of the lack of structural information for these chaperones. As α and β aggregate in the absence of Atp11p and Atp12p, it is usually assumed that the F1 subunits are themselves poorly soluble, and that the two chaperones maintain them in a dispersed state until they are incorporated in the mature enzyme. Based on the analysis of the distribution of hydrophilic and hydrophobic areas on the surface of the α and β subunits of F1, and on the interaction energies between these subunits at the interfaces that provide the CS and NCS sites, Wang et al. (6) have proposed a model of F1 assembly in which Atp11p binds at the region of the β subunit that contributes to the CS site, and Atp12p binds at the region of the α subunit that contributes to the NCS site. One consequence of this particular binding of Atp11p and Atp12p to the F1 subunits is that as long as Atp11p is bound to β and Atp12p is bound to α, the two F1 subunits cannot interact at either the CS or the NCS interface. Since no other modulators of chaperone release are known, the Wang model requires an exchange of Atp11p for α and of Atp12p for β. Implied in this model is that the chaperones must themselves look very much like the α and β subunits, and that the driving force for the exchange must simply be a higher affinity of α and β for each other than for the respective chaperone partners. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to α and β prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble α or β, and it is instead the F1 γ subunit that initiates the release of the chaperones from α and β and their further assembly into mature complex.  相似文献   

5.
The C-terminal domain of subunit ε of the bacterial FoF1 ATP synthase is reported to be an intrinsic inhibitor of ATP synthesis/hydrolysis activity in vitro, preventing wasteful hydrolysis of ATP under low-energy conditions. Mutants defective in this regulatory domain exhibited no significant difference in growth rate, molar growth yield, membrane potential, or intracellular ATP concentration under a wide range of growth conditions and stressors compared to wild-type cells, suggesting this inhibitory domain is dispensable for growth and survival of Escherichia coli.FoF1 ATP synthases are ubiquitous enzymes that synthesize ATP using a transmembrane electrochemical potential of protons or proton motive force (PMF) generated by the respiratory chain across the cytoplasmic membrane of bacteria, the thylakoid membrane of chloroplasts, or the mitochondrial inner membrane (4, 5, 37). The enzyme consists of two parts: membrane-embedded Fo subcomplex (a complex of subunits a, b, and c in bacteria) and hydrophilic F1 subcomplex (composed of subunits α, β, γ, δ, and ε). The enzyme is also known as a molecular motor, which is composed of the stator subcomplex (α, β, δ, a, and b) and the rotor subcomplex (γ, ε, and c), and its rotation is coupled to ATP synthesis and proton flow across the membrane (20, 31, 52). The reaction of the enzyme is reversible; ATP is hydrolyzed into ADP and inorganic phosphate, the rotor subcomplex rotates in reverse, and protons are extruded to the periplasmic side, resulting in the generation of PMF. Although some bacteria utilize the reverse reaction under particular conditions, the primary function of FoF1 ATP synthase is generation of ATP from the PMF. Therefore, the direction of the activity of FoF1 ATP synthase is regulated to avoid wasteful ATP hydrolysis.Subunit ε in bacterial FoF1 has been known to be an intrinsic inhibitor of F1 and FoF1 complex (18, 21, 23) and is proposed to have a regulatory function (10, 11, 42). Although the inhibitory effects of subunit ε vary among species, in general, ε inhibits ATP hydrolysis activity while repressing ATP synthesis activity to a lesser degree (14, 27). This regulatory function of the ε subunit is mediated almost exclusively by the C-terminal region of ε, which is comprised of two antiparallel α-helices (18, 49, 50). Biochemical and crystallographic studies have revealed that the C-terminal helices can adopt two different conformations (34, 46, 47, 48). In the retracted conformation, the α-helices form a hairpin-like structure and sit on the N-terminal β-sandwich domain of the ε subunit. When the ε subunit exhibits an inhibitory effect, it adopts a more extended conformation in which the C-terminal α-helices extend along the γ subunit, which composes the central stalk. It has also been shown that basic, positively charged residues on the second α-helix of the ε subunit interact with negatively charged residues in the DELSEED segment of subunit β to exert the inhibitory effect (12).Escherichia coli mutants deleted in the entire ε subunit exhibit a reduced growth rate and growth yield, and this effect is proposed to be a result of a deficiency in assembly of the Fo and F1 complexes (21). The N-terminal β-sandwich domain of the ε subunit is responsible for the assembly of Fo and F1 and is therefore important for efficient coupling between proton translocation through Fo and ATP synthesis/hydrolysis in F1 (15, 39). Deletion of the ε subunit leads to dissociation of the FoF1 complex and wasteful ATP hydrolysis by free (cytoplasmic) F1 and dissipation of PMF through free Fo (21, 22, 51).While the importance of the entire ε subunit in the whole-cell physiology of E. coli is fairly well established, the role of the regulatory C-terminal region of ε has received little attention and warrants investigation to determine if the regulatory functions (e.g., inhibition of ATP hydrolysis) observed in vitro are manifested in the physiology of E. coli under various growth conditions. To address this question, we constructed isogenic E. coli mutants that were deleted in the C-terminal region of ε subunit (εDC) and used these strains to compare physiological properties of wild-type versus εDC cells under a wide range of environmental conditions and stressors.  相似文献   

6.
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. As part of the synthesis mechanism, the torque of the rotor has to be converted into conformational rearrangements of the catalytic binding sites on the stator to allow synthesis and release of ATP. The γ subunit of the rotor, which plays a central role in the energy conversion, consists of two long helices inside the central cavity of the stator cylinder plus a globular portion outside the cylinder. Here, we show that the N-terminal helix alone is able to fulfill the function of full-length γ in ATP synthesis as long as it connects to the rest of the rotor. This connection can occur via the ϵ subunit. No direct contact between γ and the c ring seems to be required. In addition, the results indicate that the ϵ subunit of the rotor exists in two different conformations during ATP synthesis and ATP hydrolysis.F1Fo-ATP synthase is responsible for the bulk of ATP synthesis from ADP and Pi in most organisms. F1Fo-ATP synthase consists of the membrane-embedded Fo subcomplex with, in most bacteria, a subunit composition of ab2cn (with n = 10–15) and the peripheral F1 subcomplex, with a subunit composition of α3β3γδϵ. The energy necessary for ATP synthesis is derived from an electrochemical transmembrane proton (or, in some organisms, sodium ion) gradient. Proton flow, down the gradient, through Fo is coupled to ATP synthesis on F1 by a unique rotary mechanism. The protons flow through channels at the interface of a and c subunits, which drives rotation of the ring of c subunits. The cn ring, together with F1 subunits γ and ϵ, forms the rotor. Rotation of γ leads to conformational changes in the catalytic nucleotide-binding sites on the β subunits, where ADP and Pi are bound. The conformational changes result in formation and release of ATP. Thus, ATP synthase converts electrochemical energy, the proton gradient, into mechanical energy in the form of subunit rotation and back into chemical energy as ATP. In bacteria, under certain physiological conditions, the process can run in reverse. ATP is hydrolyzed to generate a transmembrane proton gradient that the bacterium requires for such functions as nutrient import and locomotion (for reviews, see Refs. 16).F1 (or “F1-ATPase”) has three catalytic nucleotide-binding sites, located on the β subunits, at the interface with the adjacent α subunit. The catalytic sites have pronounced differences in their nucleotide-binding affinity. During rotational catalysis, the sites switch their affinities in a synchronized manner; the position of γ determines which catalytic site is the high affinity site (Kd1 in the nanomolar range), which site is the medium affinity site (Kd2 ≈ 1 μm), and which site is the low affinity site (Kd3 ≈ 30–100 μm; see Refs. 7, 8). Only the high affinity site is catalytically active (9). In the original crystal structure of bovine mitochondrial F1 (10), one of the three catalytic sites was filled with the ATP analog AMPPNP,3 a second one with ADP (plus azide; see Ref. 11), and the third site was empty. Hence, the β subunits are referred to as βTP, βDP, and βE, respectively. The high affinity site is located on the βTP subunit (12).The coupling process between ATP synthesis or hydrolysis on β and rotation of γ is not yet fully understood on a residue level. A number of point mutations at the interfaces between α or β and γ and between γ, ϵ, and c have been described that result in varying degrees of uncoupling (1317). Some mutations at these interfaces were found that abolish ATP synthesis or hydrolysis activity or both (1820). Considering the pronounced effect of these point mutations, some of which were even conservative substitutions, it came as a surprise when it was recently shown that an “axle-less” γ, consisting just of the globular portion, with the portions of the N- and C-terminal helices that reach into the α3β3 cylinder removed, displayed ATP-driven rotation in the correct direction (21).Some reports have implicated the ϵ subunit (corresponding to the δ subunit in the mitochondrial enzyme) as being involved in coupling (15, 2225). It was shown that ϵ exists in different conformations that vary in the folding and positioning of the C-terminal domain. The x-ray structure of the mitochondrial enzyme (26) shows the two helices of the C-terminal domain folded back on each other like a hairpin and positioned close to the interface between γ and the c ring (“down” conformation). In the crystal structure of a γϵ complex from Escherichia coli the hairpin is unfolded (27); when integrated into F1 or F1Fo, the C terminus would reach “up,” coming close to the DELSEED-loop of the α and/or β subunits. While in this up conformation the angle between both helices of the C-terminal domain of ϵ is ∼90°, it has been postulated that this domain might also exist in a fully extended up conformation, stretching close to the N terminus of γ, with helical regions replacing the turn between the two helices (28). Fixing ϵ in either up conformation by cross-linking to γ has been shown to impair ATP hydrolysis but not synthesis. Freezing ϵ in the down position inhibited neither reaction (29, 30).Here, we report a finding that is arguably just as surprising as the rotation of an axle-less γ. In ATP synthase from the thermophilic bacterium Bacillus PS3, enzymes with γ subunit constructs where the globular domain and the C-terminal helix were eliminated, consisting of just the N-terminal 35 or 42 residues, TF1Fo(γQ36stop)4 and TF1Fo(γP43stop), were able to catalyze significant rates of ATP synthesis. According to the crystal structure (26), the shorter of the two γ constructs should not make any contact either with c or with ϵ in the down conformation. Thus, the fact that ATP synthesis was observed suggests that ϵ in an up conformation forms a complex with the truncated γ, which is able to catalyze ATP synthesis. Indeed, when the γQ36stop truncation was combined with an ϵ truncation where the C-terminal domain was removed, ATP synthesis was abolished. The functions of the γ and ϵ subunits will be discussed in light of the new findings.  相似文献   

7.
Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (αβγδ) and neuronal (α7, α3β2, and α4β2) nicotinic acetylcholine receptors (nAChRs) with highest affinity for α7-nAChRs. The high resolution (1.5 Å) crystal structure revealed haditoxin to be a homodimer, like κ-neurotoxins, which target neuronal α3β2- and α4β2-nAChRs. Interestingly however, the monomeric subunits of haditoxin were composed of a three-finger protein fold typical of curaremimetic short-chain α-neurotoxins. Biochemical studies confirmed that it existed as a non-covalent dimer species in solution. Its structural similarity to short-chain α-neurotoxins and κ-neurotoxins notwithstanding, haditoxin exhibited unique blockade of α7-nAChRs (IC50 180 nm), which is recognized by neither short-chain α-neurotoxins nor κ-neurotoxins. This is the first report of a dimeric short-chain α-neurotoxin interacting with neuronal α7-nAChRs as well as the first homodimeric three-finger toxin to interact with muscle nAChRs.  相似文献   

8.
ATP synthase uses a unique rotational mechanism to convert chemical energy into mechanical energy and back into chemical energy. The helix-turn-helix motif, termed “DELSEED-loop,” in the C-terminal domain of the β subunit was suggested to be involved in coupling between catalysis and rotation. Here, the role of the DELSEED-loop was investigated by functional analysis of mutants of Bacillus PS3 ATP synthase that had 3–7 amino acids within the loop deleted. All mutants were able to catalyze ATP hydrolysis, some at rates several times higher than the wild-type enzyme. In most cases ATP hydrolysis in membrane vesicles generated a transmembrane proton gradient, indicating that hydrolysis occurred via the normal rotational mechanism. Except for two mutants that showed low activity and low abundance in the membrane preparations, the deletion mutants were able to catalyze ATP synthesis. In general, the mutants seemed less well coupled than the wild-type enzyme, to a varying degree. Arrhenius analysis demonstrated that in the mutants fewer bonds had to be rearranged during the rate-limiting catalytic step; the extent of this effect was dependent on the size of the deletion. The results support the idea of a significant involvement of the DELSEED-loop in mechanochemical coupling in ATP synthase. In addition, for two deletion mutants it was possible to prepare an α3β3γ subcomplex and measure nucleotide binding to the catalytic sites. Interestingly, both mutants showed a severely reduced affinity for MgATP at the high affinity site.F1F0-ATP synthase catalyzes the final step of oxidative phosphorylation and photophosphorylation, the synthesis of ATP from ADP and inorganic phosphate. F1F0-ATP synthase consists of the membrane-embedded F0 subcomplex, with, in most bacteria, a subunit composition of ab2c10, and the peripheral F1 subcomplex, with a subunit composition of α3β3γδε. The energy necessary for ATP synthesis is derived from an electrochemical transmembrane proton (or, in some organisms, a sodium ion) gradient. Proton flow down the gradient through F0 is coupled to ATP synthesis on F1 by a unique rotary mechanism. The protons flow through (half) channels at the interface of the a and c subunits, which drives rotation of the ring of c subunits. The c10 ring, together with F1 subunits γ and ε, forms the rotor. Rotation of γ leads to conformational changes in the catalytic nucleotide binding sites on the β subunits, where ADP and Pi are bound. The conformational changes result in the formation and release of ATP. Thus, ATP synthase converts electrochemical energy, the proton gradient, into mechanical energy in the form of subunit rotation and back into chemical energy as ATP. In bacteria, under certain physiological conditions, the process runs in reverse. ATP is hydrolyzed to generate a transmembrane proton gradient, which the bacterium requires for such functions as nutrient import and locomotion (for reviews, see Refs. 16).F1 (or F1-ATPase) has three catalytic nucleotide binding sites located on the β subunits at the interface to the adjacent α subunit. The catalytic sites have pronounced differences in their nucleotide binding affinity. During rotational catalysis, the sites switch their affinities in a synchronized manner; the position of γ determines which catalytic site is the high affinity site (Kd1 in the nanomolar range), which site is the medium affinity site (Kd2 ≈ 1 μm), and which site is the low affinity site (Kd3 ≈ 30–100 μm; see Refs. 7 and 8). In the original crystal structure of bovine mitochondrial F1 (9), one of the three catalytic sites, was filled with the ATP analog AMP-PNP,2 a second was filled with ADP (plus azide) (see Ref. 10), and the third site was empty. Hence, the β subunits are referred to as βTP, βDP, and βE. The occupied β subunits, βTP and βDP, were in a closed conformation, and the empty βE subunit was in an open conformation. The main difference between these two conformations is found in the C-terminal domain. Here, the “DELSEED-loop,” a helix-turn-helix structure containing the conserved DELSEED motif, is in an “up” position when the catalytic site on the respective β subunit is filled with nucleotide and in a “down” position when the site is empty (Fig. 1A). When all three catalytic sites are occupied by nucleotide, the previously open βE subunit assumes an intermediate, half-closed (βHC) conformation. It cannot close completely because of steric clashes with γ (11).Open in a separate windowFIGURE 1.The βDELSEED-loop. A, interaction of the βTP and βE subunits with theγ subunit.β subunits are shown in yellow andγ in blue. The DELSEED-loop (shown in orange, with the DELSEED motif itself in green)of βTP interacts with the C-terminal helixγ and the short helix that runs nearly perpendicular to the rotation axis. The DELSEED-loop of βE makes contact with the convex portion of γ, formed mainly by the N-terminal helix. A nucleotide molecule (shown in stick representation) occupies the catalytic site of βTP, and the subunit is in the closed conformation. The catalytic site on βE is empty, and the subunit is in the open conformation. This figure is based on Protein Data Bank file 1e79 (32). B, deletions in the βDELSEED-loop. The loop was “mutated” in silico to represent the PS3 ATP synthase. The 3–4-residue segments that are removed in the deletion mutants are color-coded as follows: 380LQDI383, pink; 384IAIL387, green; 388GMDE391, yellow; 392LSD394, cyan; 395EDKL398, orange; 399VVHR402, blue. Residues that are the most involved in contacts with γ are labeled. All figures were generated using the program PyMOL (DeLano Scientific, San Carlos, CA).The DELSEED-loop of each of the three β subunits makes contact with the γ subunit. In some cases, these contacts consist of hydrogen bonds or salt bridges between the negatively charged residues of the DELSEED motif and positively charged residues on γ. The interactions of the DELSEED-loop with γ, its movement during catalysis, the conservation of the DELSEED motif (see 1214). Thus, the finding that an AALSAAA mutant in the α3β3γ complex of ATP synthase from the thermophilic Bacillus PS3, where several hydrogen bonds/salt bridges to γ are removed simultaneously, could drive rotation of γ with the same torque as the wild-type enzyme (14) came as a surprise. On the other hand, it seems possible that it is the bulk of the DELSEED-loop, more so than individual interactions, that drives rotation of γ. According to a model favored by several authors (6, 15, 16) (see also Refs. 1719), binding of ATP (or, more precisely, MgATP) to the low affinity catalytic site on βE and the subsequent closure of this site, accompanied by its conversion into the high affinity site, are responsible for driving the large (80–90°) rotation substep during ATP hydrolysis, with the DELSEED-loop acting as a “pushrod.” A recent molecular dynamics (20) study supports this model and implicates mainly the region around several hydrophobic residues upstream of the DELSEED motif (specifically βI386 and βL387)3 as being responsible for making contact with γ during the large rotation substep.

TABLE 1

Conservation of residues in the DELSEED-loop Amino acids found in selected species in the turn region of the DELSEED-loop. Listed are all positions subjected to deletions in the present study. Residue numbers refer to the PS3 enzyme. Consensus annotation: p, polar residue; s, small residue; h, hydrophobic residue; –, negatively charged residue; +, positively charged residue.Open in a separate windowIn the present study, we investigated the function of the DELSEED-loop using an approach less focused on individual residues, by deleting stretches of 3–7 amino acids between positions β380 and β402 of ATP synthase from the thermophilic Bacillus PS3. We analyzed the functional properties of the deletion mutants after expression in Escherichia coli. The mutants showed ATPase activities, which were in some cases surprisingly high, severalfold higher than the activity of the wild-type control. On the other hand, in all cases where ATP synthesis could be measured, the rates where below or equal to those of the wild-type enzyme. In Arrhenius plots, the hydrolysis rates of the mutants were less temperature-dependent than those of wild-type ATP synthase. In those cases where nucleotide binding to the catalytic sites could be tested, the deletion mutants had a much reduced affinity for MgATP at high affinity site 1. The functional role of the DELSEED-loop will be discussed in light of the new information.  相似文献   

9.
Mao D  Lü S  Li N  Zhang Y  Long M 《PloS one》2011,6(8):e24188
β2 integrin of lymphocyte function-associated antigen-1 (LFA-1) or macrophage-1 antigen (Mac-1) binds to their common ligand of intercellular adhesion molecule-1 (ICAM-1) and mediates leukocyte-endothelial cell (EC) adhesions in inflammation cascade. Although the two integrins are known to have distinct functions, the corresponding micro-structural bases remain unclear. Here (steered-)molecular dynamics simulations were employed to elucidate the conformational stability of α subunit I domains of LFA-1 and Mac-1 in different affinity states and relevant I domain-ICAM-1 interaction features. Compared with low affinity (LA) Mac-1, the LA LFA-1 I domain was unstable in the presence or absence of ICAM-1 ligand, stemming from diverse orientations of its α7-helix with different motifs of zipper-like hydrophobic junction between α1- and α7-helices. Meanwhile, spontaneous transition of LFA-1 I domain from LA state to intermediate affinity (IA) state was first visualized. All the LA, IA, and high affinity (HA) states of LFA-1 I domain and HA Mac-1 I domain were able to bind to ICAM-1 ligand effectively, while LA Mac-1 I domain was unfavorable for binding ligand presumably due to the specific orientation of S144 side-chain that capped the MIDAS ion. These results furthered our understanding in correlating the structural bases with their functions of LFA-1 and Mac-1 integrins from the viewpoint of I domain conformational stability and of the characteristics of I domain-ICAM-1 interactions.  相似文献   

10.

Background and Aims

An investigation was carried out to determine whether stomatal closure in flooded tomato plants (Solanum lycopersicum) results from decreased leaf water potentials (ψL), decreased photosynthetic capacity and attendant increases in internal CO2 (Ci) or from losses of root function such as cytokinin and gibberellin export.

Methods

Pot-grown plants were flooded when 1 month old. Leaf conductance was measured by diffusion porometry, the efficiency of photosystem II (PSII) was estimated by fluorimetry, and infrared gas analysis was used to determine Ci and related parameters.

Key Results

Flooding starting in the morning closed the stomata and increased ψL after a short-lived depression of ψL. The pattern of closure remained unchanged when ψ`L depression was avoided by starting flooding at the end rather than at the start of the photoperiod. Raising external CO2 concentrations by 100 µmol mol−1 also closed stomata rapidly. Five chlorophyll fluorescence parameters [Fq′/Fm′, Fq′/Fv′, Fv′/Fm′, non-photochemical quenching (NPQ) and Fv/Fm] were affected by flooding within 12–36 h and changes were linked to decreased Ci. Closing stomata by applying abscisic acid or increasing external CO2 substantially reproduced the effects of flooding on chlorophyll fluorescence. The presence of well-aerated adventitious roots partially inhibited stomatal closure of flooded plants. Allowing adventitious roots to form on plants flooded for >3 d promoted some stomatal re-opening. This effect of adventitious roots was not reproduced by foliar applications of benzyl adenine and gibberellic acid.

Conclusions

Stomata of flooded plants did not close in response to short-lived decreases in ψL or to increased Ci resulting from impaired PSII photochemistry. Instead, stomatal closure depressed Ci and this in turn largely explained subsequent changes in chlorophyll fluorescence parameters. Stomatal opening was promoted by the presence of well-aerated adventitious roots, implying that loss of function of root signalling contributes to closing of stomata during flooding. The possibility that this involves inhibition of cytokinin or gibberellin export was not well supported.Key words: Root to shoot communication, flooding stress, stomatal closure, photosynthesis, chlorophyll fluorescence, gas exchange, adventitious roots, plant hormones, abscisic acid, cytokinins, gibberellic acid  相似文献   

11.
The temperature-dependent rotation of F1-ATPase γ subunit was observed in Vmax conditions at low viscous drag using a 60-nm gold bead (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126–4131). The Arrhenius slopes of the speed of the individual 120° steps and reciprocal of the pause length between rotation steps were very similar, indicating a flat energy pathway followed by the rotationally coupled catalytic cycle. In contrast, the Arrhenius slope of the reciprocal pause length of the γM23K mutant F1 was significantly increased, whereas that of the rotation rate was similar to wild type. The effects of the rotor γM23K substitution and the counteracting effects of βE381D mutation in the interacting stator subunits demonstrate that the rotor-stator interactions play critical roles in the utilization of stored elastic energy. The γM23K enzyme must overcome an abrupt activation energy barrier, forcing it onto a less favored pathway that results in uncoupling catalysis from rotation.F-ATPase (FoF1), consisting of the catalytic sector F13β3γδϵ) and the transmembrane proton transport sector Fo (ab2c10), synthesizes or hydrolyzes ATP coupled with proton transport (for reviews, see Ref. 16). As Abrahams et al. (7) discovered in the first high resolution x-ray structure, a critical feature of the F1-ATPase is the inherent asymmetry of the three β subunits in different conformations, βTP, βDP, and βE, referring to the nucleotide bound in each catalytic site, ATP, ADP, or empty, respectively. A rotational mechanism has been firmly established mostly based on direct observation in single molecule experiments of the behavior of the rotor complex ϵγc10, relative to the stator complex α3β3δab2 (reviewed in Ref. 1). ATP hydrolysis-dependent rotation of the γ and ϵ subunits in purified bacterial F1 (8, 9), the ϵγc10 complex in detergent solubilized FoF1 (1013), and the ϵγc10 complexin FoF1 in lipid bilayers (14) were shown experimentally by single molecule observations using fluorescent actin filament as a probe. Relative rotation of the single copy Fo a subunit was also shown in F0F1, which was immobilized through the ring of ∼10 c subunits, suggesting that the rotor and stator are interchangeable mechanical units (14). ATP synthesis by F-ATPase is believed to follow the reverse mechanism of ATP hydrolysis because mechanically induced rotation of the γ subunit in immobilized F1 in the presence of ADP and Pi results in net ATP synthesis (15, 16). There remain many questions about the mechanism of coupling between catalysis and transport via mechanical rotation. In particular, the mechanism of coupling H+ transport to rotation of the subunit c10 ring is still not well understood (4).In contrast, there is considerably more information on the mechanism of coupling catalysis to γ and ϵ subunit rotation. Observations of γ subunit rotation in the catalytic F1 sector are consistent with Boyer''s binding change model (17); thus coupling between the chemistry and rotation can be assessed by studies of the soluble F1, and these findings relate to the mechanism of the entire ATP synthase complex. The γ subunit rotates relative to the α3β3 hexamer in distinct 120° steps. A 120° rotation step consisting of pause and rotation substeps appears to correspond to the hydrolysis of one ATP, assuming that three ATP molecules are hydrolyzed per 360° revolution (18). Additional pauses observed at low ATP concentrations are attributed to the “ATP waiting” dwell (19). Yasuda et al. (19) and Shimabukuro et al. (20) further resolved that each 120° step occurred in two substeps: an 80° substep whose onset was dependent upon the Mg·ATP concentration, and a 40° substep, which was not affected by substrate concentration (19). The pause before the 80° substep, the ATP waiting dwell became shorter with increasing [Mg·ATP]. In contrast, the pause duration before the 40° rotation step was modulated by the slow hydrolysis rate of ATPγS2 or by the catalytic site mutant βE190D (in the Bacillus PS3 F1), which was found to significantly increase the length of the catalytic dwell (20). These data together indicate that the dwell before the 40° step is the “catalytic dwell” (20) and defines the order of the substeps during the 120° rotation step observed in high Mg·ATP concentrations (21).In this paper, we address the question of when the rate-limiting step of steady state catalysis occurs, with respect to the rotational behavior. Pre-steady state analysis of the burst kinetics of ATP hydrolysis at nearly Vmax conditions demonstrated that the rate-limiting transition state occurs after the reversible hydrolysis/synthesis step and before release of phosphate (Pi) (22, 23). The rate-limiting step is likely associated with a rotation step because a γ-β cross-linked enzyme is still able to undergo the initial ATP hydrolysis, but the rotation-impeded enzyme is unable to release Pi (23). Significantly, the kinetics of steady state hydrolysis can only be assessed when the Mg·ATP concentration is high enough to fill all three catalytic sites. The only model consistent with these data is one that involves all three catalytic sites. During each 120° catalytic cycle, one site binds ATP, a different site carries out reversible hydrolysis/synthesis, and the third site releases product Pi and ADP (22, 23).Steady state analyses, which take advantage of a particular γ subunit mutation γM23K (24), are consistent with this model. Replacement of the conserved γMet-23 with lysine causes an uncoupling between catalysis and γ subunit rotation caused by altered interactions between γ and β subunits (25). Importantly, Al-Shawi and Nakamoto (26) and Al-Shawi et al. (25, 27) found that the γM23K mutation strongly affected the rate-limiting transition state of steady state ATP hydrolysis and ATP synthesis. The slope of the Arrhenius plots and thus the energy of activation were significantly increased in the mutant enzyme. Several second site suppressor mutations, mostly in the γ subunit (28, 29) but also in the β subunits (30, 31), were genetically identified because they restored coupled ATP synthesis. Significantly, all were in the γ-β interface. Thermodynamic analyses found that the second site suppressors generally compensated for the primary γM23K mutations by reducing the increased activation energy (25, 27, 31). Although most of the second site mutations were found distant from the γM23K site, the x-ray crystal structures (7) suggested that γM23K may directly interact with conserved βGlu-381. As expected, replacement of βGlu-381 with aspartate also suppressed the uncoupling effects of γM23K (31).To identify the rate-limiting transition state step in the rotational behavior, we analyzed the temperature dependence of the γM23K mutant in Vmax conditions observed in single molecule experiments. Interestingly, direct observation of this mutant using the micron-length actin filaments did not detect differences in the rotation behavior at room temperature (9). In contrast, we find in the data presented here that there is dramatic effect of the mutation on the temperature dependence of the length of the catalytic dwell or pause between the 120° rotation steps. This is likely because of two factors: first, we used a bead small enough not to invoke a drag on the rotation (32), and second, the temperature dependence of the rate of the rotation steps is critical for the analyses of the mechanism.  相似文献   

12.
13.
Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS) subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i) PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii) cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii) HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+)-11á-hydroxyerysotrine was the lowest, whereas (+)-erythravine and (+)-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+)-erythravine and (+)-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.  相似文献   

14.
15.
Prostaglandin (PG) F suppresses adipocyte differentiation by inhibiting the function of peroxisome proliferator-activated receptor γ. However, PGF synthase (PGFS) in adipocytes remains to be identified. Here, we studied the expression of members of the aldo-keto reductase (AKR) 1B family acting as PGFS during adipogenesis of mouse 3T3-L1 cells. AKR1B3 mRNA was expressed in preadipocytes, and its level increased about 4-fold at day 1 after initiation of adipocyte differentiation, and then quickly decreased the following day to a level lower than that in the preadipocytes. In contrast, the mRNA levels of Akr1b8 and 1b10 were clearly lower than that level of Akr1b3 in preadipocytes and remained unchanged during adipogenesis. The transient increase in Akr1b3 during adipogenesis was also observed by Western blot analysis. The mRNA for the FP receptor, which is selective for PGF, was also expressed in preadipocytes. Its level increased about 2-fold within 1 h after the initiation of adipocyte differentiation and was maintained at almost the same level throughout adipocyte differentiation. The small interfering RNA for Akr1b3, but not for Akr1b8 or 1b10, suppressed PGF production and enhanced the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ, fatty acid-binding protein 4 (aP2), and stearoyl-CoA desaturase. Moreover, an FP receptor agonist, Fluprostenol, suppressed the expression of those adipogenic genes in 3T3-L1 cells; whereas an FP receptor antagonist, AL-8810, efficiently inhibited the suppression of adipogenesis caused by the endogenous PGF. These results indicate that AKR1B3 acts as the PGFS in adipocytes and that AKR1B3-produced PGF suppressed adipocyte differentiation by acting through FP receptors.  相似文献   

16.
Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gαi1(G42R) binding to GDP·AlF4 or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gαq(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.  相似文献   

17.
Stable complexes among G proteins and effectors are an emerging concept in cell signaling. The prototypical Gβγ effector G protein-activated K+ channel (GIRK; Kir3) physically interacts with Gβγ but also with Gαi/o. Whether and how Gαi/o subunits regulate GIRK in vivo is unclear. We studied triple interactions among GIRK subunits 1 and 2, Gαi3 and Gβγ. We used in vitro protein interaction assays and in vivo intramolecular Förster resonance energy transfer (i-FRET) between fluorophores attached to N and C termini of either GIRK1 or GIRK2 subunit. We demonstrate, for the first time, that Gβγ and Gαi3 distinctly and interdependently alter the conformational states of the heterotetrameric GIRK1/2 channel. Biochemical experiments show that Gβγ greatly enhances the binding of GIRK1 subunit to Gαi3GDP and, unexpectedly, to Gαi3GTP. i-FRET showed that both Gαi3 and Gβγ induced distinct conformational changes in GIRK1 and GIRK2. Moreover, GIRK1 and GIRK2 subunits assumed unique, distinct conformations when coexpressed with a “constitutively active” Gαi3 mutant and Gβγ together. These conformations differ from those assumed by GIRK1 or GIRK2 after separate coexpression of either Gαi3 or Gβγ. Both biochemical and i-FRET data suggest that GIRK acts as the nucleator of the GIRK-Gα-Gβγ signaling complex and mediates allosteric interactions between GαiGTP and Gβγ. Our findings imply that Gαi/o and the Gαiβγ heterotrimer can regulate a Gβγ effector both before and after activation by neurotransmitters.  相似文献   

18.
Electron paramagnetic resonance (EPR) spectroscopy coupled with site-directed spin labeling (SDSL) is a valuable tool for characterizing the mobility and conformational changes of proteins but has seldom been applied to intrinsically disordered proteins (IDPs). Here, IA3 is used as a model system demonstrating SDSL-EPR characterization of conformational changes in small IDP systems. IA3 has 68 amino acids, is unstructured in solution, and becomes α-helical upon addition of the secondary structural stabilizer 2,2,2-trifluoroethanol (TFE). Two single cysteine substitutions, one in the N-terminus (S14C) and one in the C-terminus (N58C), were generated and labeled with three different nitroxide spin labels. The resultant EPR line shapes of each of the labels were compared and each reported changes in mobility upon addition of TFE. Specifically, the spectral line shape parameters h(+1)/h(0), the local tumbling volume (VL), and the percent change of the h(−1) intensity were utilized to quantitatively monitor TFE-induced conformational changes. The values of h(+1)/h(0) as a function of TFE titration varied in a sigmoidal manner and were fit to a two-state Boltzmann model that provided values for the midpoint of the transition, thus, reporting on the global conformational change of IA3. The other parameters provide site-specific information and show that S14C-SL undergoes a conformational change resulting in more restricted motion than N58C-SL, which is consistent with previously published results obtained by studies using NMR and circular dichroism spectroscopy indicating a higher degree of α-helical propensity of the N-terminal segment of IA3. Overall, the results provide a framework for data analyzes that can be used to study induced unstructured-to-helical conformations in IDPs by SDSL.  相似文献   

19.
ATP synthases from coupling membranes are complex rotary motors that convert the energy of proton gradients across coupling membranes into the chemical potential of the β-γ anhydride bond of ATP. Proton movement within the ring of c subunits localized in the F0-sector drives γ and ɛ rotation within the F1α3β3 catalytic core where substrates are bound and products are released. An external stalk composed of homodimeric subunits b2 in Escherichia coli or heterodimeric bb′ in photosynthetic synthases connects F0 subunit a with F1 subunits δ and most likely α. The external stalk resists rotation, and is of interest both functionally and structurally. Hypotheses that the external stalk contributes to the overall efficiency of the reaction through elastic coupling of rotational substeps, and that stalks form staggered, right-handed coiled coils, are investigated here. We report on different structures that accommodate heptad discontinuities with either local or global underwinding. Analyses of the knob-and-hole packing of the E. coli b2 and Synechocystis bb′ stalks strongly support the possibility that these proteins can adopt conventional left-handed coiled coils.  相似文献   

20.
F1-ATPase (F1) is an ATP-driven rotary motor in which the three catalytic β subunits in the stator ring sequentially induce the unidirectional rotation of the rotary γ subunit. Many lines of evidence have revealed open-to-closed conformational transitions in the β subunit that swing the C-terminal domain inward. This conformational transition causes a C-terminal protruding loop with conserved sequence DELSEED to push the γ subunit. Previous work, where all residues of DELSEED were substituted with glycine to disrupt the specific interaction with γ and introduce conformational flexibility, showed that F1 still rotated, but that the torque was halved, indicating a remarkable impact on torque transmission. In this study, we conducted a stall-and-release experiment on F1 with a glycine-substituted DELSEED loop to investigate the impact of the glycine substitution on torque transmission upon ATP binding and ATP hydrolysis. The mutant F1 showed a significantly reduced angle-dependent change in ATP affinity, whereas there was no change in the equilibrium for ATP hydrolysis. These findings indicate that the DELSEED loop is predominantly responsible for torque transmission upon ATP binding but not for that upon ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号