首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histamine dehydrogenase (HADH) isolated from Nocardioides simplex catalyzes the oxidative deamination of histamine to imidazole acetaldehyde. HADH is highly specific for histamine, and we are interested in understanding the recognition mode of histamine in its active site. We describe the first crystal structure of a recombinant form of HADH (HADH) to 2.7-Å resolution. HADH is a homodimer, where each 76-kDa subunit contains an iron-sulfur cluster ([4Fe-4S]2+) and a 6-S-cysteinyl flavin mononucleotide (6-S-Cys-FMN) as redox cofactors. The overall structure of HADH is very similar to that of trimethylamine dehydrogenase (TMADH) from Methylotrophus methylophilus (bacterium W3A1). However, some distinct differences between the structure of HADH and TMADH have been found. Tyr60, Trp264, and Trp355 provide the framework for the “aromatic bowl” that serves as a trimethylamine-binding site in TMADH is comprised of Gln65, Trp267, and Asp358, respectively, in HADH. The surface Tyr442 that is essential in transferring electrons to electron-transfer flavoprotein (ETF) in TMADH is not conserved in HADH. We use this structure to propose the binding mode for histamine in the active site of HADH through molecular modeling and to compare the interactions to those observed for other histamine-binding proteins whose structures are known.  相似文献   

2.
2,3-Butanediol dehydrogenase (BDH) catalyzes the NAD-dependent redox reaction between acetoin and 2,3-butanediol. There are three types of homologous BDH, each stereospecific for both substrate and product. To establish how these homologous enzymes possess differential stereospecificities, we determined the crystal structure of l-BDH with a bound inhibitor at 2.0 Å. Comparison with the inhibitor binding mode of meso-BDH highlights the role of a hydrogen-bond from a conserved Trp residue192. Site-directed mutagenesis of three active site residues of meso-BDH, including Trp190, which corresponds to Trp192 of l-BDH, converted its stereospecificity to that of l-BDH. This result confirms the importance of conserved residues in modifying the stereospecificity of homologous enzymes.  相似文献   

3.
BackgroundC-mannosylation is a unique type of glycosylation. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is a multidomain extracellular metalloproteinase that contains several potential C-mannosylation sites. Although some ADAMTS family proteins have been reported to be C-mannosylated proteins, whether C-mannosylation affects the activation and protease activity of these proteins is unclear.MethodsWe established wild-type and mutant ADAMTS4-overexpressing HT1080 cell lines. Recombinant ADAMTS4 was purified from the conditioned medium of the wild-type ADAMTS4-overexpressing cells, and the C-mannosylation sites of ADAMTS4 were identified by LC-MS/MS. The processing, secretion, and intracellular localization of ADAMTS4 were examined by immunoblot and immunofluorescence analyses. ADAMTS4 enzymatic activity was evaluated by assessing the cleavage of recombinant aggrecan.ResultsWe identified that ADAMTS4 is C-mannosylated at Trp404 in the metalloprotease domain and at Trp523, Trp526, and Trp529 in the thrombospondin type 1 repeat (TSR). The replacement of Trp404 with Phe affected ADAMTS4 processing, without affecting secretion and intracellular localization. In contrast, the substitution of Trp523, Trp526, and Trp529 with Phe residues suppressed ADAMTS4 secretion, processing, intracellular trafficking, and enzymatic activity.ConclusionsOur results demonstrated that the C-mannosylation of ADAMTS4 plays important roles in protein processing, intracellular trafficking, secretion, and enzymatic activity.General significanceBecause C-mannosylation appears to regulate many ADAMTS4 functions, C-mannosylation may also affect other members of the ADAMTS superfamily.  相似文献   

4.
In this work we show that the wild-type (su?7) progenitor of the recessivelethal suppressors of UAG (su+7(UAG)) and of UAA/G (su+7(UAA/G)) is the structural gene for transfer RNATrp, the adaptor for translating the codon UGG. The su+7(UAG) suppressor form of the tRNA has a C for U substitution in the middle base of the anticodon; in the su+7(UAA/G) suppressor tRNA both C residues of the anticodon are replaced by U. Our data establish that the mutational change altering the tRNATrp to a UAG suppressor is accompanied by a loss of tryptophan-accepting specificity and the acquisition of glutamine-acceptor activity.  相似文献   

5.
A double affinity-labelling approach has been developed in order to convert an oligomeric enzyme with multiple active centres into a single-site enzyme.Tryptophanyl-transfer RNA synthetase (EC 6.1.1.2) from beef pancreas is a symmetric dimer, α2 An ATP analogue, γ-(p-azidoanilide)-ATP does not serve as a substrate for enzymatic aminoacylation of tRNATrp but acts as an effective competitive inhibitor in the absence of photochemical reaction, with K1 = 1 × 10?3m (Kmfor ATP = 2 × 10?4m). The covalent photoaddition of azido-ATP3 results in complete loss of enzymatic activity in both the ATP-[32P]pyrophosphate exchange reaction and tRNA aminoacylation. ATP completely protects the enzyme against inactivation. However, covalent binding of azido-ATP is also observed outside the active centres. The difference between covalent binding of the azido-ATP in the absence and presence of ATP corresponds to 2 moles of the ATP analogue per mole of the enzyme.Two binding sites for tRNATrp have been found from complex formation at pH 5.8 in the presence of Mg2+. The two tRNA molecules bind, with Kdis = 3.6 × 10?8m and Kdis = 0.9 × 10?6m, respectively, pointing to a strong negative co-operativity between the binding sites for tRNA.N-chlorambucilyl-tryptophanyl-tRNATrp and TRSase form a complex with Kdis = 5.5 × 10?8m at pH 5.8 in the presence of 10 mm-Mg2+. This value is similar to the value of Kdis for tryptophanyl-tRNA of 4.8 × 10?8m. Under the same conditions a 1:1 complex (in mol) is formed between the enzyme and Trp-tRNA or N-chlorambucilyl-Trp-tRNA. On incubation, a covalent bond is formed between N-chlorambucilyl-Trp-tRNA and TRSase; 1 mole of affinity reagent alkylates 1 mole of enzyme independently of the concentration of the modifier. The alkylation reaction is completely inhibited by the presence of tRNATrp whereas the tRNA devoid of tRNATrp does not affect the rate of alkylation. In the presence of either ATP or tryptophan, or a mixture of the two, the alkylation reaction is inhibited even though these ligands have no effect on the complex formation between TRSase and the tRNA analogue. Photoaddition of the azido-ATP completely prevents the reaction of the enzyme with the tRNA analogue, although the non-covalent complex formation is not affected.Exhaustive alkylation of TRSase partially inhibits the reaction of ATP [32P]pyrophosphate exchange and completely blocks the aminoacylation of tRNATrp. Cleavage of the tRNA which is covalently bound to TRSase restores both the ATP-[32P]pyrophosphate exchange and aminoacylation activity.The TRSase which is covalently-bound to R-Trp-tRNA is able to incorporate only one ATP molecule per dimeric enzyme into the active centre. This doubly modified enzyme is completely enzymatically inactive. Removal of the tRNA residue from the doubly modified enzyme results in the formation of the derivative with one blocked ATP site. Therefore, a “single-site” TRSase may be generated either by alkylation of the enzyme with Cl-R-Trp-tRNA or after the removal of covalently bound tRNA from the doubly labelled protein.Tryptophanyl-tRNA synthetase containing blocked ATP and/or tRNA binding site(s) seems to bo a useful tool for investigation of negative co-operativity and may help in the elucidation of the structure function relationships between the active centres.  相似文献   

6.
Both the post-replication and the excision repair mechanism participate in the induction ofTrp + revertants inEscherichia coli B/rHer + thy trp after a UV-irradiation. At low radiation doses (surviving cell fraction > 10?) mostTrp + reversions are due to post-replication repair mechanism while at high doses (surviving cell fraction « 10?1) theTrp + reversions arise probably as the result of an inaccurate excision repair. The absolute accuracy of repair processes decreases with increasing radiation dose.  相似文献   

7.
8.
In order to probe the role of the individual tryptophans of granulocyte-colony stimulating factor (G-CSF) inpH and guanidine HCl-induced fluorescence changes, site-directed mutagenesis was used to generate mutants replacing Trp118, Trp58, or both with phenylalanine. Neither Trp to Phe mutation affected the folding or activity of the recombinant G-CSF, and the material expressed in yeast behaved identically to that expressed inEscherichia coli. All of the G-CSF species responded topH and guanidine HCl in qualitatively the same manner. Trp58 has a fluorescence maximum at 350 nm and is quenched to a greater extent by the addition of guanidine HCl, indicating that it is fully solvent-exposed. Trp118 has a fluorescence maximum at 344 nm, and is less solvent-accessible than Trp58. The analog in which both tryptophans have been replaced with phenylalanine shows only tyrosine fluorescence, with a peak at 304 nm which decreases with increasingpH. The intensity of the tyrosine fluorescence in this analog is much greater than that of the native sequence protein or single tryptophan mutants, indicating that energy transfer is taking place from tyrosine to tryptophan in these molecules. Below neutralpH the tyrosine fluorescence is much greater in the [Phe58]G-CSF than in the [Phe118]G-CSF, indicating that Trp58 might be a more efficient recipient of energy transfer from the tyrosine(s).  相似文献   

9.
10.
Insulin analogues withl- andd-tryptophan instead of glycine in A1 permit an estimate of the proximity relationship between the indole residue of tryptophan and B19-tyrosine by evaluation of singlet-singlet resonance energy transfer. A significantly higher transfer efficiency is observed with [(d)TrpA1]insulin than with the [TrpA1]analogue. On the basis of this result it is possible to deduce the arrangement of the side chains and the α-amino groups in position A1 of [(d)TrpA1] and [TrpA1]insulin.  相似文献   

11.
We report the development of a robust user-friendly Escherichia coli (E. coli) expression system, derived from the BL21(DE3) strain, for site-specifically incorporating unnatural amino acids (UAAs) into proteins using engineered E. coli tryptophanyl-tRNA synthetase (EcTrpRS)-tRNATrp pairs. This was made possible by functionally replacing the endogenous EcTrpRS-tRNATrp pair in BL21(DE3) E. coli with an orthogonal counterpart from Saccharomyces cerevisiae, and reintroducing it into the resulting altered translational machinery tryptophanyl (ATMW-BL21) E. coli strain as an orthogonal nonsense suppressor. The resulting expression system benefits from the favorable characteristics of BL21(DE3) as an expression host, and is compatible with the broadly used T7-driven recombinant expression system. Furthermore, the vector expressing the nonsense-suppressing engineered EcTrpRS-tRNATrp pair was systematically optimized to significantly enhance the incorporation efficiency of various tryptophan analogs. Together, the improved strain and the optimized suppressor plasmids enable efficient UAA incorporation (up to 65% of wild-type levels) into several different proteins. This robust and user-friendly platform will significantly expand the scope of the genetically encoded tryptophan-derived UAAs.  相似文献   

12.
Cellular stimulation results in phosphorylation of the tumor suppressor p53 on multiple residues, though the functional relevance is not always clear. It is noteworthy that the serine (S) 315 residue is unique, as it has been suggested to be phosphorylated not only by genotoxic signals, but also during cell-cycle progression and by endoplasmic-reticulum stress. However, in vitro data have been conflicting as phosphorylation at this site was shown to both positively and negatively regulate p53 functions. We have thus generated knock-in mice expressing an unphosphorylable S312 (equivalent to human S315), by substitution with an alanine (A) residue, to clarify the conflicting observations and to evaluate its functional relevance in vivo. Born at Mendelian ratios, the p53S312A/S312A mice show no anomalies during development and adulthood. p53 activation, stability, localization and ability to induce apoptosis, cell-cycle arrest and prevent centrosome amplification are not compromised in p53S312A/S312A cells. p53S312A/S312A mice are unable to rescue mdm2−/− lethality, and tumorigenesis – both spontaneous and irradiation/oncogene-induced – is not accentuated. Taken together, the results show that the S312 phosphorylation site is not in itself necessary for efficient p53 function, and advocates the possibility that it is neither relevant in the mouse context nor important for p53 functions in vivo.  相似文献   

13.
Trans-sialidases are key enzymes in the life cycle of African trypanosomes in both, mammalian host and insect vector and have been associated with the disease trypanosomiasis, namely sleeping sickness and nagana. Besides the previously reported TconTS1, we have identified three additional active trans-sialidases, TconTS2, TconTS3 and TconTS4, and three trans-sialidase like genes in Trypanosoma congolense. At least TconTS1, TconTS2 and TconTS4 are found in the bloodstream of infected animals. We have characterised the enzymatic properties of recombinant proteins expressed in eukaryotic fibroblasts using fetuin as model blood glycoprotein donor substrate. One of the recombinant trans-sialidases, TconTS2, had the highest specific activity reported thus far with very low sialidase activity. The active trans-sialidases share all the amino acids critical for the catalytic reaction with few variations in the predicted binding site for the leaving or acceptor glycan. However, these differences cannot explain the orders of magnitudes between their transfer activities, which must be due to other unidentified structural features of the proteins or substrates selectivity. Interestingly, the phylogenetic relationships between the lectin domains correlate with their specific trans-sialylation activities. This raises the question whether and how the lectin domains regulate the trans-sialidase reaction. The identification and enzymatic characterisation of the trans-sialidase family in T. congolense will contribute significantly towards the understanding of the roles of these enzymes in the pathogenesis of Animal African Trypanosomiasis.  相似文献   

14.
Flax secoisolariciresinol diglucoside (SDG) lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG) biosynthesis. Lately, flax UGT74S1 was identified and characterized as an enzyme sequentially glucosylating secoisolariciresinol (SECO) into SMG and SDG when expressed in yeast. However, the amino acids critical for UGT74S1 glucosyltransferase activity were unknown. A 3D structural modeling and docking, site-directed mutagenesis of five amino acids in the plant secondary product glycosyltransferase (PSPG) motif, and enzyme assays were conducted. UGT74S1 appeared to be structurally similar to the Arabidopsis thaliana UGT72B1 model. The ligand docking predicted Ser357 and Trp355 as binding to the phosphate and hydroxyl groups of UDP-glucose, whereas Cys335, Gln337 and Trp355 were predicted to bind the 7-OH, 2-OCH3 and 17-OCH3 of SECO. Site-directed mutagenesis of Cys335, Gln337, His352, Trp355 and Ser357, and enzyme assays revealed an alteration of these binding sites and a significant reduction of UGT74S1 glucosyltransferase catalytic activity towards SECO and UDP-glucose in all mutants. A complete abolition of UGT74S1 activity was observed when Trp355 was substituted to Ala355 and Gly355 or when changing His352 to Asp352, and an altered metabolite profile was observed in Cys335Ala, Gln337Ala, and Ser357Ala mutants. This study provided for the first time evidence that Trp355 and His352 are critical for UGT74S1’s glucosylation activity toward SECO and suggested the possibility for SMG production in vitro.  相似文献   

15.
Despite extensive investigation of the irreversible oxidations undergone by proteins in vitro and in vivo, the products formed from the oxidation of Trp residues remain incompletely understood. Recently, we characterized a ditryptophan cross-link produced by the recombination of hSOD1-tryptophanyl radicals generated from attack of the carbonate radical produced during the bicarbonate-dependent peroxidase activity of the enzyme. Here, we examine whether the ditryptophan cross-link is produced by the attack of the carbonate radical on proteins other than hSOD1. To this end, we treated hen egg white lysozyme with photolytically and enzymatically generated carbonate radical. The radical yields were estimated and the lysozyme modifications were analyzed by SDS-PAGE, western blot, enzymatic activity and MS/MS analysis. Lysozyme oxidation by both systems resulted in its inactivation and dimerization. Lysozyme treated with the photolytic system presented monomers oxidized to hydroxy-tryptophan at Trp28 and Trp123 and N-formylkynurenine at Trp28, Trp62 and Trp123. Lysozyme treated with the enzymatic system rendered monomers oxidized to N-formylkynurenine at Trp28. The dimers were characterized as lysozyme-Trp28-Trp28-lysozyme and lysozyme-Trp28-Trp32-hSOD1. The results further demonstrate that the carbonate radical is prone to causing biomolecule cross-linking and hence, may be a relevant player in pathological mechanisms. The possibility of exploring the formation of ditryptophan cross-links as a carbonate radical biomarker is discussed.  相似文献   

16.
Translation of the UGA triplet in vitro by tryptophan transfer RNA's   总被引:32,自引:0,他引:32  
Tryptophan transfer RNA from the UGA-suppressing strain of Escherichia coli CAJ64 was purified and assayed for suppressor activity in vitro in two ways: by translation of the bacteriophage T4 lysozyme messenger RNA bearing a UGA mutation, and by translation of poly(U-G-A). Purified tRNATrp, and no other fraction, stimulates lysozyme synthesis 30-fold above the level seen when comparable amounts of tryptophan tRNA from the non-suppressing strain, CA244, were added; it also translates poly(U-G-A) as polytryptophan more efficiently than the su tRNA. Tryptophan tRNA from the non-suppressing strain is active in the assays but far less so than CAJ64 tRNATrp, and this is consistent with the leakiness of su strains. Since the nucleotide sequences of these tryptophan tRNA's are known (Hirsh, 1971), it is concluded that tRNA with a CCA anticodon recognizes the UGA triplet and this recognition is improved by a nucleotide change elsewhere in the molecule.  相似文献   

17.
The trpX mutation in Escherichia coli reduces trp operon attenuation in strains carrying wild-type tRNATrp. The trpX? phenotype is alleviated (attenuation is restored) in UGA-suppressor tRNATrp-carrying strains (Yanofsky &; Soll, 1977).The tRNA from various trpX? strains was characterized biochemically. Sequence analyses of wild-type tRNATrp and UGA suppressor tRNATrp, both derived from trpX? strains, reveal an unmodified A in the position (adjacent to the anticodon) normally occupied by the hypermodified base ms2i6A.In addition, several tRNAs from trpX? cells were characterized by RPC-5 column chromatography. We find that only tRNAs normally having ms2i6A exhibit altered elution profiles when compared to the homologous tRNAs from trpX? cells. Introduction of the UGA suppressor into trpX? cells does not restore normal Chromatographic behavior. These results suggest that the trpX gene product is necessary for the synthesis of ms2i6A. Thus, we propose that miaA (for the first gene involved in ms2i6A synthesis) replaces the trpX designation.The results reported here are discussed with regard to a model proposed by Lee &; Yanofsky (1977) in which efficient translation of the tandem trp codons in the leader sequence RNA is required for normal attenuation of the trp operon.  相似文献   

18.
BackgroundVhChiP is a sugar-specific-porin present in the outer membrane of the marine bacterium Vibrio harveyi and responsible for chitin uptake, with a high selectivity for chitohexaose.MethodsVhChiP and its mutants were expressed and purified from BL21 (DE3) Omp8 Rosetta strain. After reconstitution into planar lipid bilayers, the ion current fluctuations caused by chitohexaose entering the channel were measured in deuterium oxide and in water.ResultsThe role of hydrogen-bonding in sugar binding was investigated by comparing channel occlusion by chitohexaose in buffers containing H2O and D2O. The BLM results revealed the significant contribution of hydrogen bonding to the binding of chitohexaose in the constriction zone of VhChiP. Replacing H2O as solvent by D2O significantly decreased the on- and off-rates of sugar penetration into the channel. The importance of hydrogen bonding inside the channel was more noticeable when the hydrophobicity of the constriction zone was diminished by replacing Trp136 with the charged residues Asp or Arg. The on- and off-rates decreased up to 2.5-fold and 4-fold when Trp136 was replaced by Arg, or 5-fold and 3-fold for Trp136 replacement by Asp, respectively. Measuring the on-rate at different temperatures and for different channel mutants revealed the activation energy for chitohexaose entrance into VhChiP channel.ConclusionsHydrogen-bonds contribute to sugar permeation.  相似文献   

19.
20.
The Bacillus subtilis endo (β-1,4-) D-xylanase structural gene (xyn) was trimmed away from its signal sequence and then fused after the signal sequence of the basidiomycete Pleurotus ostreatus manganese(II) peroxidase cDNA. The resulting modified gene (xyn′) was inserted between the promoter and terminator of two chromosome-integrating, heterologous protein expression vectors. These recombinant plasmids were introduced into protoplasts of the monokaryotic Coprinus cinereus trp1 strain with the C. cinereus TRP1-containing plasmid. One Trp+ Xyn+ transformant for each of the recombinant plasmids was obtained, which showed a markedly high xylan-degrading activity as compared with the control Trp+ transformant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号