首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van’t Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH0 and ΔG0 values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG0 values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.  相似文献   

2.
F(1)-ATPase is a rotary molecular motor in which unidirectional rotation of the central gamma subunit is powered by ATP hydrolysis in three catalytic sites arranged 120 degrees apart around gamma. To study how hydrolysis reactions produce mechanical rotation, we observed rotation under an optical microscope to see which of the three sites bound and released a fluorescent ATP analog. Assuming that the analog mimics authentic ATP, the following scheme emerges: (i) in the ATP-waiting state, one site, dictated by the orientation of gamma, is empty, whereas the other two bind a nucleotide; (ii) ATP binding to the empty site drives an approximately 80 degrees rotation of gamma; (iii) this triggers a reaction(s), hydrolysis and/or phosphate release, but not ADP release in the site that bound ATP one step earlier; (iv) completion of this reaction induces further approximately 40 degrees rotation.  相似文献   

3.
In the ATP synthases of Escherichia coli ADP and phosphate exert an apparent regulatory role on the efficiency of proton transport coupled to the hydrolysis of ATP. Both molecules induce clearly biphasic effects on hydrolysis and proton transfer. At intermediate concentrations (~ 0.5–1 µM and higher) ADP inhibits hydrolysis and proton transfer; a quantitative analysis of the fluxes however proves that the coupling efficiency remains constant in this concentration range. On the other hand at nanomolar concentrations of ADP (a level obtainable only using an enzymatic ATP regenerating system) the efficiency of proton transport drops progressively, while the rate of hydrolysis remains high. Phosphate, at concentrations ≥ 0.1 mM, inhibits hydrolysis only if ADP is present at sufficiently high concentrations, keeping the coupling efficiency constant. At lower ADP levels phosphate is, however, necessary for an efficiently coupled catalytic cycle. We present a model for a catalytic cycle of ATP hydrolysis uncoupled from the transport of protons. The model is based on the available structures of bovine and yeast F1 and on the known binding affinities for ADP and Pi of the catalytic sites in their different functional states. The binding site related to the inhibitory effects of Pi (in association with ADP) is identified as the αHCβHC site, the pre-release site for the hydrolysis products. We suggest, moreover, that the high affinity site, associated with the operation of an efficient proton transport, could coincide with a conformational state intermediate between the αTPβTP and the αDPβDP (similar to the transition state of the hydrolysis/synthesis reaction) that does not strongly bind the ligands and can exchange them rather freely with the external medium. The emptying of this site can lead to an unproductive hydrolysis cycle that occurs without a net rotation of the central stalk and, consequently, does not translocate protons.  相似文献   

4.
The suggestions from the author's group over the past 25 years for how steps in catalysis by ATP synthase occur are reviewed. Whether rapid ATP hydrolysis requires the binding of ATP to a second site (bi-site activation) or to a second and third site (tri-site activation) is considered. Present evidence is regarded as strongly favoring bi-site activation. Presence of nucleotides at three sites during rapid ATP hydrolysis can be largely accounted for by the retention of ADP formed and/or by the rebinding of ADP formed. Menz, Leslie and Walker ((2001) FEBS Lett., 494, 11-14) recently attained an X-ray structure of a partially closed enzyme form that binds ADP better than ATP. This accomplishment and other considerations form the base for a revised reaction sequence. Three types of catalytic sites are suggested, similar to those proposed before the X-ray data became available. During net ATP synthesis a partially closed site readily binds ADP and Pi but not ATP. At a closed site, tightly bound ADP and Pi are reversibly converted to tightly bound ATP. ATP is released from a partially closed site that can readily bind ATP or ADP. ATP hydrolysis when protonmotive force is low or lacking occurs simply by reversal of all steps with the opposite rotation of the subunit. Each type of site can exist in various conformations or forms as they are interconverted during a 120° rotation. The conformational changes with the ATP synthase, including the vital change when bound ADP and Pi are converted to bound ATP, are correlated with those that occur in enzyme catalysis in general, as illustrated by recent studies of Rose with fumarase. The B structure of Walker's group is regarded as an unlikely, or only quite transient, intermediate. Other X-ray structures are regarded as closely resembling but not identical with certain forms participating in catalysis. Correlation of the suggested reaction scheme with other present information is considered.  相似文献   

5.
In ATP synthase, X-ray structures, demonstration of ATP-driven gamma-subunit rotation, and tryptophan fluorescence techniques to determine catalytic site occupancy and nucleotide binding affinities have resulted in pronounced progress in understanding ATP hydrolysis, for which a mechanism is presented here. In contrast, ATP synthesis remains enigmatic. The molecular mechanism by which ADP is bound in presence of a high ATP/ADP concentration ratio is a fundamental unknown; similarly P(i) binding is not understood. Techniques to measure catalytic site occupancy and ligand binding affinity changes during net ATP synthesis are much needed. Relation of these parameters to gamma-rotation is a further goal. A speculative model for ATP synthesis is offered.  相似文献   

6.
F1-ATPase is a rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α3β3-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the β-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F1 rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F1 molecules that carried a bead duplex on the γ-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 × 107 M−1s−1. A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F1 produced the same torque of ~40 pN·nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme.  相似文献   

7.
ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277–286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective β–γ subunit interactions (γMet23 to Lys) or β conformational changes (βSer174 to Phe). These results confirm that smooth interaction between each β subunit and entire γ subunit in F1 is pertinent for rotational catalysis.  相似文献   

8.
The crystal structures of the nucleotide-empty (AE), 5′-adenylyl-β,γ-imidodiphosphate (APNP)-bound, and ADP (ADP)-bound forms of the catalytic A subunit of the energy producer A1AO ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 Å and 2.4 Å resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the AE form, the phosphate analog SO42− binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5′-adenylyl-β,γ-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-Å structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic β subunits of F1FO ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A1AO ATP synthases, F1FO ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.  相似文献   

9.
Wenjun Zheng 《Proteins》2009,76(3):747-762
F1 ATPase, a rotary motor comprised of a central stalk ( γ subunit) enclosed by three α and β subunits alternately arranged in a hexamer, features highly cooperative binding and hydrolysis of ATP. Despite steady progress in biophysical, biochemical, and computational studies of this fascinating motor, the structural basis for cooperative ATPase involving its three catalytic sites remains not fully understood. To illuminate this key mechanistic puzzle, we have employed a coarse‐grained elastic network model to probe the allosteric couplings underlying the cyclic conformational transition in F1 ATPase at a residue level of detail. We will elucidate how ATP binding and product (ADP and phosphate) release at two catalytic sites are coupled with the rotation of γ subunit via various domain motions in α 3 β 3 hexamer (including intrasubunit hinge‐bending motions in β subunits and intersubunit rigid‐body rotations between adjacent α and β subunits). To this end, we have used a normal‐mode‐based correlation analysis to quantify the allosteric couplings of these domain motions to local motions at catalytic sites and the rotation of γ subunit. We have then identified key amino acid residues involved in the above couplings, some of which have been validated against past studies of mutated and γ ‐truncated F1 ATPase. Our finding strongly supports a binding change mechanism where ATP binding to the empty catalytic site triggers a series of intra‐ and intersubunit domain motions leading to ATP hydrolysis and product release at the other two closed catalytic sites. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The structure of F1-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF1 has been determined at 2.5 Å resolution. The inhibitory region of IF1 from residues 1 to 36 is entrapped between the C-terminal domains of the αDP- and βDP-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with F1-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic βE-subunits. The nucleotide binding site in βE-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule.  相似文献   

11.
Philip G. Koga  Richard L. Cross 《BBA》1982,679(2):269-278
1. Soluble beef-heart mitochondrial ATPase (F1) was incubated with [3H]pyridoxal 5′-phosphate and the Schiffbase complex formed was reduced with sodium borohydride. Spectral measurements indicate that lysine residues are modified and gel electrophoresis in the presence of detergent shows the tritium label to be associated with the two largest subunits, α and β. 2. In the absence of protecting ligands, the loss of ATP hydrolysis activity is linearly dependent on the level of pyridoxylation with complete inactivation correlating to 10 mol pyridoxamine phosphate incorporated per mol enzyme. Partial inactivation of F1 with pyridoxal phosphate has no effect on either the Km for ATP or the ability of bicarbonate to stimulate residual hydrolysis activity, suggesting a mixed population of fully active and fully inactive enzyme. 3. In the presence of excess magnesium, the addition of ADP or ATP, but not AMP, decreases the rate and extent of modification of F1 by pyridoxal phosphate. The non-hydrolyzable ATP analog, 5′-adenylyl-β, γ-imidodiphosphate, is particularly effective in protecting F1 against both modification and inactivation. Efrapeptin and Pi have no effect on the modification reaction. 4. Prior modification of F1 with pyridoxal phosphate decreases the number of exchangeable nucleotide binding sites by one. However, pyridoxylation of F1 is ineffective in displacing endogenous nucleotides bound at non-catalytic sites and does not affect the stoichiometry of Pi binding. 5. The ability of nucleotides to protect against modification and inactivation by pyridoxal phosphate and the loss of one exchangeable nucleotide site with the pyridoxylation of F1 suggest the presence of a positively charged lysine residue at the catalytic site of an enzyme that binds two negatively charged substrates.  相似文献   

12.
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.  相似文献   

13.
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van’t Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH0 and ΔG0 values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG0 values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.  相似文献   

14.
D. Bar-Zvi  N. Shavit 《BBA》1982,681(3):451-458
Inactivation of the chloroplast ATPase upon tight nucleotide binding was studied with several adenine nucleotide analogs. Compared with ADP, the other nucleoside diphosphates were less effective in the follwing order: IDP >?-ADP > 1-oxido-ADP > GDP. The nucleotide analogs compete with ADP for binding to the tight nucleotide-binding site(s) on the ATPase and also prevent further inactivation by ADP. AdoPP[NH]P also causes inactivation but has a lower affinity than ADP. [3H]GDP binds tightly to the ATPase, but the resulting enzyme-GDP complex is more readily dissociable than the enzyme-ADP complex. Although both nucleotides appear to bind to the same site, the catalytic and binding properties of the coresponding nucletide-enzyme complexes differ. Binding of GDP also decreases the rate and extent of the sontaneous decay of the activated enzyme. PPi decreases the rate of inacivation caused by ADP and also the level of tigthly buond ADP. Based on these results, we suggest that two different confomations of the ATPase exist which contain tigthly bound ADP. The active conformation is conveted to the inactive conformation in the absence of a continued supply of energy by illumination or ATP hydrolysis.  相似文献   

15.
Mitochondrial ATPase from rat liver mitochondria contains multiple nucleotide binding sites. At low concentrations ADP binds with high affinity (1 mole/mole ATPase, KD = 1–2 μM). At high concentrations, ADP inhibits ATP hydrolysis presumably by competing with ATP for the active site (KI = 240–300 μM). As isolated, mitochondrial ATPase contains between 0.6 and 2.5 moles ATP/mole ATPase. This “tightly bound” ATP can be removed by repeated precipitations with ammonium sulfate without altering hydrolytic activity of the enzyme. However, the ATP-depleted enzyme must be redissolved in high concentrations of phosphate to retain activity. AMP-PNP (adenylyl imidodiphosphate) replaces tightly bound ATP removed from the enzyme and inhibits ATP hydrolysis. AMP-PNP has little effect on high affinity binding of ADP. Kinetic studies of ATP hydrolysis reveal hyperbolic velocity vs. ATP plots, provided assays are done in bicarbonate buffer or buffers containing high concentrations of phosphate. Taken together, these studies indicate that sites on the enzyme not directly associated with ATP hydrolysis bind ATP or ADP, and that in the absence of bound nucleotide, Pi can maintain the active form of the enzyme.  相似文献   

16.
During the recovery stroke, the myosin motor is primed for the next power stroke by a 60° rotation of its lever arm. This reversible motion is coupled to the activation of the ATPase function of myosin through conformational changes along the relay helix, which runs from the Switch-2 loop near the ATP to the converter domain carrying the lever arm. Via a hydrogen bond between the side-chain of Asn475 on the relay helix and the Gly457/Ser456 peptide group on the Switch-2, the rotation of the converter domain is coupled to the formation of a hydrogen bond between Gly457 and γ-phosphate that is essential for ATP hydrolysis. Here, molecular dynamics simulations of Dictyostelium discoideum myosin II in the two end conformations of the recovery stroke with different nucleotide states (ATP, ADP·Pi, ADP) reveal that the side-chain of Asn475 breaks away from Switch-2 upon ATP hydrolysis to make a hydrogen bond with Tyr573. This sensing of the nucleotide state is achieved by a small displacement of the cleaved γ-phosphate towards Gly457 which in turn pushes Asn475 away. The sensing plays a dual role by (i) preventing the wasteful reversal of the recovery stroke while the nucleotide is in the ADP·Pi state, and (ii) decoupling the relay helix from Switch-2, thus allowing the power stroke to start upon initial binding to actin while Gly457 of Switch-2 keeps interacting with the Pi (known to be released only later after tight actin binding). A catalytically important salt bridge between Arg238 (on Switch-1) and Glu459 (on Switch-2), which covers the hydrolysis site, is seen to form rapidly when ATP is added to the pre-recovery stroke conformer and remains stable after the recovery stroke, indicating that it has a role in shaping the ATP binding site by induced fit.  相似文献   

17.
Nucleotide binding properties of two vacant noncatalytic sites of thioredoxin-activated chloroplast coupling factor 1 (CF1) were studied. Kinetics of nucleotide binding to noncatalytic sites is described by the first-order equation that allows for two nucleotide binding sites that differ in kinetic features. Dependence of the nucleotide binding rate on nucleotide concentration suggests that tight nucleotide binding is preceded by rapid reversible binding of nucleotides. ADP binding is cooperative. The preincubation of CF1 with Mg2+ produces only slight effect on the rate of ADP binding and decreases the ATP binding rate. The ATP and ADP dissociation from noncatalytic sites is described by the first-order equation for similar sites with dissociation rate constants k−2(ADP)=1.5×10−1 min−1 and k−2(ATP)≅10−3 min−1, respectively. As follows from the study, the noncatalytic sites of CF1 are not homogeneous. One of them retains the major part of endogenous ADP after CF1 precipitation with ammonium sulfate. Its other two sites can bind both ADP and ATP but have different kinetic parameters and different affinity for nucleotides.  相似文献   

18.
BackgroundThe SecA DEAD (Asp-Glu-Ala-Asp) motor protein uses binding and hydrolysis of adenosine triphosphate (ATP) to push secretory proteins across the plasma membrane of bacteria. The reaction coordinate of nucleotide exchange is unclear at the atomic level of detail.MethodsWe performed multiple atomistic computations of the DEAD motor domain of SecA with different occupancies of the nucleotide and magnesium ion sites, for a total of ~1.7 μs simulation time. To characterize dynamics at the active site we analyzed hydrogen-bond networks.ResultsATP and ADP can bind spontaneously at the interface between the nucleotide binding domains, albeit at an intermediate binding site distinct from the native site. Binding of the nucleotide is facilitated by the presence of a magnesium ion close to the glutamic group of the conserved DEAD motif. In the absence of the magnesium ion, protein interactions of the ADP molecule are perturbed.ConclusionsA protein hydrogen-bond network whose dynamics couples to the occupancy of the magnesium ion site helps guide the nucleotide along the nucleotide exchange path. In SecA, release of magnesium might be required to destabilize the ADP binding site prior to release of the nucleotide.General significanceWe identified dynamic hydrogen-bond networks that help control nucleotide exchange in SecA, and stabilize ADP at an intermediate site that could explain slow release. The reaction coordinate of the protein motor involves complex rearrangements of a hydrogen-bond network at the active site, with perturbation of the magnesium ion site likely occurring prior to the release of ADP.  相似文献   

19.
Dimethylsulfoxide [Me2SO, 30% (v/v)] promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1-ATPase. The effects of this solvent on the interaction of beef-heart mitochondrial F1 with the immobilized ATP of Agarose-hexane-ATP were studied. In the presence of Me2SO, F1 bound less readily to the immobilized ATP, but once bound was more difficult to elute with exogenous ATP. This suggests that not only was the binding affinity for adenine nucleotide at the first binding site affected but that adenine nucleotide binding affinity at the second and/or third sites, which interact cooperatively with the first site to release bound nucleotide, was also affected. A reduction in the binding of [3H]ADP to these sites was shown. A change in the conformation of F1 in 30% (v/v) Me2SO was demonstrated by crosslinking and by the increased resistance of the enzyme to cold denaturation.  相似文献   

20.
Effect of ε subunit on the nucleotide binding to the catalytic sites of F1-ATPase from the thermophilic Bacillus PS3 (TF1) has been tested by using α3β3γ and α3β3γε complexes of TF1 containing βTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the ε subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the ε subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号