首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced Trafficking of Tetrameric Kv4.3 Channels by KChIP1 Clamping   总被引:1,自引:0,他引:1  
Cui YY  Liang P  Wang KW 《Neurochemical research》2008,33(10):2078-2084
The cytoplamsic auxiliary KChIPs modulate surface expression and gating properties of Kv4 channels. Recent co-crystal structure of Kv4.3 N-terminus and KChIP1 reveals a clamping action of the complex in which a single KChIP1 molecule laterally binds two neighboring Kv4.3 N-termini at different locations, thus forming two contact interfaces involved in the protein–protein interaction. In the second interface, it functions to stabilize the tetrameric assembly, but the role it plays in channel trafficking remains elusive. In this study, we examined the effects of KChIP1 on Kv4 protein trafficking in COS-7 cells expressing EGFP-tagged Kv4.3 channels using confocal microscopy. Mutations either in KChIP1 (KChIP1 L39E-Y57A-K61A) or Kv4.3 (Kv4.3 E70A-F73E) that disrupt the protein–protein interaction within the second interface can reduce surface expression of Kv4 channel proteins. Kv4.3 C110A, the Zn2+ binding site mutation in T1 domain, that disrupts the tetrameric assembly of the channels can be rescued by WT KChIP1, but not the KChIP1 triple mutant. These results were further confirmed by whole cell current recordings in oocytes. Our findings show that key residues of second interface involved in stabilizing tetrameric assembly can regulate the channel trafficking, indicating an intrinsic link between tetrameric assembly and channel trafficking. The results also suggest that formation of octameric Kv4 and KChIP complex by KChIPs clamping takes place before their trafficking to final destination on the cell surface. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

2.
KChIP proteins regulate Shal, Kv4.x, channel expression by binding to a conserved sequence at the N terminus of the subunit. The binding of KChIP facilitates a redistribution of Kv4 protein to the cell surface, producing a large increase in current along with significant changes in channel gating kinetics. Recently we have shown that mutants of Kv4.2 lacking the ability to bind an intersubunit Zn(2+) between their T1 domains fail to form functional channels because they are unable to assemble to tetramers and remain trapped in the endoplasmic reticulum. Here we find that KChIPs are capable of rescuing the function of Zn(2+) site mutants by driving the mutant subunits to assemble to tetramers. Thus, in addition to known trafficking effects, KChIPs play a direct role in subunit assembly by binding to monomeric subunits within the endoplasmic reticulum and promoting tetrameric channel assembly. Zn(2+)-less Kv4.2 channels expressed with KChIP3 demonstrate several distinct kinetic changes in channel gating, including a reduced time to peak and faster entry into the inactivated state as well as extending the time to recover from inactivation by 3-4 fold.  相似文献   

3.
Zhou W  Qian Y  Kunjilwar K  Pfaffinger PJ  Choe S 《Neuron》2004,41(4):573-586
Four Kv channel-interacting proteins (KChIP1 through KChIP4) interact directly with the N-terminal domain of three Shal-type voltage-gated potassium channels (Kv4.1, Kv4.2, and Kv4.3) to modulate cell surface expression and function of Kv4 channels. Here we report a 2.0 Angstrom crystal structure of the core domain of KChIP1 (KChIP1*) in complex with the N-terminal fragment of Kv4.2 (Kv4.2N30). The complex reveals a clam-shaped dimeric assembly. Four EF-hands from each KChIP1 form each shell of the clam. The N-terminal end of Kv4.2 forming an alpha helix (alpha1) and the C-terminal alpha helix (H10) of KChIP1 are enclosed nearly coaxially by these shells. As a result, the H10 of KChIP1 and alpha1 of Kv4.2 mediate interactions between these two molecules, structurally reminiscent of the interactions between calmodulin and its target peptides. Site-specific mutagenesis combined with functional characterization shows that those interactions mediated by alpha1 and H10 are essential to the modulation of Kv4.2 by KChIPs.  相似文献   

4.
Brain I(A) and cardiac I(to) currents arise from complexes containing Kv4 voltage-gated potassium channels and cytoplasmic calcium-sensor proteins (KChIPs). Here, we present X-ray crystallographic and small-angle X-ray scattering data that show that the KChIP1-Kv4.3 N-terminal cytoplasmic domain complex is a cross-shaped octamer bearing two principal interaction sites. Site 1 comprises interactions between a unique Kv4 channel N-terminal hydrophobic segment and a hydrophobic pocket formed by displacement of the KChIP H10 helix. Site 2 comprises interactions between a T1 assembly domain loop and the KChIP H2 helix. Functional and biochemical studies indicate that site 1 influences channel trafficking, whereas site 2 affects channel gating, and that calcium binding is intimately linked to KChIP folding and complex formation. Together, the data resolve how Kv4 channels and KChIPs interact and provide a framework for understanding how KChIPs modulate Kv4 function.  相似文献   

5.
Potassium channel-interacting proteins (KChIPs) are EF-hand calcium-binding proteins of the recoverin/neuronal calcium sensor 1 family that co-assemble with the pore-forming Kv4 alpha-subunits and thus control surface trafficking of the voltage-gated potassium channels mediating the neuronal I(A) and cardiac I(to) currents. Different from the other KChIPs, KChIP4a largely reduces surface expression of the Kv4 channel complexes. Using solution NMR we show that the unique N terminus of KChIP4a forms a 6-turn alpha-helix that is connected to the highly conserved core of the KChIP protein via a solvent-exposed linker. As identified by chemical shift changes, N-terminal alpha-helix and core domain of KChIP4a interact with each other through the same hydrophobic surface pocket that is involved in intermolecular interaction between the N-terminal helix of Kv4alpha and KChIP in Kv4-KChIP complexes. Electrophysiological recordings and biochemical interaction assays of complexes formed by wild-type and mutant Kv4alpha and KChIP4a proteins suggest that competition of these two helical domains for the surface groove is responsible for the reduced trafficking of Kv4-KChIP4a complexes to the plasma membrane. Surface expression of Kv4 complexes may thus be controlled by an auto-inhibitory domain in the KChIP subunit.  相似文献   

6.
Yamakawa T  Saith S  Li Y  Gao X  Gaisano HY  Tsushima RG 《Biochemistry》2007,46(38):10942-10949
Kv4.2 channels are responsible in the heart for the Ca2+-independent transient outward currents and are important in regulating myocardial excitability and Ca2+ homeostasis. We have identified previously the expression of syntaxin 1A (STX1A) on the cardiac ventricular myocyte plasma membranes, and its modulation of cardiac ATP-sensitive K+ channels. We speculated that STX1A interacts with other cardiac ion channels, thus we examined the interaction of STX1A with Kv4.2 channels. Co-immunoprecipitation and GST pulldown assays demonstrated a direct interaction of STX1A with the Kv4.2 N-terminus. We next investigated the functional alterations of Kv4.2 gating by STX1A in Xenopus oocytes. Coexpression of Kv4.2 with STX1A (1) resulted in a reduction of Kv4.2 current amplitude; (2) caused a depolarizing shift of the steady-state inactivation curve; (3) enhanced the rate of current decay; and (4) accelerated the rate of recovery from inactivation. Additional coexpression of botulinum neurotoxin C, which cleaves STX1A, reversed the effects of STX1A on Kv4.2. STX1A inhibited partially the gating changes by KChIP2, suggesting a competitive interaction of these proteins for an overlapping binding region on the N-terminus of Kv4.2. Indeed, the N-terminal truncation mutants of Kv4.2 (Kv4.2Delta2-40 and Kv4.2Delta7-11), which form part of the KChIP2 binding site, displayed reduced sensitivity to STX1A modulation. Our study suggests that STX1A directly modulates Kv4.2 current amplitude and gating through its interaction with an overlapping region of the KChIP binding motif domain on the Kv4.2 N-terminus.  相似文献   

7.
KChIPs are a family of Kv4 K(+) channel ancillary subunits whose effects usually include slowing of inactivation, speeding of recovery from inactivation, and increasing channel surface expression. We compared the effects of the 270 amino acid KChIP2b on Kv4.3 and a Kv4.3 inner pore mutant [V(399, 401)I]. Kv4.3 showed fast inactivation with a bi-exponential time course in which the fast time constant predominated. KChIP2b expressed with wild-type Kv4.3 slowed the fast time constant of inactivation; however, the overall rate of inactivation was faster due to reduction of the contribution of the slow inactivation phase. Introduction of [V(399, 401)I] slowed both time constants of inactivation less than 2-fold. Inactivation was incomplete after 20s pulse durations. Co-expression of KChIP2b with Kv4.3 [V(399, 401)I] slowed inactivation dramatically. KChIP2b increased the rate of recovery from inactivation 7.6-fold in the wild-type channel and 5.7-fold in Kv4.3 [V(399,401)I]. These data suggest that inner pore structure is an important factor in the modulatory effects of KChIP2b on Kv4.3 K(+) channels.  相似文献   

8.
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K+ channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1–4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12–17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19–21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.  相似文献   

9.
A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function.  相似文献   

10.
A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function.  相似文献   

11.
DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4   总被引:3,自引:0,他引:3  
Voltage-gated K+ channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.4, two channels responsible for fast-inactivating K+ currents. Previously, DPP10 has been shown to effect Kv4 channels. However, Kv1.4, when expressed with DPP10, showed many of the same effects as Kv4.3, such as faster time to peak current and negative shifts in the half-inactivation potential of steady-state activation and inactivation. The exception was recovery from inactivation, which is slowed by DPP10. DPP10 expressed with Kv4.3 caused negative shifts in both steady-state activation and inactivation of Kv4.3, but no significant shifts were detected when DPP10 was expressed with Kv4.3 + KChIP2b (Kv channel interacting protein). DPP10 and KChIP2b had different effects on closed-state inactivation. At –60 mV, KChIP2b nearly abolishes closed-state inactivation in Kv4.3, whereas it developed to a much greater extent in the presence of DPP10. Finally, expression of a DPP10 mutant consisting of its transmembrane and cytoplasmic 58 amino acids resulted in effects on Kv4.3 gating that were nearly identical to those of wild-type DPP10. These data show that DPP10 and KChIP2b both modulate Kv4.3 inactivation but that their primary effects are on different inactivation states. Thus DPP10 may be a general modulator of voltage-gated K+ channel inactivation; understanding its mechanism of action may lead to deeper understanding of the inactivation of a broad range of K+ channels. potassium channel inactivation; potassium channel ancillary subunits; closed-state inactivation; voltage-gated potassium channels  相似文献   

12.
Kv channel-interacting proteins (KChIPs) are auxiliary subunits of the heteromultimeric channel complexes that underlie neuronal I(SA), the subthreshold transient K(+) current that dynamically regulates membrane excitability, action potential firing properties, and long term potentiation. KChIPs form cytoplasmic associations with the principal pore-forming Kv4 subunits and typically mediate enhanced surface expression and accelerated recovery from depolarization-induced inactivation. An exception is KChIP4a, which dramatically suppresses Kv4 inactivation while promoting neither surface expression nor recovery. These unusual properties are attributed to the effects of a K channel inactivation suppressor domain (KISD) encoded within the variable N terminus of KChIP4a. Here, we have functionally and biochemically characterized two brain KChIP isoforms, KChIP2x and KChIP3x (also known as KChIP3b) and show that they also contain a functional KISD. Like KChIP4a and in contrast with non-KISD-containing KChIPs, both KChIP2x and KChIP3x strongly suppress inactivation and slow activation and inhibit the typical increases in surface expression of Kv4.2 channels. We then examined the properties of the KISD to determine potential mechanisms for its action. Subcellular fractionation shows that KChIP4a, KChIP2x, and KChIP3x are highly associated with the membrane fraction. Fluorescent confocal imaging of enhanced green fluorescent proteins (eGFP) N-terminally fused with KISD in HEK293T cells indicates that KISDs of KChIP4a, KChIP2x, and KChIP3x all autonomously target eGFP to intracellular membranes. Cell surface biotinylation experiments on KChIP4a indicate that the N terminus is exposed extracellularly, consistent with a transmembrane KISD. In summary, KChIP4a, KChIP2x, and KChIP3x comprise a novel class of KChIP isoforms characterized by an unusual transmembrane domain at their N termini that modulates Kv4 channel gating and trafficking.  相似文献   

13.
Association of Kv channel-interacting proteins (KChIPs) with Kv4 channels leads to modulation of these A-type potassium channels (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). We cloned a KChIP2 splice variant (KChIP2.2) from human ventricle. In comparison with KChIP2.1, coexpression of KChIP2.2 with human Kv4 channels in mammalian cells slowed the onset of Kv4 current inactivation (2-3-fold), accelerated the recovery from inactivation (5-7-fold), and shifted Kv4 steady-state inactivation curves by 8-29 mV to more positive potentials. The features of Kv4.2/KChIP2.2 currents closely resemble those of cardiac rapidly inactivating transient outward currents. KChIP2.2 stimulated the Kv4 current density in Chinese hamster ovary cells by approximately 55-fold. This correlated with a redistribution of immunoreactivity from perinuclear areas to the plasma membrane. Increased Kv4 cell-surface expression and current density were also obtained in the absence of KChIP2.2 when the highly conserved proximal Kv4 N terminus was deleted. The same domain is required for association of KChIP2.2 with Kv4 alpha-subunits. We propose that an efficient transport of Kv4 channels to the cell surface depends on KChIP binding to the Kv4 N-terminal domain. Our data suggest that the binding is necessary, but not sufficient, for the functional activity of KChIPs.  相似文献   

14.
N-type Inactivation Features of Kv4.2 Channel Gating   总被引:12,自引:0,他引:12  
We examined whether the N-terminus of Kv4.2 A-type channels (4.2NT) possesses an autoinhibitory N-terminal peptide domain, which, similar to the one of Shaker, mediates inactivation of the open state. We found that chimeric Kv2.1(4.2NT) channels, where the cytoplasmic Kv2.1 N-terminus had been replaced by corresponding Kv4.2 domains, inactivated relatively fast, with a mean time constant of 120 ms as compared to 3.4 s in Kv2.1 wild-type. Notably, Kv2.1(4.2NT) showed features typically observed for Shaker N-type inactivation: fast inactivation of Kv2.1(4.2NT) channels was slowed by intracellular tetraethylammonium and removed by N-terminal truncation (Δ40). Kv2.1(4.2NT) channels reopened during recovery from inactivation, and recovery was accelerated in high external K+. Moreover, the application of synthetic N-terminal Kv4.2 and ShB peptides to inside-out patches containing slowly inactivating Kv2.1 channels mimicked N-type inactivation. Kv4.2 channels, after fractional inactivation, mediated tail currents with biphasic decay, indicative of passage through the open state during recovery from inactivation. Biphasic tail current kinetics were less prominent in Kv4.2/KChIP2.1 channel complexes and virtually absent in Kv4.2Δ40 channels. N-type inactivation features of Kv4.2 open-state inactivation, which may be suppressed by KChIP association, were also revealed by the finding that application of Kv4.2 N-terminal peptide accelerated the decay kinetics of both Kv4.2Δ40 and Kv4.2/KChIP2.1 patch currents. However, double mutant cycle analysis of N-terminal inactivating and pore domains indicated differences in the energetics and structural determinants between Kv4.2 and Shaker N-type inactivation.  相似文献   

15.
To interpret the recent atomic structures of the Kv (voltage-dependent potassium) channel T1 domain in a functional context, we must understand both how the T1 domain is integrated into the full-length functional channel protein and what functional roles the T1 domain governs. The T1 domain clearly plays a role in restricting Kv channel subunit heteromultimerization. However, the importance of T1 tetramerization for the assembly and retention of quarternary structure within full-length channels has remained controversial. Here we describe a set of mutations that disrupt both T1 assembly and the formation of functional channels and show that these mutations produce elevated levels of the subunit monomer that becomes subject to degradation within the cell. In addition, our experiments reveal that the T1 domain lends stability to the full-length channel structure, because channels lacking the T1 containing N terminus are more easily denatured to monomers. The integration of the T1 domain ultrastructure into the full-length channel was probed by proteolytic mapping with immobilized trypsin. Trypsin cleavage yields an N-terminal fragment that is further digested to a tetrameric domain, which remains reactive with antisera to T1, and that is similar in size to the T1 domain used for crystallographic studies. The trypsin-sensitive linkages retaining the T1 domain are cleaved somewhat slowly over hours. Therefore, they seem to be intermediate in trypsin resistance between the rapidly cleaved extracellular linker between the first and second transmembrane domains, and the highly resistant T1 core, and are likely to be partially structured or contain dynamic structure. Our experiments suggest that tetrameric atomic models obtained for the T1 domain do reflect a structure that the T1 domain sequence forms early in channel assembly to drive subunit protein tetramerization and that this structure is retained as an integrated stabilizing structural element within the full-length functional channel.  相似文献   

16.
The Ca(2+)-binding proteins KChIP1-4 (KChIP3 is also known as DREAM and calsenilin) act as auxiliary subunits for voltage-gated K(+) channels in the Kv4 family. Here we identify three splicing isoforms of rat KChIP2 with variable N-terminal peptides. The two longer isoforms, which contain the 32-amino acid peptide, produce larger increases in Kv4.3 protein level and current density and more effectively localize themselves and their associated channels at the plasma membrane than the shortest variant. The 32-amino acid peptide contains potential palmitoylation cysteines. Metabolic labeling demonstrates that these cysteines in the KChIP2 isoforms, as well as the corresponding sites in KChIP3, are palmitoylated. Mutating these cysteines reduces their plasma membrane localization and the enhancement of Kv4.3 current density. Thus, palmitoylation of the KChIP auxiliary subunits controls plasma membrane localization of their associated channels.  相似文献   

17.
Rapidly activating Kv4 voltage-gated ion channels are found in heart, brain, and diverse other tissues including colon and uterus. Kv4.3 can co-assemble with KChIP ancillary subunits, which modify kinetic behavior. We examined the affinity and use dependence of nifedipine block on Kv4.3 and its modulation by KChIP2b. Nifedipine (150 microM) reduced peak Kv4.3 current approximately 50%, but Kv4.3/KChIP2b current only approximately 27%. Nifedipine produced a very rapid component of open channel block in both Kv4.3 and Kv4.3/KChIP2b. However, recovery from the blocked/inactivated state was strongly sensitive to KChIP2b. Kv4.3 Thalf,recovery was slowed significantly by nifedipine (120.0+/-12.4 ms vs. 213.1+/-18.2 ms), whereas KChIP2b eliminated nifedipine's effect on recovery: Kv4.3/KChIP2b Thalf,recovery was 45.3+/-7.2 ms (control) and 47.8+/-8.2 ms (nifedipine). Consequently, Kv4.3 exhibited use-dependent nifedipine block in response to a series of depolarizing pulses which was abolished by KChIP2b. KChIPs alter drug affinity and use dependence of Kv4.3.  相似文献   

18.
Members of the K+ channel-interacting protein (KChIP) family bind the distal N termini of members of the Shal subfamily of voltage-gated K+ channel (Kv4) pore-forming (α) subunits to generate rapidly activating, rapidly inactivating neuronal A-type (IA) and cardiac transient outward (Ito) currents. In heterologous cells, KChIP co-expression increases cell surface expression of Kv4 α subunits and Kv4 current densities, findings interpreted to suggest that Kv4·KChIP complex formation enhances forward trafficking of channels (from the endoplasmic reticulum or the Golgi complex) to the surface membrane. The results of experiments here, however, demonstrate that KChIP2 increases cell surface Kv4.2 protein expression (∼40-fold) by an order of magnitude more than the increase in total protein (∼2-fold) or in current densities (∼3-fold), suggesting that mechanisms at the cell surface regulate the functional expression of Kv4.2 channels. Additional experiments demonstrated that KChIP2 decreases the turnover rate of cell surface Kv4.2 protein by inhibiting endocytosis and/or promoting recycling. Unexpectedly, the experiments here also revealed that Kv4.2·KChIP2 complex formation stabilizes not only (total and cell surface) Kv4.2 but also KChIP2 protein expression. This reciprocal protein stabilization and Kv4·KChIP2 complex formation are lost with deletion of the distal (10 amino acids) Kv4.2 N terminus. Taken together, these observations demonstrate that KChIP2 differentially regulates total and cell surface Kv4.2 protein expression and Kv4 current densities.  相似文献   

19.
K channelinteracting proteins (KChIPs) enhance functional expression of Kv4 channels by binding to an N‐terminal regulatory region located in the first 40 amino acids of Kv4.2 that we call the functional expression regulating N‐terminal (FERN) domain. Mutating two residues in the FERN domain to alanines, W8A and F11A, disrupts KChIP binding and regulation of Kv4.2 without eliminating the FERN domain's control of basal expression level or regulation by DPP6. When Kv4.2(W8A,F11A) is co‐expressed with wild type Kv4.2 and KChIP3 subunits, a dominant negative effect is seen where the current expression is reduced to levels normally seen without KChIP addition. The dominant negative effect correlates with heteromultimeric channels remaining on intracellular membranes despite KChIP binding to non‐mutant Kv4.2 subunits. In contrast, the deletion mutant Kv4.2(Δ1‐40), eliminating both KChIP binding and the FERN domain, has no dominant negative effect even though the maximal conductance level is 5x lower than seen with KChIP3. The 5x increased expression seen with KChIP integration into the channel is fully apparent even when a reduced number of KChIP subunits are incorporated as long as all FERN domains are bound. Our results support the hypothesis that KChIPs enhances Kv4.2 functional expression by a 1 : 1 suppression of the N‐terminal FERN domain and by producing additional positive regulatory effects on functional channel expression.  相似文献   

20.
Kv channel-interacting proteins (KChIPs) and neuronal calcium sensor-1 (NCS-1) have been shown to interact with Kv4 channel alpha-subunits to regulate the expression and/or gating of these channels. Here we examine the specificity and sites of these proteins for interaction with Kv channel proteins. Immunoprecipitation and green fluorescent protein imaging show that KChIPs (but not NCS-1) effectively bind to Kv4.3 protein and localize at the plasma membrane when channel proteins are coexpressed. Analysis with chimeric proteins between KChIP2 and NCS-1 reveals that the three regions of KChIP2 (the linker between the first and second EF hands, the one between the third and fourth EF hands, and the C-terminal peptide after the fourth EF hand) are necessary and sufficient for its effective binding to Kv4.3 protein. The chimera with these three KChIP2 portions slowed inactivation and facilitated recovery from inactivation of Kv4.3 current. These results indicate that the sequence difference in these three regions between KChIPs and NCS-1 determines the specificity and affinity for interaction with Kv4 protein. Because the three identified regions surround the large hydrophobic crevice based on the NCS-1 crystal structure, this crevice may be the association site of KChIPs for the channel protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号