首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the capacity of isolated β-subunits of the ATP synthase/ATPase to perform catalysis has been extensively studied, the results have not conclusively shown that the subunits are catalytically active. Since soluble F1 of mitochondrial H+-ATPase can bind inorganic pyrophosphate (PPi) and synthesize PPi from medium phosphate, we examined if purified His-tagged β-subunits from Thermophilic bacillus PS3 can hydrolyze PPi. The difference spectra in the near UV CD of β-subunits with and without PPi show that PPi binds to the subunits. Other studies show that β-subunits hydrolyze [32P] PPi through a Mg2+-dependent process with an optimal pH of 8.3. Free Mg2+ is required for maximal hydrolytic rates. The Km for PPi is 75 μM and the Vmax is 800 pmol/min/mg. ATP is a weak inhibitor of the reaction, it diminishes the Vmax and increases the Km for PPi. Thus, isolated β-subunits are catalytically competent with PPi as substrate; apparently, the assembly of β-subunits into the ATPase complex changes substrate specificity, and leads to an increase in catalytic rates.  相似文献   

2.
F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.  相似文献   

3.
A methanol extract from yellow mustard seeds had antibacterial activity against Escherichia coli, Salmonella enteritidis, and Staphylococcus aureus. Two compounds with such activity were isolated from the extract. By instrumental analysis, the compounds were identified as 4-hydroxy-3-nitrophenylacetic and sinapic acids. Examination of the structure-activity relationship showed that the hydroxyl and nitro groups of the first compound were involved in the activity against all three species. The two methoxyl groups and the hydroxyl group in sinapic acid were effective against E. coli and all of the substituents of the benzene ring were effective against S. enteritidis. The presence of the propenoic group of the second compound was effective against S. aureus.  相似文献   

4.
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F1, a water-soluble catalytic sector, and Fo, a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of in the ATP synthase from E. coli is discussed.  相似文献   

5.
ATP-dependent, azide-sensitive rotation of the subunit relative to the 33 hexagonal ring of ATP synthase was observed with a single molecule imaging system. Thus, ATP synthase is a rotary motor enzyme, the first ever found.  相似文献   

6.
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. As part of the synthesis mechanism, the torque of the rotor has to be converted into conformational rearrangements of the catalytic binding sites on the stator to allow synthesis and release of ATP. The γ subunit of the rotor, which plays a central role in the energy conversion, consists of two long helices inside the central cavity of the stator cylinder plus a globular portion outside the cylinder. Here, we show that the N-terminal helix alone is able to fulfill the function of full-length γ in ATP synthesis as long as it connects to the rest of the rotor. This connection can occur via the ϵ subunit. No direct contact between γ and the c ring seems to be required. In addition, the results indicate that the ϵ subunit of the rotor exists in two different conformations during ATP synthesis and ATP hydrolysis.F1Fo-ATP synthase is responsible for the bulk of ATP synthesis from ADP and Pi in most organisms. F1Fo-ATP synthase consists of the membrane-embedded Fo subcomplex with, in most bacteria, a subunit composition of ab2cn (with n = 10–15) and the peripheral F1 subcomplex, with a subunit composition of α3β3γδϵ. The energy necessary for ATP synthesis is derived from an electrochemical transmembrane proton (or, in some organisms, sodium ion) gradient. Proton flow, down the gradient, through Fo is coupled to ATP synthesis on F1 by a unique rotary mechanism. The protons flow through channels at the interface of a and c subunits, which drives rotation of the ring of c subunits. The cn ring, together with F1 subunits γ and ϵ, forms the rotor. Rotation of γ leads to conformational changes in the catalytic nucleotide-binding sites on the β subunits, where ADP and Pi are bound. The conformational changes result in formation and release of ATP. Thus, ATP synthase converts electrochemical energy, the proton gradient, into mechanical energy in the form of subunit rotation and back into chemical energy as ATP. In bacteria, under certain physiological conditions, the process can run in reverse. ATP is hydrolyzed to generate a transmembrane proton gradient that the bacterium requires for such functions as nutrient import and locomotion (for reviews, see Refs. 16).F1 (or “F1-ATPase”) has three catalytic nucleotide-binding sites, located on the β subunits, at the interface with the adjacent α subunit. The catalytic sites have pronounced differences in their nucleotide-binding affinity. During rotational catalysis, the sites switch their affinities in a synchronized manner; the position of γ determines which catalytic site is the high affinity site (Kd1 in the nanomolar range), which site is the medium affinity site (Kd2 ≈ 1 μm), and which site is the low affinity site (Kd3 ≈ 30–100 μm; see Refs. 7, 8). Only the high affinity site is catalytically active (9). In the original crystal structure of bovine mitochondrial F1 (10), one of the three catalytic sites was filled with the ATP analog AMPPNP,3 a second one with ADP (plus azide; see Ref. 11), and the third site was empty. Hence, the β subunits are referred to as βTP, βDP, and βE, respectively. The high affinity site is located on the βTP subunit (12).The coupling process between ATP synthesis or hydrolysis on β and rotation of γ is not yet fully understood on a residue level. A number of point mutations at the interfaces between α or β and γ and between γ, ϵ, and c have been described that result in varying degrees of uncoupling (1317). Some mutations at these interfaces were found that abolish ATP synthesis or hydrolysis activity or both (1820). Considering the pronounced effect of these point mutations, some of which were even conservative substitutions, it came as a surprise when it was recently shown that an “axle-less” γ, consisting just of the globular portion, with the portions of the N- and C-terminal helices that reach into the α3β3 cylinder removed, displayed ATP-driven rotation in the correct direction (21).Some reports have implicated the ϵ subunit (corresponding to the δ subunit in the mitochondrial enzyme) as being involved in coupling (15, 2225). It was shown that ϵ exists in different conformations that vary in the folding and positioning of the C-terminal domain. The x-ray structure of the mitochondrial enzyme (26) shows the two helices of the C-terminal domain folded back on each other like a hairpin and positioned close to the interface between γ and the c ring (“down” conformation). In the crystal structure of a γϵ complex from Escherichia coli the hairpin is unfolded (27); when integrated into F1 or F1Fo, the C terminus would reach “up,” coming close to the DELSEED-loop of the α and/or β subunits. While in this up conformation the angle between both helices of the C-terminal domain of ϵ is ∼90°, it has been postulated that this domain might also exist in a fully extended up conformation, stretching close to the N terminus of γ, with helical regions replacing the turn between the two helices (28). Fixing ϵ in either up conformation by cross-linking to γ has been shown to impair ATP hydrolysis but not synthesis. Freezing ϵ in the down position inhibited neither reaction (29, 30).Here, we report a finding that is arguably just as surprising as the rotation of an axle-less γ. In ATP synthase from the thermophilic bacterium Bacillus PS3, enzymes with γ subunit constructs where the globular domain and the C-terminal helix were eliminated, consisting of just the N-terminal 35 or 42 residues, TF1Fo(γQ36stop)4 and TF1Fo(γP43stop), were able to catalyze significant rates of ATP synthesis. According to the crystal structure (26), the shorter of the two γ constructs should not make any contact either with c or with ϵ in the down conformation. Thus, the fact that ATP synthesis was observed suggests that ϵ in an up conformation forms a complex with the truncated γ, which is able to catalyze ATP synthesis. Indeed, when the γQ36stop truncation was combined with an ϵ truncation where the C-terminal domain was removed, ATP synthesis was abolished. The functions of the γ and ϵ subunits will be discussed in light of the new findings.  相似文献   

7.
Theε-subunit is the smallest subunit of chloroplast ATP synthase, and is known to inhibit ATPase activity in isolated CF1-ATPase. As a result ε is sometimes called an inhibitory subunit. In addition, and perhaps more importantly, theε-subunit is essential for the coupling of proton translocation to ATP synthesis (as proton gate). The relation between the structure and function ofε-subunit of ATP synthase in higher plant chloroplast has been studied by molecular biological methods such as site-directed mu-tagenesis and truncations for C- or N-terminus ofε-subunit. The results showed that: (1) Thr42 ofε-subunit is important for its structure and function; (2) compared with theε-subunit in E.. coli, theε-subunit of chloroplast ATP synthase is more sensitive to C- or N-terminus truncations.  相似文献   

8.
α-Amylase (EC 3.2.1.1) hydrolyzes an internal α-1,4-glucosidic linkage of starch and related glucans. Alkalophilic liquefying enzymes from Bacillus species are utilized as additives in dishwashing and laundry detergents. In this study, we found that Bacillus sp. AAH-31, isolated from soil, produced an alkalophilic liquefying α-amylase with high thermostability. Extracellular α-amylase from Bacillus sp. AAH-31 (AmyL) was purified in seven steps. The purified enzyme showed a single band of 91 kDa on SDS–PAGE. Its specific activity of hydrolysis of 0.5% soluble starch was 16.7 U/mg. Its optimum pH and temperature were 8.5 and 70 °C respectively. It was stable in a pH range of 6.4–10.3 and below 60 °C. The calcium ion did not affect its thermostability, unlike typical α-amylases. It showed 84.9% of residual activity after incubation in the presence of 0.1% w/v of EDTA at 60 °C for 1 h. Other chelating reagents (nitrilotriacetic acid and tripolyphosphate) did not affect the activity at all. AmyL was fully stable in 1% w/v of Tween 20, Tween 80, and Triton X-100, and 0.1% w/v of SDS and commercial detergents. It showed higher activity towards amylose than towards amylopectin or glycogen. Its hydrolytic activity towards γ-cyclodextin was as high as towards short-chain amylose. Maltotriose was its minimum substrate, and maltose and maltotriose accumulated in the hydrolysis of maltooligosaccharides longer than maltotriose and soluble starch.  相似文献   

9.
The ATP synthase (FOF1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane to the synthesis or hydrolysis of ATP. This nanomotor is composed of the rotor c10γϵ and the stator ab2α3β3δ. To study the assembly of this multimeric enzyme complex consisting of membrane-integral as well as peripheral hydrophilic subunits, we combined nearest neighbor analyses by intermolecular disulfide bond formation or purification of partially assembled FOF1 complexes by affinity chromatography with the use of mutants synthesizing different sets of FOF1 subunits. Together with a time-delayed in vivo assembly system, the results demonstrate that FOF1 is assembled in a modular way via subcomplexes, thereby preventing the formation of a functional H+-translocating unit as intermediate product. Surprisingly, during the biogenesis of FOF1, F1 subunit δ is the key player in generating stable FO. Subunit δ serves as clamp between ab2 and c10α3β3γϵ and guarantees that the open H+ channel is concomitantly assembled within coupled FOF1 to maintain the low membrane proton permeability essential for viability, a general prerequisite for the assembly of multimeric H+-translocating enzymes.  相似文献   

10.
11.
A receptor for angiostatin was identified on the surface of endothelial cells as F1–F0 ATP synthase (Moser et al., 1999). Proc. Natl. Acad. Sci. U.S.A. 96, 2811–2816. This ectopic ATP synthase catalyzes ATP synthesis and is inhibited by angiostatin over a wide pH range. Endothelial cells grown at normal pH suffer no ill effects from this angiostatin-mediated inhibition of ATP synthase, whereas endothelial cells grown at low, tumor-like extracellular pH cannot maintain a normal intracellular pH and die. Angiostatin inhibits both ATP synthesis and ATP hydrolysis (Moser et al., 2001) and interferes with intracellular pH regulation (Wahl and Grant, 2002; Wahl et al., 2002). Although angiostatin administered intravenously is cleared from the circulation in a matter of minutes, angiostatin-mimetics that are more stable have potential for clinical application. An angiostatin-mimetic activity has recently been observed using a polyclonal antibody against the β catalytic subunit of ATP synthase. In order to explore the mechanism of action of angiostatin and its mimetics, further work needs to be done to evaluate clinical applicability, specificity, and contraindications for this class of therapeutics.  相似文献   

12.
13.
1. The thermal denaturation and precipitation of beta-lactamase I from Bacillus cereus 569/H/9 at 60 degrees C are reversible, a soluble and almost fully active enzyme being obtained after solution of the precipitate in 5m-guanidinium chloride or 8m-urea and subsequent removal of the denaturing agent. 2. Inactivation of beta-lactamase I occurs rapidly between 50 degrees and 55 degrees C and is shown by circular-dichroism spectra to be accompanied by an extensive conformational change. 3. A change to a different conformation occurs in 6m-urea. This change is also reversible; refolding with almost complete recovery of enzymic activity occurs within 5min of dilution of the denaturing agent. 4. Inactivation of beta-lactamase I at pH3.0 and 11.0 is also associated with conformational changes, since a proportion of the lost activity is recovered within 5min of adjustment of the pH to 7.0.  相似文献   

14.
The conserved residue Gly47 of the chloroplast ATP synthase ε subunit was substituted with Leu, Arg, Ala and Glu by site-directed mutagenesis. This process generated the mutants εG47L, εG47R, εG47A and εG47E, respectively. All the ε variants showed lower inhibitory effects on the soluble CF1(-ε) Ca^2 -ATPase compared with wild-type ε. In reduced conditions, εG47E and εG47R had a lower inhibitory effect on the oxidized CF1(-ε) Ca^2 -ATPase compared with wild-type ε. In contrast, εG47L and εG47Aincreased the Ca^2 -ATPase activity of soluble oxidized CF1(-ε). The replacement of Gly47 significantly impaired the interaction between the subunit ε and γ in an in vitro binding assay. Further study showed that all ε variants were more effective in blocking proton leakage from the thylakoid membranes. This enhanced ATP synthesis of the chloroplast and restored ATP synthesis activity of the reconstituted membranes to a level that was more efficient than that achieved by wild-type ε. These results indicate that the conserved Gly47 residue of the ε subunit is very important for maintaining the structure and function of the ε subunitand may affect the interaction between the ε subunit, β subunit of CF1 and subunit Ⅲ of CF0, therebyregulating the ATP hydrolysis and synthesis, as well as the proton translocation role of the subunit Ⅲ of CF0.  相似文献   

15.
The temperature-dependent rotation of F1-ATPase γ subunit was observed in Vmax conditions at low viscous drag using a 60-nm gold bead (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126–4131). The Arrhenius slopes of the speed of the individual 120° steps and reciprocal of the pause length between rotation steps were very similar, indicating a flat energy pathway followed by the rotationally coupled catalytic cycle. In contrast, the Arrhenius slope of the reciprocal pause length of the γM23K mutant F1 was significantly increased, whereas that of the rotation rate was similar to wild type. The effects of the rotor γM23K substitution and the counteracting effects of βE381D mutation in the interacting stator subunits demonstrate that the rotor-stator interactions play critical roles in the utilization of stored elastic energy. The γM23K enzyme must overcome an abrupt activation energy barrier, forcing it onto a less favored pathway that results in uncoupling catalysis from rotation.F-ATPase (FoF1), consisting of the catalytic sector F13β3γδϵ) and the transmembrane proton transport sector Fo (ab2c10), synthesizes or hydrolyzes ATP coupled with proton transport (for reviews, see Ref. 16). As Abrahams et al. (7) discovered in the first high resolution x-ray structure, a critical feature of the F1-ATPase is the inherent asymmetry of the three β subunits in different conformations, βTP, βDP, and βE, referring to the nucleotide bound in each catalytic site, ATP, ADP, or empty, respectively. A rotational mechanism has been firmly established mostly based on direct observation in single molecule experiments of the behavior of the rotor complex ϵγc10, relative to the stator complex α3β3δab2 (reviewed in Ref. 1). ATP hydrolysis-dependent rotation of the γ and ϵ subunits in purified bacterial F1 (8, 9), the ϵγc10 complex in detergent solubilized FoF1 (1013), and the ϵγc10 complexin FoF1 in lipid bilayers (14) were shown experimentally by single molecule observations using fluorescent actin filament as a probe. Relative rotation of the single copy Fo a subunit was also shown in F0F1, which was immobilized through the ring of ∼10 c subunits, suggesting that the rotor and stator are interchangeable mechanical units (14). ATP synthesis by F-ATPase is believed to follow the reverse mechanism of ATP hydrolysis because mechanically induced rotation of the γ subunit in immobilized F1 in the presence of ADP and Pi results in net ATP synthesis (15, 16). There remain many questions about the mechanism of coupling between catalysis and transport via mechanical rotation. In particular, the mechanism of coupling H+ transport to rotation of the subunit c10 ring is still not well understood (4).In contrast, there is considerably more information on the mechanism of coupling catalysis to γ and ϵ subunit rotation. Observations of γ subunit rotation in the catalytic F1 sector are consistent with Boyer''s binding change model (17); thus coupling between the chemistry and rotation can be assessed by studies of the soluble F1, and these findings relate to the mechanism of the entire ATP synthase complex. The γ subunit rotates relative to the α3β3 hexamer in distinct 120° steps. A 120° rotation step consisting of pause and rotation substeps appears to correspond to the hydrolysis of one ATP, assuming that three ATP molecules are hydrolyzed per 360° revolution (18). Additional pauses observed at low ATP concentrations are attributed to the “ATP waiting” dwell (19). Yasuda et al. (19) and Shimabukuro et al. (20) further resolved that each 120° step occurred in two substeps: an 80° substep whose onset was dependent upon the Mg·ATP concentration, and a 40° substep, which was not affected by substrate concentration (19). The pause before the 80° substep, the ATP waiting dwell became shorter with increasing [Mg·ATP]. In contrast, the pause duration before the 40° rotation step was modulated by the slow hydrolysis rate of ATPγS2 or by the catalytic site mutant βE190D (in the Bacillus PS3 F1), which was found to significantly increase the length of the catalytic dwell (20). These data together indicate that the dwell before the 40° step is the “catalytic dwell” (20) and defines the order of the substeps during the 120° rotation step observed in high Mg·ATP concentrations (21).In this paper, we address the question of when the rate-limiting step of steady state catalysis occurs, with respect to the rotational behavior. Pre-steady state analysis of the burst kinetics of ATP hydrolysis at nearly Vmax conditions demonstrated that the rate-limiting transition state occurs after the reversible hydrolysis/synthesis step and before release of phosphate (Pi) (22, 23). The rate-limiting step is likely associated with a rotation step because a γ-β cross-linked enzyme is still able to undergo the initial ATP hydrolysis, but the rotation-impeded enzyme is unable to release Pi (23). Significantly, the kinetics of steady state hydrolysis can only be assessed when the Mg·ATP concentration is high enough to fill all three catalytic sites. The only model consistent with these data is one that involves all three catalytic sites. During each 120° catalytic cycle, one site binds ATP, a different site carries out reversible hydrolysis/synthesis, and the third site releases product Pi and ADP (22, 23).Steady state analyses, which take advantage of a particular γ subunit mutation γM23K (24), are consistent with this model. Replacement of the conserved γMet-23 with lysine causes an uncoupling between catalysis and γ subunit rotation caused by altered interactions between γ and β subunits (25). Importantly, Al-Shawi and Nakamoto (26) and Al-Shawi et al. (25, 27) found that the γM23K mutation strongly affected the rate-limiting transition state of steady state ATP hydrolysis and ATP synthesis. The slope of the Arrhenius plots and thus the energy of activation were significantly increased in the mutant enzyme. Several second site suppressor mutations, mostly in the γ subunit (28, 29) but also in the β subunits (30, 31), were genetically identified because they restored coupled ATP synthesis. Significantly, all were in the γ-β interface. Thermodynamic analyses found that the second site suppressors generally compensated for the primary γM23K mutations by reducing the increased activation energy (25, 27, 31). Although most of the second site mutations were found distant from the γM23K site, the x-ray crystal structures (7) suggested that γM23K may directly interact with conserved βGlu-381. As expected, replacement of βGlu-381 with aspartate also suppressed the uncoupling effects of γM23K (31).To identify the rate-limiting transition state step in the rotational behavior, we analyzed the temperature dependence of the γM23K mutant in Vmax conditions observed in single molecule experiments. Interestingly, direct observation of this mutant using the micron-length actin filaments did not detect differences in the rotation behavior at room temperature (9). In contrast, we find in the data presented here that there is dramatic effect of the mutation on the temperature dependence of the length of the catalytic dwell or pause between the 120° rotation steps. This is likely because of two factors: first, we used a bead small enough not to invoke a drag on the rotation (32), and second, the temperature dependence of the rate of the rotation steps is critical for the analyses of the mechanism.  相似文献   

16.
Bacillus coagulans RCS3 isolated from hot water springs secreted five isozymes i.e. β-gal I-V of β-galactosidase. β-gal III isozyme was purified using DEAE cellulose and Sephadex G 100 column chromatography. Its molecular weight characterization showed a single band at 315 kD in Native PAGE, while two subunits of 50.1 and 53.7 kD in SDS PAGE. β-Gal III had pH optima in the range of 6-7 and temperature optima at 65 °C. It preferred nitro-aryl-β-d-galactoside as substrate having Km of 4.16 mM with ONPG. More than 85% and 80% hydrolysis of lactose (1-5%, w/v) was recorded within 48 h of incubation at 55 °C and 50 °C respectively and pH range of 6-7. About 78-86% hydrolysis of lactose in various brands of standardized milk was recorded at incubation temperature of 50 °C. These results marked the applications of β-gal III in processing of milk/whey industry.  相似文献   

17.
UV light induces phosphorylation of the α subunit of the eukaryotic initiation factor 2 (eIF2α) and inhibits global protein synthesis. Both eIF2 kinases, protein kinase-like endoplasmic reticulum kinase (PERK) and general control of nonderepressible protein kinase 2 (GCN2), have been shown to phosphorylate eIF2α in response to UV irradiation. However, the roles of PERK and GCN2 in UV-induced eIF2α phosphorylation are controversial. The one or more upstream signaling pathways that lead to the activation of PERK or GCN2 remain unknown. In this report we provide data showing that both PERK and GCN2 contribute to UV-induced eIF2α phosphorylation in human keratinocyte (HaCaT) and mouse embryonic fibroblast cells. Reduction of expression of PERK or GCN2 by small interfering RNA decreases phosphorylation of eIF2α after UV irradiation. These data also show that nitric-oxide synthase (NOS)-mediated oxidative stress plays a role in regulation of eIF2α phosphorylation upon UV irradiation. Treating the cells with the broad NOS inhibitor NG-methyl-l-arginine, the free radical scavenger N-acetyl-l-cysteine, or the NOS substrate l-arginine partially inhibits UV-induced eIF2α phosphorylation. The results presented above led us to propose that NOS mediates UV-induced eIF2α phosphorylation by activation of both PERK and GCN2 via oxidative stress and l-arginine starvation signaling pathways.UV irradiation inhibits translation initiation through activation of kinases that phosphorylate the α-subunit of eukaryotic initiation factor 2 (eIF2α).2 Two eIF2α kinases, double strand RNA-dependent protein kinase-like ER kinase (PERK) and general control of amino acid biosynthesis kinase (GCN2), are known to phosphorylate the serine 51 of eIF2α in response to UV irradiation (14). However, the one or more upstream pathways that activate eIF2α kinase(s) upon UV irradiation are not known. In this report, we provide evidence that UV-induced nitric-oxide synthase (NOS) activation and nitric oxide (NO) production regulate both PERK and GCN2 activation upon UVB irradiation.Expression of inducible nitric-oxide synthase in a mouse macrophage cell line leads to the phosphorylation of eIF2α and inhibition of translation (5). In cultured neuronal and pancreatic cell lines, production of NO and peroxynitrite (ONOO) induces endoplasmic reticulum (ER) stress, which activates PERK and results in cell dysfunction and apoptosis (69). Cytokine-stimulated inducible nitric-oxide synthase activation in astrocytes depletes l-arginine and activates GCN2, which phosphorylates eIF2α (10). UV irradiation also activates NOS and elevates cellular NO (1113). However, the UV-induced NOS activation and NO production have never been shown to be related to the activation of eIF2α kinase(s). Now we demonstrate that UV-induced activation of NOS mediates the activation of both PERK and GCN2, which coordinately regulate the phosphorylation of eIF2α.  相似文献   

18.
《FEBS letters》1985,186(2):275-280
To study the localization of the nucleotide binding sites of coupling factor 1 (TF1) from the thermophilic bacterium PS3 we used the bifunctional (cross-linking) 3'-arylazido-β-alanyl-8-azido ATP (DiN3ATP) for photoaffinity labeling. DiN3ATP is hydrolyzed by TF1 in the absence of ultraviolet light. Irradiation (UV light) of TF1 in the presence of DiN3ATP results in a nucleotide-specific reduction of ATPase activity and in a nucleotide-specific formation of different cross-linked proteins (dimers, trimers, oligomers) formed by the major subunits α and/or β. The results suggest that nucleotide binding sites (one, two, possibly all) are located at the interfaces between these subunits.  相似文献   

19.
20.
A novel repeat sequence with a conserved secondary structure is described from two nonadjacent introns of the ATP synthase β-subunit gene in sea stars of the order Forcipulatida (Echinodermata: Asteroidea). The repeat is present in both introns of all forcipulate sea stars examined, which suggests that it is an ancient feature of this gene (with an approximate age of 200 Mya). Both stem and loop regions show high levels of sequence constraint when compared to flanking nonrepetitive intronic regions. The repeat was also detected in (1) the family Pterasteridae, order Velatida and (2) the family Korethrasteridae, order Velatida. The repeat was not detected in (1) the family Echinasteridae, order Spinulosida, (2) the family Astropectinidae, order Paxillosida, (3) the family Solasteridae, order Velatida, or (4) the family Goniasteridae, order Valvatida. The repeat lacks similarity to published sequences in unrestricted GenBank searches, and there are no significant open reading frames in the repeat or in the flanking intron sequences. Comparison via parametric bootstrapping to a published phylogeny based on 4.2 kb of nuclear and mitochondrial sequence for a subset of these species allowed the null hypothesis of a congruent phylogeny to be rejected for each repeat, when compared separately to the published phylogeny. In contrast, the flanking nonrepetitive sequences in each intron yielded separate phylogenies that were each congruent with the published phylogeny. In four species, the repeat in one or both introns has apparently experienced gene conversion. The two introns also show a correlated pattern of nucleotide substitutions, even after excluding the putative cases of gene conversion. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号