首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopic measurements to study the effects of lathosterol (Lath) on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes and compared our results with those previously reported for cholesterol (Chol)/DPPC binary mixtures. Lath is the penultimate intermediate in the biosynthesis of Chol in the Kandutsch-Russell pathway and differs from Chol only in the double bond position in ring B, which is between C7 and C8 in Lath and between C5 and C6 in Chol. Our DSC studies indicate that the incorporation of Lath is more effective than Chol in reducing the temperature and enthalpy of the DPPC pretransition. At lower sterol concentrations (≤10 mol %), incorporation of both Lath and Chol decreases the temperature, enthalpy, and cooperativity of the sharp component of the main phase transition of DPPC to a similar extent, but at higher sterol concentrations, Lath is more effective at decreasing the phase transition temperature, enthalpy, and cooperativity than Chol. These results indicate that at higher concentrations, Lath is more disruptive of DPPC gel-state bilayer packing than Chol is. Moreover, incorporation of Lath decreases the temperature of the broad component of the main phase transition of DPPC, whereas Chol increases it; this difference in the direction and magnitude of the temperature shift is accentuated at higher sterol concentrations. Although at sterol concentrations of ≤20 mol % Lath and Chol are almost equally effective at reducing the enthalpy and cooperativity of the broad component of the main phase transition, at higher sterol levels Lath is less effective than Chol in these regards and does not completely abolish the cooperative hydrocarbon chain melting phase transition at 50 mol %, as does Chol. These latter results indicate that Lath both is more disruptive with respect to the low-temperature state of the sterol-enriched domains of DPPC bilayers and has a lower lateral miscibility in DPPC bilayers than Chol. Our FTIR spectroscopic studies suggest that Lath incorporation produces a less tightly packed bilayer than does Chol at both low (gel state) and high (liquid-crystalline state) temperatures, which is characterized by increased H-bonding between water and the carbonyl groups of the fatty acyl chains in the DPPC bilayer. Overall, our studies indicate that Lath and Chol incorporation can have rather different effects on the thermotropic phase behavior and organization of DPPC bilayers and thus that the position of the double bond in ring B of a sterol molecule can have an appreciable effect on the physical properties of sterol molecules.  相似文献   

2.
We use fluorescence microscopy to directly observe liquid phases in giant unilamellar vesicles. We find that a long list of ternary mixtures of high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol produce liquid domains. For one model mixture in particular, DPPC/DOPC/Chol, we have mapped phase boundaries for the full ternary system. For this mixture we observe two coexisting liquid phases over a wide range of lipid composition and temperature, with one phase rich in the unsaturated lipid and the other rich in the saturated lipid and cholesterol. We find a simple relationship between chain melting temperature and miscibility transition temperature that holds for both phosphatidylcholine and sphingomyelin lipids. We experimentally cross miscibility boundaries both by changing temperature and by the depletion of cholesterol with beta-cyclodextrin. Liquid domains in vesicles exhibit interesting behavior: they collide and coalesce, can finger into stripes, and can bulge out of the vesicle. To date, we have not observed macroscopic separation of liquid phases in only binary lipid mixtures.  相似文献   

3.
We investigate miscibility transitions of two different ternary lipid mixtures, DOPC/DPPC/Chol and POPC/PSM/Chol. In vesicles, both of these mixtures of an unsaturated lipid, a saturated lipid, and cholesterol form micron-scale domains of immiscible liquid phases for only a limited range of compositions. In contrast, in monolayers, both of these mixtures produce two distinct regions of immiscible liquid phases that span all compositions studied, the alpha-region at low cholesterol and the beta-region at high cholesterol. In other words, we find only limited overlap in miscibility phase behavior of monolayers and bilayers for the lipids studied. For vesicles at 25 degrees C, the miscibility phase boundary spans portions of both the monolayer alpha-region and beta-region. Within the monolayer beta-region, domains persist to high pressures, yet within the alpha-region, miscibility phase transition pressures always fall below 15 mN/m, far below the bilayer equivalent pressure of 32 mN/m. Approximately equivalent phase behavior is observed for monolayers of DOPC/DPPC/Chol and for monolayers of POPC/PSM/Chol. As expected, pressure-area isotherms of our ternary lipid mixtures yield smaller molecular area and compressibility for monolayers containing more saturated acyl chains and cholesterol. All monolayer experiments were conducted under argon. We show that exposure of unsaturated lipids to air causes monolayer surface pressures to decrease rapidly and miscibility transition pressures to increase rapidly.  相似文献   

4.
We have recently proposed a phase diagram for mixtures of porcine brain sphingomyelin (BSM), cholesterol (Chol), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) on the basis of kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin. Although that study indicated the existence of domains, phase separations in the micrometer scale have not been observed by fluorescence microscopy in BSM/Chol/POPC mixtures, though they have for some other sphingomyelins (SM). Here we examine the same BSM/Chol/POPC system by a combination of fluorescence resonance energy transfer (FRET) and Monte Carlo simulations. The results clearly demonstrate that domains are formed in this system. Comparison of the FRET experimental data with the computer simulations allows the estimate of lipid-lipid interaction Gibbs energies between SM/Chol, SM/POPC, and Chol/POPC. The latter two interactions are weakly repulsive, but the interaction between SM and Chol is favorable. Furthermore, those three unlike lipid interaction parameters between the three possible lipid pairs are sufficient for the existence of a closed loop in the ternary phase diagram, without the need to involve multibody interactions. The calculations also indicate that the largest POPC domains contain several thousand lipids, corresponding to linear sizes of the order of a few hundred nanometers.  相似文献   

5.
Recent work by Veatch and Keller has described micron-scale liquid-liquid immiscibility in giant unilamellar vesicles composed of ternary mixtures of cholesterol, dipalmitoylphosphatidylcholine (DPPC), and dioleoylphosphatidylcholine (DOPC). Significantly, they do not observe micron-scale immiscibility in any of the three corresponding binary mixtures under the same conditions. It is shown here that this unexpected result can be accounted for by the formation of a complex between cholesterol and DPPC. The complex is miscible with DPPC and cholesterol, and immiscible with DOPC. A simple, idealized thermodynamic treatment of this model leads to theoretical ternary phase diagrams that are similar to the experimental diagram reported by Veatch and Keller. The model also accounts for significant qualitative features of the deuterium NMR spectra of these mixtures in bilayers.  相似文献   

6.
Tissue-nonspecific alkaline phosphatase (TNAP) is associated to the plasma membrane via a GPI-anchor and plays a key role in the biomineralization process. In plasma membranes, most GPI-anchored proteins are associated with "lipid rafts", ordered microdomains enriched in sphingolipids, glycosphingolipids and cholesterol. In order to better understand the role of lipids present in rafts and their interactions with GPI-anchored proteins, the insertion of TNAP into different lipid raft models was studied using dipalmitoylphosphatidylcholine (DPPC), cholesterol (Chol), sphingomyelin (SM) and ganglioside (GM1). Thus, the membrane models studied were binary systems (9:1 molar ratio) containing DPPC:Chol, DPPC:SM and DPPC:GM1, ternary systems (8:1:1 molar ratio) containing DPPC:Chol:SM, DPPC:Chol:GM1 and DPPC:SM:GM1 and finally, a quaternary system (7:1:1:1 molar ratio) containing DPPC:Chol:SM:GM1. Calorimetry analysis of the liposomes and proteoliposomes indicate that lateral phase segregation could be noted only in the presence of cholesterol, with the formation of cholesterol-rich microdomains centered above Tc=41.5°C. The presence of GM1 and SM into DPPC-liposomes influenced mainly ΔH and Δt(1/2) values. The gradual increase in the complexity of the systems decreased the activity of the enzyme incorporated. The presence of the enzyme also fluidifies the systems, as seen by the intense reduction in ?H values, but do not alter Tc values significantly. Therefore, the study of different microdomains and its biophysical characterization may contribute to the knowledge of the interactions between the lipids present in MVs and its interactions with TNAP.  相似文献   

7.
The phase behavior of membrane lipids is known to influence the organization and function of many integral proteins. Giant unilamellar vesicles (GUVs) provide a very useful model system in which to examine the details of lipid phase separation using fluorescence imaging. The visualization of domains in GUVs of binary and ternary lipid mixtures requires fluorescent probes with partitioning preference for one of the phases present. To avoid possible pitfalls when interpreting the phase behavior of these lipid mixtures, sufficiently thorough characterization of the fluorescent probes used in these studies is needed. It is now evident that fluorescent probes display different partitioning preferences between lipid phases, depending on the specific lipid host system. Here, we demonstrate the benefit of using a panel of fluorescent probes and confocal fluorescence microscopy to examine phase separation in GUVs of binary mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Patch and fibril gel phase domains were found to co-exist with liquid disordered (l(d)) domains on the surface of GUVs composed of 40:60 mol% DOPC/DPPC, over a wide range of temperatures (14-25°C). The fluorescent lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl (NBD-DPPE), proved to be the most effective probe for visualization of fibril domains. In the presence of Lissamine(TM) rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Rh-DPPE) we were unable to detect fibril domains. This fluorophore also affected the partitioning behavior of other fluorescent probes. Overall, we show that the selection of different fluorescent probes as lipid phase reporters can result in very different interpretation of the phase behavior of DOPC/DPPC mixtures.  相似文献   

8.
Interaction of melittin with phosphatidylcholine molecules in pure vesicles, binary mixtures and a ternary mixture of dimyristoylphosphatidylcholine IDMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated by differential scanning calorimetry. Melittin binds preferentially with DMPC, and results in segregation of DMPC in binary mixtures of DMPC/DPPC and DMPC/DSPC and in a ternary mixture of DMPC/DPPC/DSPC. The results indicate that the hydrophobic part of peptide interacts preferentially with the phospholipid which has the same size of hydrophobic region or fatty acyl chains.  相似文献   

9.
Vesicles containing ternary mixtures of diphytanoylphosphatidylcholine, dipalmitoylphosphatidylcholine (DPPC), and cholesterol produce coexisting liquid phases over an unusually large range of temperature and composition. Liquid domains persist well above the DPPC chain melting temperature (41 degrees C), resulting in a closed-loop miscibility gap bounded by two critical points at fixed temperature. Quantitative tie-lines are determined directly from 2H NMR spectra using a novel analysis, and are found to connect a liquid-disordered phase rich in diphytanoyl PC with a liquid-ordered phase rich in DPPC. The direction of the tie-lines implies that binary DPPC/cholesterol mixtures are in one uniform phase above 41 degrees C. All 2H NMR results for tie-lines are verified by independent fluorescence microscopy results.  相似文献   

10.
We carried out comparative differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol (Chol) and epicholesterol (EChol) on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine (DPPC) bilayers. EChol is an epimer of Chol in which the axially oriented hydroxyl group of C3 of Chol is replaced by an equatorially oriented hydroxyl group, resulting in a different orientation of the hydroxyl group relative to sterol fused ring system. Our calorimetric studies indicate that the incorporation of EChol is more effective than Chol is in reducing the enthalpy of the pretransition of DPPC. EChol is also initially more effective than Chol in reducing the enthalpies of both the sharp and broad components of the main phase transition of DPPC. However, at higher EChol concentrations (~ 30-50 mol%), EChol becomes less effective than Chol in reducing the enthalpy and cooperativity of the main phase transition, such that at sterol concentrations of 50 mol%, EChol does not completely abolish the cooperative hydrocarbon chain-melting phase transition of DPPC, while Chol does. However, EChol does not appear to form a calorimetrically detectable crystallite phase at higher sterol concentrations, suggesting that EChol, unlike Chol, may form dimers or lower order aggregates at higher sterol concentrations. Our spectroscopic studies demonstrate that EChol incorporation produces more ordered gel and comparably ordered liquid-crystalline bilayers compared to Chol, which are characterized by increased hydrogen bonding in the glycerol backbone region of the DPPC bilayer. These and other results indicate that monomeric EChol is less miscible in DPPC bilayers than is Chol at higher sterol concentrations, but perturbs their organization to a greater extent at lower sterol concentrations, probably due primarily to the larger effective cross-sectional area of the EChol molecule. Nevertheless, EChol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers.  相似文献   

11.
The kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin from vesicles of porcine brain sphingomyelin (BSM), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and cholesterol (Chol) were investigated as a function of temperature and composition. Sphingomyelin (SM)/Chol mixtures form a liquid-ordered (L(o)) phase whereas POPC exists in the liquid-disordered (L(d)) phase at ambient temperature. delta-Lysin binds strongly to L(d) and poorly to L(o) phase. In BSM/Chol/POPC vesicles the rate of carboxyfluorescein efflux induced by delta-lysin increases as the POPC content decreases. This is explained by the increase of delta-lysin concentration in L(d) domains, which enhances membrane perturbation by the peptide. Phase separations in the micrometer scale have been observed by fluorescence microscopy in SM/Chol/POPC mixtures for some SM, though not for BSM. Thus, delta-lysin must detect heterogeneities (domains) in BSM/Chol/POPC on a much smaller scale. Advantage was taken of the inverse variation of the efflux rate with the L(d) content of BSM/Chol/POPC vesicles to estimate the L(d) fraction in those mixtures. These results were combined with differential scanning calorimetry to obtain the BSM/Chol/POPC phase diagram as a function of temperature.  相似文献   

12.
The effect of physiologically relevant ceramide concentrations (< or = 4 mol %) in raft model membranes with a lipid composition resembling that of cell membranes, i.e., composed of different molar ratios of an unsaturated glycerophospholipid, sphingomyelin, and cholesterol (Chol) along a liquid-disordered-liquid-ordered tie line was explored. The application of a fluorescence multiprobe and multiparameter approach, together with multiple fluorescence resonance energy transfer (FRET) pairs, in the well-characterized palmitoyl-oleoyl-phosphocholine (POPC)/palmitoyl-sphingomyelin (PSM)/Chol ternary mixture, revealed that low palmitoyl-ceramide (PCer) concentrations strongly changed both the biophysical properties and lipid lateral organization of the ternary mixtures in the low-to-intermediate Chol/PSM-, small raft size range (<25 mol % Chol). For these mixtures, PCer recruited up to three PSM molecules for the formation of very small ( approximately 4 nm) and highly ordered gel domains, which became surrounded by rafts (liquid-ordered phase) when Chol/PSM content increased. However, the size of these rafts did not change, showing that PCer did not induce the formation of large platforms or the coalescence of small rafts. In the high Chol/PSM-, large raft domains range (>33 mol % Chol), Chol completely abolished the effect of PCer by competing for PSM association. Lipid rafts govern the biophysical properties and lateral organization in these last mixtures.  相似文献   

13.
Binary phase diagrams have been constructed from differential scanning calorimetry (DSC) data for the systems 1-palmitoyl-2-oleylphosphatidylcholine (POPC)/dimyristoylphosphatidylcholine (DMPC), POPC/dipalmitoylphosphatidylcholine (DPPC) and POPC/distearoylphosphatidylcholine (DSPC). Mixtures of POPC with DMPC exhibit complete miscibility in the gel and liquid crystalline states. Mixtures of POPC with DPPC or with DSPC exhibit gel phase immiscibility over the composition range 0-75% DPPC (or DSPC). These results, when taken together with previous studies of mixtures of phosphatidylcholines, are consistent with the hypothesis that PCs whose order-disorder transition temperatures (Tm values) differ by less than 33 deg. C exhibit gel state miscibility. Those whose Tm values differ by more than 33 deg. C exhibit gel state immiscibility. 2H-NMR spectroscopy has been used to further study mixed model membranes composed of POPC and DPPC, in which either lipid has been labeled with deuterium in the 2-, 10- or 16-position of the palmitoyl chain(s) or in the N-methyls of the choline head group. POPC/DPPC mixtures in the liquid crystalline state are intermediate in order between pure POPC and DPPC at the same temperature. The POPC palmitoyl chain is always more disordered than the palmitoyl chains of DPPC in liquid crystalline POPC/DPPC mixtures. This is attributed to the fact that a POPC palmitoyl chain is constrained by direct bonding to have at least one oleyl chain among its nearest neighbors, while a DPPC palmitoyl chain must have at least one neighboring palmitoyl chain. When liquid crystalline POPC, DPPC and POPC/DPPC mixtures are compared at a reduced temperature (relative to the acyl chain order-disorder transition), POPC/DPPC mixtures are more disordered than predicted from the behavior of the pure components, in agreement with enthalpy data derived from DSC studies. Within the temperature range of the broad phase transition of 1:1 POPC/DPPC, a superposition of gel and liquid crystalline spectra is observed for 1:1 POPC/[2H]DPPC, while 1:1[2H]POPC/DPPC exhibits only a liquid crystalline spectrum. Thus, at temperatures within the phase transition region, the liquid crystalline phase is POPC-rich and the gel phase is DPPC-rich. Comparison of the liquid crystalline quadrupole splittings within the thermal phase transition range suggests that mixing of the residual liquid crystalline POPC and DPPC is highly non-ideal.  相似文献   

14.
Chemically simplified lipid mixtures are used here as models of the cell plasma membrane exoplasmic leaflet. In such models, phase separation and morphology transitions controlled by line tension in the liquid-disordered (Ld)?+?liquid-ordered (Lo) coexistence regime have been described [1]. Here, we study two four-component lipid mixtures at different cholesterol fractions: brain sphingomyelin (BSM) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). On giant unilamellar vesicles (GUVs) display a nanoscopic-to-macroscopic transition of Ld?+?Lo phase domains as POPC is replaced by DOPC, and this transition also depends on the cholesterol fraction. Line tension decreases with increasing cholesterol mole fractions in both lipid mixtures. For the ternary BSM/DOPC/Chol mixture, the published phase diagram [19] requires a modification to show that when cholesterol mole fraction is >~0.33, coexisting phase domains become nanoscopic.  相似文献   

15.
The mutual interactions between lipids in bilayers are reviewed, including mixtures of phospholipids, and mixtures of phospholipids and cholesterol (Chol). Binary mixtures and ternary mixtures are considered, with special emphasis on membranes containing Chol, an ordered phospholipid, and a disordered phospholipid. Typically the ordered phospholipid is a sphingomyelin (SM) or a long-chain saturated phosphatidylcholine (PC), both of which have high phase transitions temperatures; the disordered phospholipid is 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) or dioleoylphosphatidylcholine (DOPC). The unlike nearest-neighbor interaction free energies (ωAB) between lipids (including Chol), obtained by an variety of unrelated methods, are typically in the range of 0-400 cal/mol in absolute value. Most are positive, meaning that the interaction is unfavorable, but some are negative, meaning it is favorable. It is of special interest that favorable interactions occur mainly between ordered phospholipids and Chol. The interpretation of domain formation in complex mixtures of Chol and phospholipids in terms of phase separation or condensed complexes is discussed in the light of the values of lipid mutual interactions.  相似文献   

16.
A series of cholesterol (Chol) probes with NBD and Dansyl fluorophores attached to the 3-hydroxyl position via carbamate linkers has been designed and synthesized and their ability to mimic the behavior of natural cholesterol in bilayer membranes has been examined. Fluorescence spectroscopy data indicate that the NBD-labeled lipids are located in the polar headgroup region of the bilayer with their position varying with the method of fluorophore attachment and the linker length. The partitioning of the Chol probes between liquid-ordered (Lo) and liquid-disordered (Lo) phases in supported bilayers prepared from ternary lipid mixtures of DOPC, Chol and either egg sphingomyelin or DPPC was examined by fluorescence microscopy. The carbamate-linked NBD-Chols show a stronger preference for partitioning into Lo domains than does a structurally similar probe with an ester linkage, indicating the importance of careful optimization of probe and linker to provide the best Chol mimic. Comparison of the partitioning of NBD probes to literature data for native Chol indicates that the probes reproduce well the modest enrichment of Chol in Lo domains as well as the ceramide-induced displacement of Chol. One NBD probe was used to follow the dynamic redistribution of Chol in phase separated membranes in response to in situ ceramide generation. This provides the first direct optical visualization of Chol redistribution during enzymatic ceramide generation and allows the assignment of new bilayer regions that exclude dye and have high lateral adhesion to ceramide-rich regions.  相似文献   

17.
A set of different biophysical approaches has been used to explore the phase behavior of palmitoylsphingomyelin (pSM)/cholesterol (Chol) model membranes in the presence and absence of palmitoylceramide (pCer). Fluorescence spectroscopy of di-4-ANEPPDHQ-stained pSM/Chol vesicles and atomic force microscopy of supported planar bilayers show gel Lβ/liquid-ordered (Lo) phase coexistence within the range XChol = 0-0.25 at 22°C. At the latter compositional point and beyond, a single Lo pSM/Chol phase is detected. In ternary pSM/Chol/pCer mixtures, differential scanning calorimetry of multilamellar vesicles and confocal fluorescence microscopy of giant unilamellar vesicles concur in showing immiscibility, but no displacement, between Lo cholesterol-enriched (pSM/Chol) and gel-like ceramide-enriched (pSM/pCer) phases at high pSM/(Chol + pCer) ratios. At higher cholesterol content, pCer is unable to displace cholesterol at any extent, even at XChol < 0.25. It is interesting that an opposite strong cholesterol-mediated pCer displacement from its tight packing with pSM is clearly detected, completely abolishing the pCer ability to generate large microdomains and giving rise instead to a single ternary phase. These observations in model membranes in the absence of the lipids commonly used to form a liquid-disordered phase support the role of cholesterol as the key determinant in controlling its own displacement from Lo domains by ceramide upon sphingomyelinase activity.  相似文献   

18.
Lipid phase separation may be a mechanism by which lipids participate in sorting membrane proteins and facilitate membrane-mediated biochemical signaling in cells. To provide new tools for membrane lipid phase manipulation that avoid direct effects on protein activity and lipid composition, we studied phase separation in binary and ternary lipid mixtures under the influence of three nonlipid amphiphiles, vitamin E (VE), Triton-X (TX)-100, and benzyl alcohol (BA). Mechanisms of additive-induced phase separation were elucidated using coarse-grained molecular dynamics simulations of these additives in a liquid bilayer made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-diundecanoyl-sn-glycero-phosphocholine (DUPC). From simulations, the additive's partitioning preference, changes in membrane thickness, and alterations in lipid order were quantified. Simulations showed that VE favored the DPPC phase but partitioned predominantly to the domain boundaries and lowered the tendency for domain formation, and therefore acted as a linactant. This simulated behavior was consistent with experimental observations in which VE promoted lipid mixing and dispersed domains in both gel/liquid and liquid-ordered/liquid-disordered systems. From simulation, BA partitioned predominantly to the DUPC phase, decreased lipid order there, and thinned the membrane. These actions explain why, experimentally, BA promoted phase separation in both binary and ternary lipid mixtures. In contrast, TX, a popular detergent used to isolate raft membranes in cells, exhibited equal preference for both phases, as demonstrated by simulations, but nonetheless, was a strong domain promoter in all lipid mixtures. Further analysis showed that TX increased membrane thickness of the DPPC phase to a greater extent than the DUPC phase and thus increased hydrophobic mismatch, which may explain experimental observation of phase separation in the presence of TX. In summary, these nonlipid amphiphiles provide new tools to tune domain formation in model vesicle systems and could provide the means to form or disperse membrane lipid domains in cells, in addition to the well-known methods involving cholesterol enrichment and sequestration.  相似文献   

19.
It is commonly believed that all membrane sterols are rigid all-trans ring systems with a fully extended alkyl side-chain and that they similarly influence phospholipid bilayer physical properties. Here, we report the sterol concentration-dependent, thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two similar 5α-H sterols with different functional group orientations (3α-OH or 3β-OH), which adopt an ideal all-trans planar ring conformation but lack the deformed ring B conformation of cholesterol (Chol) and epicholesterol (Echol), using differential scanning calorimetry (DSC). Our deconvolution of the DSC main phase transition endotherms show differences in the proportions of sterol-poor (sharp) and sterol-rich (broad) domains in the DPPC bilayer with increasing sterol concentration, which delineate gel/liquid-crystalline (Pβ′/Lα) and disordered gel (Lβ)/liquid-ordered (lo) phase regions. There are similarities in the DPPC main phase transition temperature, cooperativity and enthalpy for each 3β-ol and 3α-ol pair with increasing sterol concentration and differences in the parameters obtained for both the sterol-poor and sterol-rich regions. The sterol-poor domain persists over a greater concentration range in both 3α-ol/DPPC mixtures, suggesting that either those domains are more stable in the 3α-ols or that those sterols are less miscible in the sterol-rich domain. Corresponding parameters for the sterol-rich domain show that at sterol concentrations up to 20 mol%, the 5α-H,3β-ol is more effective at reducing the phase transition enthalpy of the broad component () than Chol, but is less effective at higher concentrations. Although mixtures containing Echol and 5α-cholestan-3α-ol have similar positive slopes below 7 mol% sterol, suggesting that they abolish the Lβ/lo phase transition equally effectively at low concentrations, Echol is more effective than the saturated 3α-ol at higher sterol concentrations. A comparison of obtained for the saturated and unsaturated pairs suggests that the latter sterols stabilize the lo phase and broaden and abolish the DPPC main phase transition more effectively than the saturated sterols at physiologically relevant concentrations, supporting the idea that the double bond of Chol and Echol promotes greater sterol miscibility and the formation of lo phase lipid bilayers relative to corresponding saturated sterols in biological membranes.  相似文献   

20.
The gel to liquid-crystalline phase transition of aqueous dispersions of phospholipid mixtures was investigated by means of the repartition of the spin label 2,2,6,6-tetramethylpiperidine-I-oxyl between aqueous space and lipid hydrocarbon region. The dimyristoylphosphatidylcholine (DMPC)/dibehenoylphosphatidylcholine (DBPC) and dipalmitoylphosphatidylcholine (DPPC)/DBPC phase diagrams indicate gel phase immiscibility, whereas the distearoylphosphatidylcholine (DSPC)/DBPC phase diagram indicates non-ideal gel phase miscibility at low DBPC molar fractions. Aqueous dispersions of DMPC/DPPC/DBPC ternary mixtures show two distinct phase transitions, the first associated with the melting of a DMPC/DPPC phase and the second with the melting of a DBPC phase. Aqueous dispersions of DMPC/DSPC/DBPC ternary mixtures show to phase transitions at low DSPC molar fractions; the first is probably associated with the melting of a DMPC/DSPC phase, and the second with the melting of a DBPC/DSPC phase. At high DSPC molar fractions, only one phase transition is observed; this suggests that all the lipids are mixed in gel state membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号