共查询到20条相似文献,搜索用时 0 毫秒
1.
Flagella are assembled sequentially from the inside-out with morphogenetic checkpoints that enforce the temporal order of subunit addition. Here we show that flagellar basal bodies fail to proceed to hook assembly at high frequency in the absence of the monotopic protein SwrB of Bacillus subtilis. Genetic suppressor analysis indicates that SwrB activates the flagellar type III secretion export apparatus by the membrane protein FliP. Furthermore, mutants defective in the flagellar C-ring phenocopy the absence of SwrB for reduced hook frequency and C-ring defects may be bypassed either by SwrB overexpression or by a gain-of-function allele in the polymerization domain of FliG. We conclude that SwrB enhances the probability that the flagellar basal body adopts a conformation proficient for secretion to ensure that rod and hook subunits are not secreted in the absence of a suitable platform on which to polymerize. 相似文献
2.
3.
The bacterial type III export apparatus is found in the flagellum and in the needle complex of some pathogenic Gram-negative bacteria. In the needle complex its function is to secrete effector proteins for infection into Eukaryotic cells. In the bacterial flagellum it exports specific proteins for the building of the flagellum during its assembly. The export apparatus is composed of about five membrane proteins and three soluble proteins. The mechanism of the export apparatus is not fully understood. The five membrane proteins are well conserved and essential. Here a cross-complementation assay was performed: substituting in the flagellar system of Salmonella one of these membrane proteins, FlhB, by the FlhB ortholog from Aquifex aeolicus (an evolutionary distant hyperthermophilic bacteria) or a chimeric protein (AquSalFlhB) made by the combination of the trans-membrane domain of A. aeolicus FlhB with the cytoplasmic domain of Salmonella FlhB dramatically reduced numbers of flagella and motility. From cells expressing the chimeric AquSalFlhB protein, suppressor mutants with enhanced motility were isolated and the mutations were identified using whole genome sequencing. Gain-of-function mutations were found in the gene encoding FlhA, another membrane protein of the type III export apparatus. Also, mutations were identified in genes encoding 4-hydroxybenzoate octaprenyltransferase, ubiquinone/menaquinone biosynthesis methyltransferase, and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, which are required for ubiquinone biosynthesis. The mutations were shown by reversed-phase high performance liquid chromatography to reduce the quinone pool of the cytoplasmic membrane. Ubiquinone biosynthesis could be restored for the strain bearing a mutated gene for 4-hydroxybenzoate octaprenyltransferase by the addition of excess exogenous 4-hydroxybenzoate. Restoring the level of ubiquinone reduced flagella biogenesis with the AquSalFlhB chimera demonstrating that the respiratory chain quinone pool is responsible for this phenomenon. 相似文献
4.
Jonathan L. McMurry Tohru Minamino Yukio Furukawa Joshua W. Francis Stephanie A. Hill Katy A. Helms Keiichi Namba 《PloS one》2015,10(8)
The bacterial flagellum contains its own type III secretion apparatus that coordinates protein export with assembly at the distal end. While many interactions among export apparatus proteins have been reported, few have been examined with respect to the differential affinities and dynamic relationships that must govern the mechanism of export. FlhB, an integral membrane protein, plays critical roles in both export and the substrate specificity switching that occurs upon hook completion. Reported herein is the quantitative characterization of interactions between the cytoplasmic domain of FlhB (FlhBC) and other export apparatus proteins including FliK, FlhAC and FliI. FliK and FlhAC bound with micromolar affinity. KD for FliI binding in the absence of ATP was 84 nM. ATP-induced oligomerization of FliI induced kinetic changes, stimulating fast-on, fast-off binding and lowering affinity. Full length FlhB purified under solubilizing, nondenaturing conditions formed a stable dimer via its transmembrane domain and stably bound FliH. Together, the present results support the previously hypothesized central role of FlhB and elucidate the dynamics of protein-protein interactions in type III secretion. 相似文献
5.
《Journal of molecular biology》2021,433(19):167175
Virulence-associated type III secretion systems (T3SS) are utilized by Gram negative bacterial pathogens for injection of effector proteins into eukaryotic host cells. The transmembrane export apparatus at the core of T3SS is composed of a unique helical complex of the hydrophobic proteins SctR, SctS, SctT, and SctU. These components comprise a number of highly conserved charged residues within their hydrophobic domains. The structure of the closed state of the core complex SctR5S4T1 revealed that several of these residues form inter- and intramolecular salt bridges, some of which have to be broken for pore opening. Mutagenesis of individual residues was shown to compromise assembly or secretion of both, the virulence-associated and the related flagellar T3SS. However, the exact role of these conserved charged residues in the assembly and function of T3SS remains elusive. Here we performed an in-depth mutagenesis analysis of these residues in the T3SS of Salmonella Typhimurium, coupled to blue native PAGE, in vivo photocrosslinking and luciferase-based secretion assays. Our data show that these conserved salt bridges are not critical for assembly of the respective protein but rather facilitate the incorporation of the following subunit into the assembling complex. Our data also indicate that these conserved charged residues are critical for type III-dependent secretion and reveal a functional link between SctSE44 and SctTR204 and the cytoplasmic domain of SctU in gating the T3SS injectisome. Overall, our analysis provides an unprecedented insight into the delicate requirements for the assembly and function of the machinery at the core of T3SS. 相似文献
6.
7.
Partho Ghosh 《Microbiological reviews》2004,68(4):771-795
The type III secretion system (TTSS) of gram-negative bacteria is responsible for delivering bacterial proteins, termed effectors, from the bacterial cytosol directly into the interior of host cells. The TTSS is expressed predominantly by pathogenic bacteria and is usually used to introduce deleterious effectors into host cells. While biochemical activities of effectors vary widely, the TTSS apparatus used to deliver these effectors is conserved and shows functional complementarity for secretion and translocation. This review focuses on proteins that constitute the TTSS apparatus and on mechanisms that guide effectors to the TTSS apparatus for transport. The TTSS apparatus includes predicted integral inner membrane proteins that are conserved widely across TTSSs and in the basal body of the bacterial flagellum. It also includes proteins that are specific to the TTSS and contribute to ring-like structures in the inner membrane and includes secretin family members that form ring-like structures in the outer membrane. Most prominently situated on these coaxial, membrane-embedded rings is a needle-like or pilus-like structure that is implicated as a conduit for effector translocation into host cells. A short region of mRNA sequence or protein sequence in effectors acts as a signal sequence, directing proteins for transport through the TTSS. Additionally, a number of effectors require the action of specific TTSS chaperones for efficient and physiologically meaningful translocation into host cells. Numerous models explaining how effectors are transported into host cells have been proposed, but understanding of this process is incomplete and this topic remains an active area of inquiry. 相似文献
8.
Abhishek Chatterjee Celia Caballero-Franco Dannika Bakker Stephanie Totten Armando Jardim 《The Journal of biological chemistry》2015,290(42):25579-25594
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits. 相似文献
9.
Tatsuya Ibuki Yumiko Uchida Yusuke Hironaka Keiichi Namba Katsumi Imada Tohru Minamino 《Journal of bacteriology》2013,195(3):466-473
A soluble protein, FliJ, along with a membrane protein, FlhA, plays a role in the energy coupling mechanism for bacterial flagellar protein export. The water-soluble FliHX-FliI6 ATPase ring complex allows FliJ to efficiently interact with FlhA. However, the FlhA binding site of FliJ remains unknown. Here, we carried out genetic analysis of a region formed by well-conserved residues—Gln38, Leu42, Tyr45, Tyr49, Phe72, Leu76, Ala79, and His83—of FliJ. A structural model of the FliI6-FliJ ring complex suggests that they extend out of the FliI6 ring. Glutathione S-transferase (GST)-FliJ inhibited the motility of and flagellar protein export by both wild-type cells and a fliH-fliI flhB(P28T) bypass mutant. Pulldown assays revealed that the reduced export activity of the export apparatus results from the binding of GST-FliJ to FlhA. The F72A and L76A mutations of FliJ significantly reduced the binding affinity of FliJ for FlhA, thereby suppressing the inhibitory effect of GST-FliJ on the protein export. The F72A and L76A mutations were tolerated in the presence of FliH and FliI but considerably reduced motility in their absence. These two mutations affected neither the interaction with FliI nor the FliI ATPase activity. These results suggest that FliJ(F72A) and FliJ(L76A) require the support of FliH and FliI to exert their export function. Therefore, we propose that the well-conserved surface of FliJ is involved in the interaction with FlhA. 相似文献
10.
11.
12.
In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone). Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole (“inclusion”). The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection. 相似文献
13.
Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants 总被引:32,自引:0,他引:32 下载免费PDF全文
Christoph J. Hueck 《Microbiological reviews》1998,62(2):379-433
14.
The Type III Secretion System (T3SS) is a macromolecular complex used by Gram-negative bacteria to secrete effector proteins from the cytoplasm across the bacterial envelope in a single step. For many pathogens, the T3SS is an essential virulence factor that enables the bacteria to interact with and manipulate their respective host. A characteristic structural feature of the T3SS is the needle complex (NC). The NC resembles a syringe with a basal body spanning both bacterial membranes and a long needle-like structure that protrudes from the bacterium. Based on the paradigm of a syringe-like mechanism, it is generally assumed that effectors and translocators are unfolded and secreted from the bacterial cytoplasm through the basal body and needle channel. Despite extensive research on T3SS, this hypothesis lacks experimental evidence and the mechanism of secretion is not fully understood. In order to elucidate details of the T3SS secretion mechanism, we generated fusion proteins consisting of a T3SS substrate and a bulky protein containing a knotted motif. Because the knot cannot be unfolded, these fusions are accepted as T3SS substrates but remain inside the NC channel and obstruct the T3SS. To our knowledge, this is the first time substrate fusions have been visualized together with isolated NCs and we demonstrate that substrate proteins are secreted directly through the channel with their N-terminus first. The channel physically encloses the fusion protein and shields it from a protease and chemical modifications. Our results corroborate an elementary understanding of how the T3SS works and provide a powerful tool for in situ-structural investigations in the future. This approach might also be applicable to other protein secretion systems that require unfolding of their substrates prior to secretion. 相似文献
15.
16.
MH Daleke AD van der Woude AH Parret R Ummels AM de Groot D Watson SR Piersma CR Jiménez J Luirink W Bitter EN Houben 《The Journal of biological chemistry》2012,287(38):31939-31947
Mycobacteria use the dedicated type VII protein secretion systems ESX-1 and ESX-5 to secrete virulence factors across their highly hydrophobic cell envelope. The substrates of these systems include the large mycobacterial PE and PPE protein families, which are named after their characteristic Pro-Glu and Pro-Pro-Glu motifs. Pathogenic mycobacteria secrete large numbers of PE/PPE proteins via the major export pathway, ESX-5. In addition, a few PE/PPE proteins have been shown to be exported by ESX-1. It is not known how ESX-1 and ESX-5 recognize their cognate PE/PPE substrates. In this work, we investigated the function of the cytosolic protein EspG(5), which is essential for ESX-5-mediated secretion in Mycobacterium marinum, but for which the role in secretion is not known. By performing protein co-purifications, we show that EspG(5) interacts with several PPE proteins and a PE/PPE complex that is secreted by ESX-5, but not with the unrelated ESX-5 substrate EsxN or with PE/PPE proteins secreted by ESX-1. Conversely, the ESX-1 paralogue EspG(1) interacted with a PE/PPE couple secreted by ESX-1, but not with PE/PPE substrates of ESX-5. Furthermore, structural analysis of the complex formed by EspG(5) and PE/PPE indicates that these proteins interact in a 1:1:1 ratio. In conclusion, our study shows that EspG(5) and EspG(1) interact specifically with PE/PPE proteins that are secreted via their own ESX systems and suggests that EspG proteins are specific chaperones for the type VII pathway. 相似文献
17.
Structure and Interactions of the Cytoplasmic Domain of the Yersinia Type III Secretion Protein YscD
Alicia Gamez Romila Mukerjea Maher Alayyoubi Majid Ghassemian Partho Ghosh 《Journal of bacteriology》2012,194(21):5949-5958
The virulence of a large number of Gram-negative bacterial pathogens depends on the type III secretion (T3S) system, which transports select bacterial proteins into host cells. An essential component of the Yersinia T3S system is YscD, a single-pass inner membrane protein. We report here the 2.52-Å resolution structure of the cytoplasmic domain of YscD, called YscDc. The structure confirms that YscDc consists of a forkhead-associated (FHA) fold, which in many but not all cases specifies binding to phosphothreonine. YscDc, however, lacks the structural properties associated with phosphothreonine binding and thus most likely interacts with partners in a phosphorylation-independent manner. Structural comparison highlighted two loop regions, L3 and L4, as potential sites of interactions. Alanine substitutions at L3 and L4 had no deleterious effects on protein structure or stability but abrogated T3S in a dominant negative manner. To gain insight into the function of L3 and L4, we identified proteins associated with YscD by affinity purification coupled to mass spectrometry. The lipoprotein YscJ was found associated with wild-type YscD, as was the effector YopH. Notably, the L3 and L4 substitution mutants interacted with more YopH than did wild-type YscD. These substitution mutants also interacted with SycH (the specific chaperone for YopH), the putative C-ring component YscQ, and the ruler component YscP, whereas wild-type YscD did not. These results suggest that substitutions in the L3 and L4 loops of YscD disrupted the dissociation of SycH from YopH, leading to the accumulation of a large protein complex that stalled the T3S apparatus. 相似文献
18.
Andrei S. Halavaty Dominika Borek Gregory H. Tyson Jeff L. Veesenmeyer Ludmilla Shuvalova George Minasov Zbyszek Otwinowski Alan R. Hauser Wayne F. Anderson 《PloS one》2012,7(11)
Disease causing bacteria often manipulate host cells in a way that facilitates the infectious process. Many pathogenic gram-negative bacteria accomplish this by using type III secretion systems. In these complex secretion pathways, bacterial chaperones direct effector proteins to a needle-like secretion apparatus, which then delivers the effector protein into the host cell cytosol. The effector protein ExoU and its chaperone SpcU are components of the Pseudomonas aeruginosa type III secretion system. Secretion of ExoU has been associated with more severe infections in both humans and animal models. Here we describe the 1.92 Å X-ray structure of the ExoU–SpcU complex, a full-length type III effector in complex with its full-length cognate chaperone. Our crystallographic data allow a better understanding of the mechanism by which ExoU kills host cells and provides a foundation for future studies aimed at designing inhibitors of this potent toxin. 相似文献
19.
Tohru Minamino Masafumi Shimada Mayuko Okabe Yumiko Saijo-Hamano Katsumi Imada May Kihara Keiichi Namba 《Journal of bacteriology》2010,192(7):1929-1936
For construction of the bacterial flagellum, many of the flagellar proteins are exported into the central channel of the flagellar structure by the flagellar type III protein export apparatus. FlhA and FlhB, which are integral membrane proteins of the export apparatus, form a docking platform for the soluble components of the export apparatus, FliH, FliI, and FliJ. The C-terminal cytoplasmic domain of FlhA (FlhAC) is required for protein export, but it is not clear how it works. Here, we analyzed a temperature-sensitive Salmonella enterica mutant, the flhA(G368C) mutant, which has a mutation in the sequence encoding FlhAC. The G368C mutation did not eliminate the interactions with FliH, FliI, FliJ, and the C-terminal cytoplasmic domain of FlhB, suggesting that the mutation blocks the export process after the FliH-FliI-FliJ-export substrate complex binds to the FlhA-FlhB platform. Limited proteolysis showed that FlhAC consists of at least three subdomains, a flexible linker, FlhACN, and FlhACC, and that FlhACN becomes sensitive to proteolysis by the G368C mutation. Intragenic suppressor mutations were identified in these subdomains and restored flagellar protein export to a considerable degree. However, none of these suppressor mutations suppressed the protease sensitivity. We suggest that FlhAC not only forms part of the docking platform for the FliH-FliI-FliJ-export substrate complex but also is directly involved in the translocation of the export substrate into the central channel of the growing flagellar structure.The bacterial flagellum, which is responsible for motility, is a supramolecular complex of about 30 different proteins, and it consists of at least three substructures: the basal body, the hook, and the filament. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. Many of the flagellar component proteins are translocated into the central channel of the growing flagellar structure and then to the distal end of the structure for self-assembly by the flagellar type III protein export apparatus (11, 16, 22). This export apparatus consists of six integral membrane proteins, FlhA, FlhB, FliO, FliP, FliQ, and FliR, and three soluble proteins, FliH, FliI, and FliJ (18, 21). These protein components show significant sequence and functional similarities to those of the type III secretion systems of pathogenic bacteria, which directly inject virulence factors into their host cells (11, 16).FliI is an ATPase (4) and forms an FliH2-FliI complex with its regulator, FliH, in the cytoplasm (20). FliI self-assembles into a homo-hexamer and hence exhibits full ATPase activity (1, 8, 17). FliH and FliI, together with FliJ and the export substrate, bind to the export core complex, which is composed of the six integral membrane proteins, to recruit export substrates from the cytoplasm to the core complex (14) and facilitate the initial entry of export substrates into the export gate (23). FliJ not only prevents premature aggregation of export substrates in the cytoplasm (13) but also plays an important role in the escort mechanism for cycling export chaperones during flagellar assembly (3). The export core complex is believed to be located in the central pore of the basal body MS ring (11, 16, 22). In fact, it has been found that FlhA, FliP, and FliR are associated with the MS ring (5, 9). The FliR-FlhB fusion protein is partially functional, suggesting that FliR and FlhB interact with each other within the MS ring (29). The export core complex utilizes a proton motive force across the cytoplasmic membrane as the energy source to drive the successive unfolding of export substrates and their translocation into the central channel of the growing flagellum (23, 27). Here we refer to the export core complex as the “export gate,” as we have previously (8, 16, 23, 24).FlhA is a 692-amino-acid protein consisting of two regions: a hydrophobic N-terminal transmembrane region with eight predicted α-helical transmembrane spans (FlhATM) and a hydrophilic C-terminal cytoplasmic region (FlhAC) (12, 15). FlhATM is responsible for the association with the MS ring (9). FlhAC interacts with FliH, FliI, FliJ, and the C-terminal cytoplasmic domain of FlhB (6, 12, 21, 24) and plays a role in the initial export process with these proteins (28). It has been shown that the V404M mutation in FlhAC increases not only the probability of FliI binding to the export gate in the absence of FliH (14) but also the efficiency of substrate translocation through the export gate in the absence of FliH and FliI (23). Recently, it has been shown that FlhAC is also required for substrate recognition (7). These observations suggest that an interaction between FlhAC and FliI is coupled with substrate entry, although it is not clear how.In order to understand the mechanism of substrate entry into the export gate, we characterized a temperature-sensitive Salmonella enterica mutant, the flhA(G368C) mutant, whose mutation blocks the flagellar protein export process at 42°C (28). We show here that this mutation severely inhibits translocation of flagellar proteins through the export gate after the FliH-FliI-FliJ complex binds to the FlhA-FlhB platform of the gate and that the impaired ability of the flhA(G368C) mutant to export flagellar proteins is restored almost to wild-type levels by intragenic second-site mutations that may alter the interactions between subdomains of FlhAC for possible rearrangement for the export function. 相似文献