首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature-dependent facilitated permeation of antibiotics through membrane channels was investigated. Here we reconstituted single OmpF trimers from the outer membrane of Escherichia coli (E. coli) into a planar lipid bilayer. The penetration of ampicillin through OmpF causes fluctuation in the ion current, and analysis of the fluctuations at different temperatures allows us to determine the mode of permeation. The residence time of the drug inside the channel decays strongly with temperature, reaching the resolution limit of the instrument at 30°C. The number of events increases exponentially with temperature up to 30°C and then gradually decreases as temperature increases. At room temperature, we observe about 25 events per second per monomer of the trimeric channel and an extrapolation to 37°C gives roughly 50 events. The activation energy for ampicillin translocation through OmpF is estimated to be around 13 kT. Temperature-dependent study gives new insights into the faster translocation of small substrates through biological nanopores.  相似文献   

2.
In this work we present an analytical framework to calculate the average translocation time τ required for an ideal proteinogenic polypeptide chain to cross over a small pore on a membrane. Translocation is considered to proceed as a chain of non-interacting amino acid residues of sequence {Xj} diffuses through the pore against an energy barrier Δℱ, set by chain entropy and unfolding-folding energetics. We analyze the effect of sequence heterogeneity on the dynamics of translocation by means of helical propensity of amino acid residues. In our calculations we use sequences of fifteen well-known proteins that are translocated which span two orders of magnitude in size according to the number of residues N. Results show non-symmetric free energy barriers as a consequence of sequence heterogeneity, such asymmetry in energy may be useful in differentiated directions of translocation. For the fifteen polypeptide chains considered we found conditions when sequence heterogeneity has not a significant effect on the time scale of translocation leading to a scaling law τNν, where ν ∼ 1.6 is an exponent that holds for most ground state energies. We also identify conditions when sequence heterogeneity has a great impact on the time scale of translocation, in consequence, no more scaling laws for τ there exist.  相似文献   

3.
A model of active ion transport is analyzed in which an essential part of the pump molecule is an ion channel. Ion translocation in the channel is described as a series of jumps between binding sites which are separated by energy barriers. Pumping action results from a transient energy-dependent modification of the barrier structure of the channel and requires only minor conformational changes of the pump molecule. This model is applied to the lightdriven proton pump of Halobacterium and to redox-coupled proton pumps in the mitochondrial respiratory chain. Similar considerations may be used to describe ATP-dependent ion transport.  相似文献   

4.
5.
PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant (DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation was accompanied by ∼30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance. The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite sides of the membrane.  相似文献   

6.
This article explores the role of some geometrical factors on the electrophoretically driven translocations of macromolecules through nanopores. In the case of asymmetric pores, we show how the entry requirements and the direction of translocation can modify the information content of the blocked ionic current as well as the transduction of the electrophoretic drive into a mechanical force. To address these effects we studied the translocation of single-stranded DNA through an asymmetric α-hemolysin pore. Depending on the direction of the translocation, we measure the capacity of the pore to discriminate between both DNA orientations. By unzipping DNA hairpins from both sides of the pores we show that the presence of single strand or double strand in the pore can be discriminated based on ionic current levels. We also show that the transduction of the electrophoretic drive into a denaturing mechanical force depends on the local geometry of the pore entrance. Eventually we discuss the application of this work to the measurement of energy barriers for DNA unzipping as well as for protein binding and unfolding.  相似文献   

7.
PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant (DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation was accompanied by ∼30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance. The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite sides of the membrane.  相似文献   

8.
Gaining a detailed understanding of the energetics of the proton pumping process in cytochrome c oxidase (CcO) is one of the challenges of modern biophysics. Although there are several current mechanistic proposals, most of these ideas have not been subjected to consistent structure-function considerations. In particular most works have not related the activation barriers for different mechanistic proposals to the protein structure. The present work describes a general approach for exploring the energetics of different feasible models of the action of CcO, using the observed protein structure, established simulation methods and a modified Marcus' formulation. We start by reviewing our methods for evaluation of the energy diagrams for different proton translocation paths and then present a systematic analysis of various constraints that should be imposed on any energy diagram for the pumping process. After the general analysis we turn to the actual computational study, where we construct energy diagrams for forward and backward paths, using the estimated calculated reduction potentials and pKa values of all the relevant sites (including internal water molecules). We then explore the relationship between the calculated energy diagrams and key experimental constraints. This comparison allows us to identify some barriers that are not fully consistent with the overall requirement for an efficient pumping. In particular we identify back leakage channels, which are hard to block without stopping the forward channels. This helps to identify open problems that will require further experimental and theoretical studies. We also consider reasonable adjustments of the calculated barriers that may lead to a working pump. Although the present analysis does not establish a unique and workable model for the mechanism of CcO, it presents what is probably the most consistent current analysis of the barriers for different feasible pathways. Perhaps more importantly, the framework developed here should provide a general way for examining any proposal for the action of CcO as well as for the analysis of further experimental findings about the action of this fascinating system.  相似文献   

9.
Replicative DNA polymerases are stalled by damaged DNA while the newly discovered Y-family DNA polymerases are recruited to rescue these stalled replication forks, thereby enhancing cell survival. The Y-family DNA polymerases, characterized by low fidelity and processivity, are able to bypass different classes of DNA lesions. A variety of kinetic and structural studies have established a minimal reaction pathway common to all DNA polymerases, although the conformational intermediates are not well defined. Furthermore, the identification of the rate-limiting step of nucleotide incorporation catalyzed by any DNA polymerase has been a matter of long debate. By monitoring time-dependent fluorescence resonance energy transfer (FRET) signal changes at multiple sites in each domain and DNA during catalysis, we present here a real-time picture of the global conformational transitions of a model Y-family enzyme: DNA polymerase IV (Dpo4) from Sulfolobus solfataricus. Our results provide evidence for a hypothetical DNA translocation event followed by a rapid protein conformational change prior to catalysis and a subsequent slow, post-chemistry protein conformational change. Surprisingly, the DNA translocation step was induced by the binding of a correct nucleotide. Moreover, we have determined the directions, rates, and activation energy barriers of the protein conformational transitions, which indicated that the four domains of Dpo4 moved in a synchronized manner. These results showed conclusively that a pre-chemistry conformational change associated with domain movements was too fast to be the rate-limiting step. Rather, the rearrangement of active site residues limited the rate of correct nucleotide incorporation. Collectively, the conformational dynamics of Dpo4 offer insights into how the inter-domain movements are related to enzymatic function and their concerted interactions with other proteins at the replication fork.  相似文献   

10.
Recent studies introduced a novel view that the SecYEG translocon functions as a monomer and interacts with the dimeric SecA ATPase, which fuels the preprotein translocation reaction. Here, we used nanodisc-reconstituted SecYEG to characterize the functional properties of single copies of the translocon. Using a method based on intermolecular Förster resonance energy transfer, we show for the first time that isolated nanodisc-reconstituted SecYEG monomers support preprotein translocation. When several copies of SecYEG were co-reconstituted within a nanodisc, no change in translocation kinetics was observed, suggesting that SecYEG oligomers do not facilitate enhanced translocation. In contrast, nanodisc-reconstituted monomers of the PrlA4 variant of SecYEG showed increased translocation rates. Experiments based on intramolecular Förster resonance energy transfer within the nanodisc-isolated monomeric SecYEG demonstrated a nucleotide-dependent opening of the channel upon interaction with SecA. In conclusion, the nanodisc-reconstituted SecYEG monomers are functional for preprotein translocation and provide a new prospect for single-molecule analysis of dynamic aspects of protein translocation.  相似文献   

11.
We demonstrate the energy dependence of the motion of a porin, the λ-receptor, in the outer membrane of living Escherichia coli by single molecule investigations. By poisoning the bacteria with arsenate and azide, the bacterial energy metabolism was stopped. The motility of individual λ-receptors significantly and rapidly decreased upon energy depletion. We suggest two different causes for the ceased motility upon comprised energy metabolism: One possible cause is that the cell uses energy to actively wiggle its proteins, this energy being one order-of-magnitude larger than thermal energy. Another possible cause is an induced change in the connection between the λ-receptor and the membrane structure, for instance by a stiffening of part of the membrane structure. Treatment of the cells with ampicillin, which directly targets the bacterial cell wall by inhibiting cross-linking of the peptidoglycan layer, had an effect similar to energy depletion and the motility of the λ-receptor significantly decreased. Since the λ-receptor is closely linked to the peptidoglycan layer, we propose that λ-receptor motility is directly coupled to the constant and dynamic energy-consuming reconstruction of the peptidoglycan layer. The result of this motion could be to facilitate transport of maltose-dextrins through the porin.  相似文献   

12.
Bacterial transporters are difficult to study using conventional electrophysiology because of their low transport rates and the small size of bacterial cells. Here, we applied solid-supported membrane–based electrophysiology to derive kinetic parameters of sugar translocation by the Escherichia coli xylose permease (XylE), including functionally relevant mutants. Many aspects of the fucose permease (FucP) and lactose permease (LacY) have also been investigated, which allow for more comprehensive conclusions regarding the mechanism of sugar translocation by transporters of the major facilitator superfamily. In all three of these symporters, we observed sugar binding and transport in real time to determine KM, Vmax, KD, and kobs values for different sugar substrates. KD and kobs values were attainable because of a conserved sugar-induced electrogenic conformational transition within these transporters. We also analyzed interactions between the residues in the available X-ray sugar/H+ symporter structures obtained with different bound sugars. We found that different sugars induce different conformational states, possibly correlating with different charge displacements in the electrophysiological assay upon sugar binding. Finally, we found that mutations in XylE altered the kinetics of glucose binding and transport, as Q175 and L297 are necessary for uncoupling H+ and d-glucose translocation. Based on the rates for the electrogenic conformational transition upon sugar binding (>300 s−1) and for sugar translocation (2 s−1 − 30 s−1 for different substrates), we propose a multiple-step mechanism and postulate an energy profile for sugar translocation. We also suggest a mechanism by which d-glucose can act as an inhibitor for XylE.  相似文献   

13.
The influence of a gramicidin-like channel former on ion free energy barriers is studied using Monte Carlo simulation. The model explicitly describes the ion, the water dipoles, and the peptide carbonyls; the remaining degrees of freedom, bulk electrolyte, non-polar lipid and peptide regions, and electronic (high frequency) permittivity, are treated in continuum terms. Contributions of the channel waters and peptide COs are studied both separately and collectively. We found that if constrained to their original orientations, the COs substantially increase the cationic permeation free energy; with or without water present, CO reorientation is crucial for ion-CO interaction to lower cation free energy barriers; the translocation free energy profiles for potassium-, rubidium-, and cesium-like cations exhibit no broad barriers; the lipid-bound peptide interacts more effectively with anions than cations; anionic translocation free energy profiles exhibit well defined maxima. Using experimental data to estimate transfer free energies of ions and water from bulk electrolyte to a non-polar dielectric (continuum lipid), we found reasonable ion permeation profiles; cations bind and permeate, whereas anions cannot enter the channel. Cation selectivity arises because, for ions of the same size and charge, anions bind hydration water more strongly.  相似文献   

14.
Previously we reported the results from an effort to improve Gram-negative antibacterial activity in the oxazolidinone class of antibiotics via a systematic medicinal chemistry campaign focused entirely on C-ring modifications. In that series we set about testing if the efflux and permeation barriers intrinsic to the outer membrane of Escherichia coli could be rationally overcome by designing analogs to reside in specific property limits associated with Gram-negative activity: i) low MW (<400), ii) high polarity (clogD7.4 <1), and iii) zwitterionic character at pH 7.4. Indeed, we observed that only analogs residing within these limits were able to overcome these barriers. Herein we report the results from a parallel effort where we explored structural changes throughout all three rings in the scaffold for the same purpose. Compounds were tested against a diagnostic MIC panel of Escherichia coli and Staphylococcus aureus strains to determine the impact of combining structural modifications in overcoming the OM barriers and in bridging the potency gap between the species. The results demonstrated that distributing the charge-carrying moieties across two rings was also beneficial for avoidance of the outer membrane barriers. Importantly, analysis of the structure-permeation relationship (SPR) obtained from this and the prior study indicated that in addition to MW, polarity, and zwitterionic character, having ≤4 rotatable bonds is also associated with evasion of the OM barriers. These combined results provide the medicinal chemist with a framework and strategy for overcoming the OM barriers in GNB in antibacterial drug discovery efforts.  相似文献   

15.
G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.  相似文献   

16.
Hart GE  McMillin DE  Sears ER 《Genetics》1976,83(1):49-61
The glutamate oxaloacetate transaminase (GOT) zymogram phenotypes of a series of 15 translocation lines, a chromosome addition line and a chromosome substitution line were determined. In each of the translocation lines a segment of the long arm of Triticum aestivum chromosome 3D has been replaced by a portion of an Agropyron elongatum homoeologue. Evidence was obtained that the products of the T. aestivum GOT-3 triplicate structural gene set randomly dimerize with the product of the homoeologous A. elongatum gene. Each translocation chromosome was found to carry either Got-D3 or Got-Ag3. By correlating the zymogram phenotype expressed by each translocation line with the observed frequency of meiotic pairing of each 3D/3Ag translocation chromosome with telocentric-3DL, it was shown that Got-D3 is located in the proximal portion of 3DL, slightly more than 4.3 crossover units from the centromere. The results of this genetic study confirm and extend earlier conclusions derived from cytogenetic studies as to the physical nature of the various 3D/3Ag chromosomes.  相似文献   

17.
All tailed bacteriophages follow the same general scheme of infection: they bind to their specific host receptor and then transfer their genome into the bacterium. DNA translocation is thought to be initiated by the strong pressure due to DNA packing inside the capsid. However, the exact mechanism by which each phage controls its DNA ejection remains unknown. Using light scattering, we analyzed the kinetics of in vitro DNA release from phages SPP1 and λ (Siphoviridae family) and found a simple exponential decay. The ejection characteristic time was studied as a function of the temperature and found to follow an Arrhenius law, allowing us to determine the activation energy that governs DNA ejection. A value of 25-30 kcal/mol is obtained for SPP1 and λ, comparable to the one measured in vitro for T5 (Siphoviridae) and in vivo for T7 (Podoviridae). This suggests similar mechanisms of DNA ejection control. In all tailed phages, the opening of the connector-tail channel is needed for DNA release and could constitute the limiting step. The common value of the activation energy likely reflects the existence for all phages of an optimum value, ensuring a compromise between efficient DNA delivery and high stability of the virus.  相似文献   

18.
Copy mutants of the R plasmid R1drd-19 were used to study gene dosage effects in Escherichia coli K-12. The specific activity of β-lactamase, chloramphenicol acetyltransferase, and streptomycin adenylylase, as well as ampicillin resistance, increased linearly with the gene dosage up to a level at least tenfold higher than that of the wild-type plasmid. This makes it possible to use ampicillin resistance to determine plasmid copy number and also to select for plasmid copy mutants with defined copy number. Chloramphenicol resistance, despite the increase in enzyme activity, reached a plateau level at a gene dosage less than twice that of the wild-type plasmid, presumably due to the high energy demand on the cells during inactivation of the antibiotic by acetylation with acetyl-coenzyme A. Similarly, resistance to streptomycin plateaued at a gene dosage about three times that of the wild-type plasmid, presumably because of a decreased efficiency of the cells' outer penetration barriers when carrying the R plasmid. The susceptibility of the cells to rifampicin was increased by the presence of plasmid copy mutants.  相似文献   

19.
The SecYEG complex forms a protein-conducting channel in the inner membrane of Escherichia coli to support the translocation of secretory proteins in their unfolded state. The SecY channel is closed at the periplasmic face of the membrane by a small re-entrance loop that connects transmembrane segment 1 with 2b. This helical domain 2a is termed the plug domain. By the introduction of pairs of cysteines and crosslinkers, the plug domain was immobilized inside the channel and connected to transmembrane segment 10. Translocation was inhibited to various degrees depending on the position and crosslinker spacer length. With one of the crosslinked mutants translocation occurred unrestricted. Biochemical characterization of this mutant as well as molecular dynamics simulations suggest that only a limited movement of the plug domain suffices for translocation.  相似文献   

20.
Fresh produce is known to carry nonpathogenic epiphytic microorganisms. During agricultural production and harvesting, leafy greens can become contaminated with antibiotic-resistant pathogens or commensals from animal and human sources. As lettuce does not undergo any inactivation or preservation treatment during processing, consumers may be exposed directly to all of the (resistant) bacteria present. In this study, we investigated whether lettuce or its production environment (irrigation water, soil) is able to act as a vector or reservoir of antimicrobial-resistant Escherichia coli. Over a 1-year period, eight lettuce farms were visited multiple times and 738 samples, including lettuce seedlings (leaves and soil), soil, irrigation water, and lettuce leaves were collected. From these samples, 473 isolates of Escherichia coli were obtained and tested for resistance to 14 antimicrobials. Fifty-four isolates (11.4%) were resistant to one or more antimicrobials. The highest resistance rate was observed for ampicillin (7%), followed by cephalothin, amoxicillin-clavulanic acid, tetracycline, trimethoprim, and streptomycin, with resistance rates between 4.4 and 3.6%. No resistance to amikacin, ciprofloxacin, gentamicin, or kanamycin was observed. One isolate was resistant to cefotaxime. Among the multiresistant isolates (n = 37), ampicillin and cephalothin showed the highest resistance rates, at 76 and 52%, respectively. E. coli isolates from lettuce showed higher resistance rates than E. coli isolates obtained from soil or irrigation water samples. When the presence of resistance in E. coli isolates from lettuce production sites and their resistance patterns were compared with the profiles of animal-derived E. coli strains, they were found to be the most comparable with what is found in the cattle reservoir. This may suggest that cattle are a potential reservoir of antimicrobial-resistant E. coli strains in plant primary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号