首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

2.
Influence of 12 nonpolar amino acids residues from the hydrophobic core of apomyoglobin on stability of its native state and folding intermediate was studied. Six of the selected residues are from the A, G and H helices; these are conserved in structure of the globin family, although nonfunctional, that is, not involved in heme binding. The rest are nonconserved hydrophobic residues that belong to the B, C, D, and E helices. Each residue was substituted by alanine, and equilibrium pH‐induced transitions in apomyoglobin and its mutants were studied by circular dichroism and fluorescent spectroscopy. The obtained results allowed estimating changes in their free energy during formation of the intermediate state. It was first shown that the strength of side chain interactions in the apomyoglobin intermediate state amounts to 15–50% of that in its native state for conserved residues, and practically to 0% for nonconserved residues. These results allow a better understanding of interactions occurring in the intermediate state and shed light on involvement of certain residues in protein folding at different stages.  相似文献   

3.
Site-directed mutagenesis has been used to probe the interactions that stabilize the equilibrium and burst phase kinetic intermediates formed by apomyoglobin. Nine bulky hydrophobic residues in the A, E, G and H helices were replaced by alanine, and the effects on protein stability and kinetic folding pathways were determined. Hydrogen exchange pulse-labeling experiments, with NMR detection, were performed for all mutants. All of the alanine substitutions resulted in changes in proton occupancy or an increased rate of hydrogen-deuterium exchange for amides in the immediate vicinity of the mutation. In addition, most mutations affected residues in distant parts of the amino acid sequence, providing insights into the topology of the burst phase intermediate and the interactions that stabilize its structure. Differences between the pH 4 equilibrium molten globule and the kinetic intermediate are evident: the E helix region plays no discernible role in the equilibrium intermediate, but contributes significantly to stabilization of the ensemble of compact intermediates formed during kinetic refolding. Mutations that interfere with docking of the E helix onto the preformed A/B/G/H helix core substantially decrease the folding rate, indicating that docking and folding of the E helix region occurs prior to formation of the apomyoglobin folding transition state. The results of the mutagenesis experiments are consistent with rapid formation of an ensemble of compact burst phase intermediates with an overall native-like topological arrangement of the A, B, E, G, and H helices. However, the experiments also point to disorder in docking of the E helix and to non-native contacts in the kinetic intermediate. In particular, there is evidence for translocation of the H helix by approximately one helical turn towards its N terminus to maximize hydrophobic interactions with helix G. Thus, the burst phase intermediate observed during kinetic refolding of apomyoglobin consists of an ensemble of compact, kinetically trapped states in which the helix docking appears to be topologically correct, but in which there are local non-native interactions that must be resolved before the protein can fold to the native structure.  相似文献   

4.
The molten globule model for the beginning of the folding process, which originated with Kuwajima's studies of alpha-lactalbumin (Kuwajima, K., 1989, Proteins Struct. Funct. Genet. 6, 87-103, and references therein), states that, for those proteins that exhibit equilibrium molten globule intermediates, the molten globule is a major kinetic intermediate near the start of the folding pathway. Pulsed hydrogen-deuterium exchange measurements confirm this model for apomyoglobin (Jennings, P.A. & Wright, P.E., in prep.). The energetics of the acid-induced unfolding transition, which have been determined by fitting a minimal three-state model (N<-->I<-->U; N = native, I = molten globule intermediate, U = unfolded) show that I is more stable than U at neutral pH (Barrick, D. & Baldwin, R.L., 1993, Biochemistry 32, in press), which provides an explanation for why I is formed from U at the start of folding. Hydrogen exchange rates measured by two-dimensional NMR for individual peptide NH protons, taken together with the CD spectrum of I, indicate that moderately stable helices are present in I at the locations of the A, G, and H helices of native myoglobin (Hughson, F.M., Wright, P.E., & Baldwin, R.L., 1990, Science 249, 1544-1548). Directed mutagnesis experiments indicate that the interactions between the A, G, and H helices in I are loose (Hughson, F.M., Barrick, D., & Baldwin, R.L., 1991, Biochemistry 30, 4113-4118), which can explain why I is formed rapidly from U at the start of folding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Structure-based sequence alignment of 728 sequences of different globin subfamilies shows that in each subfamily there are two clusters of consensually conserved residues. The first is the well-known "functional" cluster which includes six heme-binding conserved residues (Phe CD1, His F8; aliphatic E11, FG5; hydrophobic F4, G5) and seven other conserved residues (Pro C2; aliphatic H19; hydrophobic B10, B13, B14, CD4, E4) that do not bind the heme but belong to its immediate neighborhood. The second cluster revealed here (aliphatic A8, G16, G12; aromatic A12; hydrophobic H8 and possibly H12) is distant from the heme. It is entirely non-polar and includes one turn (i, i+4 positions) from each of helices A, G, and H. It is known that A, G, and H helices formed at the earliest stage of apomyoglobin folding remain relatively stable in the equilibrium molten globule state, and are likely to be tightly packed with each other in this state. We have shown the existence of two similar conserved clusters in c -type cytochromes, heme-binding and distal from the heme. The second cluster in c -cytochromes includes one turn from each of the N and C-terminal alpha-helices. These N and C-terminal helices in cytochrome c are formed at the earliest stage of protein folding, remain relatively stable in the molten globule state, and are tightly packed with each other in this state, similar to the observed behavior of the globins. At least these two large protein families (c -type cytochromes and globins) have a close similarity in the existence and mutual positions of non-functional conserved residues. We assume that non-functional conserved residues are requisite for the fast and correct folding of both of these protein families into their stable 3D structures.  相似文献   

6.
The folding pathways of four mutants in which bulky hydrophobic residues in the B helix of apomyoglobin (ApoMb) are replaced by alanine (I28A, L29A, I30A, and L32A) have been analyzed using equilibrium and kinetic methods employing NMR, CD, fluorescence and mass spectrometry. Hydrogen exchange pulse-labeling followed by mass spectrometry reveals detectable intermediates in the kinetic folding pathways of each of these mutants. Comparison of the quench-flow data analyzed by NMR for the wild-type protein and the mutants showed that the substitutions I28A, L29A and L32A lead to destabilization of the B helix in the burst phase kinetic intermediate, relative to wild-type apomyoglobin. In contrast, the I30A mutation apparently has a slight stabilizing effect on the B helix in the burst phase intermediate; under weak labeling conditions, residues in the C helix region were also relatively stabilized in the mutant compared to the wild-type protein. This suggests that native-like helix B/helix C packing interactions occur in the folding intermediate. The L32A mutant showed significantly lower proton occupancies in the burst phase for several residues in the G helix, specifically F106, I107, E109 and A110, which are in close proximity to L32 in the X-ray structure of myoglobin, providing direct evidence that native-like helix B/helix G contacts are formed in the apomyoglobin burst phase intermediate. The L29A mutation resulted in an increase in burst phase proton occupancies for several residues in the E helix. Since these regions of the B and E helices are not in contact in the native myoglobin structure, these effects suggest the possibility of non-native B/E packing interactions in the kinetic intermediate. The differing effects of these B helix mutations on the apomyoglobin folding process suggests that each side-chain plays a different and important role in forming stable structure in the burst phase intermediate, and points to a role for both native-like and non-native contacts in stabilization of the folding intermediate.  相似文献   

7.
In the globin family, similarities in the folding mechanism have been found among different mammalian apomyoglobins (apoMb). The best-characterized intermediate of sperm whale apoMb, called I(AGH), is mainly stabilized by nativelike contacts among the A, G, and H helices involving a cluster of hydrophobic residues that includes two conserved tryptophans. To verify the hypothesis of a common intermediate in the folding of all members of the globin family, we have extensively studied a site-directed mutant of the myoglobin from Aplysia limacina, distantly related to the mammalian counterpart, in which one of the two tryptophans in the A-G-H cluster [i.e., Trp(H8)130] has been mutated to tyrosine. The results presented here show that this mutation destabilizes both the native state and the acid intermediate I(A) but exerts little or no effect on the thermally stable core of an intermediate species (called I(T)) peculiar to Aplysia apomyoglobin. Dynamic quenching of Trp emission by acrylamide provides information on the accessibility of the chromophores at the native and the intermediate states of wild-type and mutant Aplysia apomyoglobin, consistent with the thermodynamics. Our results agree well with those obtained for the corresponding topological position of apomyoglobin from sperm whale and clearly show that the H8 position is involved in the stabilization of the main intermediate in both apoproteins. This residue thus plays a role which is evolutionarily conserved in the globin family from invertebrates to mammals; our results support the contention that the A-G-H cluster is important in the folding pathway of different globins.  相似文献   

8.
Apomyoglobin folds by a sequential mechanism in which the A, G, and H helix regions undergo rapid collapse to form a compact intermediate onto which the central portion of the B helix subsequently docks. To investigate the factors that frustrate folding, we have made mutations in the N-terminus of the B helix to stabilize helical structure (in the mutant G23A/G25A) and to promote native-like hydrophobic packing interactions with helix G (in the mutant H24L/H119F). The kinetic and equilibrium intermediates of G23A/G25A and H24L/H119F were studied by hydrogen exchange pulse labeling and interrupted hydrogen/deuterium exchange combined with NMR. For both mutants, stabilization of helical structure in the N-terminal region of the B helix is confirmed by increased exchange protection in the equilibrium molten globule states near pH 4. Increased protection is also observed in the GH turn region in the G23A/G25A mutant, suggesting that stabilization of the B helix facilitates native-like interactions with the C-terminal region of helix G. These interactions are further enhanced in H24L/H119F. The kinetic burst phase intermediates of both mutants show increased protection, relative to wild-type protein, of amides in the N-terminus of the B helix and in part of the E helix. Stabilization of the E helix in the intermediate is attributed to direct interactions between E helix residues and the newly stabilized N-terminus of helix B. Stabilization of native packing between the B and G helices in H24L/H119F also favors formation of native-like interactions in the GH turn and between the G and H helices in the ensemble of burst phase intermediates. We conclude that instability at the N-terminus of the B helix of apomyoglobin contributes to the energetic frustration of folding by preventing docking and stabilization of the E helix.  相似文献   

9.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

10.
The folding pathway of apomyoglobin has been experimentally shown to have early kinetic intermediates involving the A, B, G, and H helices. The earliest detected kinetic events occur on a ns to micros time scale. We show that the early folding kinetics of apomyoglobin may be understood as the association of nascent helices through a network of diffusion-collision-coalescence steps G + H <--> GH + A <--> AGH + B <--> ABGH obtained by solving the diffusion-collision model in a chemical kinetics approximation. Our reproduction of the experimental results indicates that the model is a useful way to analyze folding data. One prediction from our fit is that the nascent A and H helices should be relatively more helix-like before coalescence than the other apomyoglobin helices.  相似文献   

11.
Four subfamilies of c-type lysozyme and one subfamily of α-lactalbumin are defined from 78 sequences, and their folding nucleus is identified with a method based on conserved residues and native structural contacts between pairs of conserved residues. One large cluster of 19 conserved residues is found which is mostly nonpolar, buried, and nonfunctional. It can be subdivided into three subclusters: (1) conserved residues in four helices; (2) conserved residues that stabilize the connector between the α and the β domains; and (3) a β-turn, sitting in the middle of a bowl of α-helix residues. It is proposed that this folding nucleus initiates four helices, A, B, C, and D, three β sheets, and the connector, which corresponds closely to the nucleation of the so-called fast folding track pathway. As the secondary structures propagate, nonconserved residues and functionally conserved residues would form additional contacts. The conserved residues are selected with a phylogenetic scheme in which single members of subfamilies are selected. Subfamilies are then equally weighted to obtain the consensus conservation. Received: 11 June 2001 / Accepted: 28 August 2001  相似文献   

12.
We have used molecular dynamics simulation methods to study the structure and fluctuations of "native" apomyoglobin in aqueous solution for a period of greater than 0.5 nanosecond. This work was motivated by the recent attempts of Hughson et al. to characterize the structure and motion of both this molecule and the less compact, acid stabilized I stage, using methods of pulsed H/2H exchange. The study of these systems provides new insights into protein folding intermediates and our simulation has yielded a detailed model for structure and fluctuations in apomyoglobin which complements the experimental studies. We find that local (short-time) fluctuations agree well with fluctuations observed for the holoprotein in aqueous solution, as well as results from the crystallographic B-factors. In addition, the structural features we observe for native apomyoglobin are very similar to the holoprotein, in basic agreement with the findings of Hughson et al. By examining larger-scale motions, developing only over timescales in excess of a 100 picoseconds, we are able to identify conformationally "labile" and "non-labile" regions within native apomyoglobin. These regions correspond extremely well to those identified in the nuclear magnetic resonance experiments as unstable and stable "folding subdomains" in the I state of apomyoglobin. Overall we find that helices A, B, E, G and H show the least amount of motion and helices C, D and F move substantially over the timescales examined. The major motions, and the primary difference between the holo and apo structures as we have observed them, are due to the shifting motion of helices C, D and F into the vacant heme cavity. We also find that motions at the interface of helical segments can be large, with one important exception being the chain segment connecting helices G and H. This segment of chain interacts with the conformationally "non-labile" helix A to form a relatively rigid subdomain composed of helices A, G and H. We believe that these findings provide direct support for the suggestion of Hughson et al. that helices A, G and H constitute a compact subdomain that remains in a native-like conformation as the protein begins to unfold in environments of decreasing pH.  相似文献   

13.
An important question in protein folding is whether molten globule states formed under equilibrium conditions are good structural models for kinetic folding intermediates. The structures of the kinetic and equilibrium intermediates in the folding of the plant globin apoleghemoglobin have been compared at high resolution by quench-flow pH-pulse labeling and interrupted hydrogen/deuterium exchange analyzed in dimethyl sulfoxide. Unlike its well studied homolog apomyoglobin, where the equilibrium and kinetic intermediates are quite similar, there are striking structural differences between the intermediates formed by apoleghemoglobin. In the kinetic intermediate, formed during the burst phase of the quench-flow experiment, protected amides and helical structure are found mainly in the regions corresponding to the G and H helices of the folded protein, and in parts of the E helix and CE loop regions, whereas in the equilibrium intermediate, amide protection and helical structure are seen in parts of the A and B helix regions, as well as in the G and H regions, and the E helix remains largely unfolded. These results suggest that the structure of the molten globule intermediate of apoleghemoglobin is more plastic than that of apomyoglobin, so that it is readily transformed depending on the solution conditions, particularly pH. Thus, in the case of apoleghemoglobin at least, the equilibrium molten globule formed under destabilizing conditions at acid pH is not a good model for the compact intermediate formed during kinetic refolding experiments. Our high-precision kinetic analysis also reveals an additional slow phase during the folding of apoleghemoglobin, which is not observed for apomyoglobin. Hydrogen exchange pulse-labeling experiments show that the slow-folding phase is associated with residues in the CE loop, which probably forms non-native structure in the intermediate that must be resolved before folding can proceed to completion.  相似文献   

14.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

15.
Proton NMR experiments were carried out on apomyoglobin from sperm whale and horse skeletal muscle. Two small molecules, the paramagnetic relaxation agent 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO) and the fluorescent dye 8-anilino-1-naphthalenesulfonic acid (ANS), were used to alter and simplify the spectrum. Both were shown to bind in the heme pocket by docking onto the hydrophobic residues lining the distal side. Only 1 extensive region of the apoprotein structure, composed of hydrophobic residues, is not affected by HyTEMPO. It includes the 2 tryptophans (located in the A helix), other nonpolar residues of the A helix and side chains from the E, G, and GH helices. The spectral perturbations induced by ANS allowed assignment of the distal histidine (His-64) in horse apomyoglobin. This residue was previously reported to titrate with a pKa below 5 and tentatively labeled as His-82 on the basis of this value (Cocco MJ, Kao YH, Phillips AT, Lecomte JTJ, 1992, Biochemistry 31:6481-6491). The packing of the side chains and the low pKa of His-64 reinforce the idea that the distal side of the binding site is folded in a manner closely related to that in the holoprotein. ANS was found to sharpen the protein signals and the improvement of the spectral resolution facilitated the assignment of backbone amide resonances. Secondary structure, as manifested in characteristic inter-amide proton NOEs, was detected in the A, B, C, E, G, and H helices. The combined information on the hydrophobic cores and the secondary structure composes an improved representation of the native state of apomyoglobin.  相似文献   

16.
Eliezer D  Chung J  Dyson HJ  Wright PE 《Biochemistry》2000,39(11):2894-2901
The partly folded state of apomyoglobin at pH 4 represents an excellent model for an obligatory kinetic folding intermediate. The structure and dynamics of this intermediate state have been extensively examined using NMR spectroscopy. Secondary chemical shifts, (1)H-(1)H NOEs, and amide proton temperature coefficients have been used to probe residual structure in the intermediate state, and NMR relaxation parameters T(1) and T(2) and ?(1)H?-(15)N NOE have been analyzed using spectral densities to correlate motion of the polypeptide chain with these structural observations. A significant amount of helical structure remains in the pH 4 state, indicated by the secondary chemical shifts of the (13)C(alpha), (13)CO, (1)H(alpha), and (13)C(beta) nuclei, and the boundaries of this helical structure are confirmed by the locations of (1)H-(1)H NOEs. Hydrogen bonding in the structured regions is predominantly native-like according to the amide proton chemical shifts and their temperature dependence. The locations of the A, G, and H helix segments and the C-terminal part of the B helix are similar to those in native apomyoglobin, consistent with the early, complete protection of the amides of residues in these helices in quench-flow experiments. These results confirm the similarity of the equilibrium form of apoMb at pH 4 and the kinetic intermediate observed at short times in the quench-flow experiment. Flexibility in this structured core is severely curtailed compared with the remainder of the protein, as indicated by the analysis of the NMR relaxation parameters. Regions with relatively high values of J(0) and low values of J(750) correspond well with the A, B, G, and H helices, an indication that nanosecond time scale backbone fluctuations in these regions of the sequence are restricted. Other parts of the protein show much greater flexibility and much reduced secondary chemical shifts. Nevertheless, several regions show evidence of the beginnings of helical structure, including stretches encompassing the C helix-CD loop, the boundary of the D and E helices, and the C-terminal half of the E helix. These regions are clearly not well-structured in the pH 4 state, unlike the A, B, G, and H helices, which form a native-like structured core. However, the proximity of this structured core most likely influences the region between the B and F helices, inducing at least transient helical structure.  相似文献   

17.
Factors governing the folding pathways and the stability of apomyoglobin have been examined by replacing the distal histidine at position 64 with phenylalanine (H64F). Acid and urea-induced unfolding experiments using CD and fluorescence techniques reveal that the mutant H64F apoprotein is significantly more stable than wild-type apoMb. Kinetic refolding studies of this variant also show a significant difference from wild-type apoMb. The amplitude of the burst phase ellipticity in stopped-flow CD measurements is increased over that of wild-type, an indication that the secondary structure content of the earliest kinetic intermediate is greater in the mutant than in the wild-type protein. In addition, the overall rate of folding is markedly increased. Hydrogen exchange pulse labeling was used to establish the structure of the initial intermediate formed during the burst phase of the H64F mutant. NMR analysis of the samples obtained at different refolding times indicates that the burst phase intermediate contains a stabilized E helix as well as the A, G, and H helices previously found in the wild-type kinetic intermediate. Replacement of the polar distal histidine residue with a nonpolar residue of similar size and shape appears to stabilize the E helix in the early stages of folding due to improved hydrophobic packing. The presence of a hydrophilic histidine at position 64 thus exacts a price in the stability and folding efficiency of the apoprotein, but this residue is nevertheless highly conserved among myoglobins due to its importance in function.  相似文献   

18.
The small (87-residue) α-helical protein Im7 (an inhibitor protein for colicin E7 that provides immunity to cells producing colicin E7) folds via a three-state mechanism involving an on-pathway intermediate. This kinetic intermediate contains three of four native helices that are oriented in a non-native manner so as to minimise exposed hydrophobic surface area at this point in folding. The short (6-residue) helix III has been shown to be unstructured in the intermediate ensemble and does not dock onto the developing hydrophobic core until after the rate-limiting transition state has been traversed. After helix III has docked, it adopts an α-helical secondary structure, and the side chains of residues within this region provide contacts that are crucial to native-state stability. In order to probe further the role of helix III in the folding mechanism of Im7, we created a variant that contains an eight-amino-acid polyalanine-like helix stabilised by a Glu-Arg salt bridge and an Asn-Pro-Gly capping motif, juxtaposed C-terminal to the natural 6-residue helix III. The effect of this insertion on the structure of the native protein and its folding mechanism were studied using NMR and ?-value analysis, respectively. The results reveal a robust native structure that is not perturbed by the presence of the extended helix III. Mutational analysis performed to probe the folding mechanism of the redesigned protein revealed a conserved mechanism involving the canonical three-helical intermediate. The results suggest that folding via a three-helical species stabilised by both native and non-native interactions is an essential feature of Im7 folding, independent of the helical propensity of helix III.  相似文献   

19.
M J Cocco  J T Lecomte 《Biochemistry》1990,29(50):11067-11072
A proton nuclear magnetic resonance spectroscopic study of horse apomyoglobin was undertaken in order to define the regions of myoglobin that are and that are not structurally affected by the binding of the prosthetic group. It was found that, in spite of the poor spectral resolution, a number of spin systems could be identified by using standard correlated methods. Four clusters consisting mostly of hydrophobic residues were detected by nuclear Overhauser spectroscopy, two of which involved the tryptophan side chains. Extensive similarities to nuclear Overhauser spectroscopy data collected on the carbonmonoxy form of holomyoglobin suggested tentative assignments for several residues. It appeared that distinct cores of side chains on the distal side of the binding pocket and between the A, B, G, and H helices maintain the same packing as they do in holomyoglobin and apomyoglobin reconstituted with protoporphyrin IX.  相似文献   

20.
To test the hypothesis that the folding pathways of evolutionarily related proteins with similar three-dimensional structures but widely different sequences should be similar, the folding pathway of apoleghemoglobin has been characterized using stopped-flow circular dichroism, heteronuclear NMR pulse labeling techniques and mass spectrometry. The pathway of folding was found to differ significantly from that of a protein of the same family, apomyoglobin, although both proteins appear to fold through helical burst phase intermediates. For leghemoglobin, the burst phase intermediate exhibits stable helical structure in the G and H helices, together with a small region in the center of the E helix. The A and B helices are not stabilized until later stages of the folding process. The structure of the burst phase folding intermediate thus differs from that of apomyoglobin, in which stable helical structure is formed in the A, B, G and H helix regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号