首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Nuclear pore complex (NPC) is a biomolecular “nanomachine” that controls nucleocytoplasmic transport in eukaryotic cells. The key component of the functional architecture of the NPC is the assembly of intrinsically disordered proteins that line its passageway and play a central role in the NPC transport mechanism. Due to paucity of experimental methods capable to directly probe the morphology of this assembly in intact NPCs, much of our knowledge about its properties derives from in vitro experiments augmented by theoretical and computational modeling. I review the major insights into the biophysics of the assemblies of the intrinsically disordered proteins of the NPC arising from the theoretical analysis of the recent in vitro experimental results, with the emphasis on the phase separation and aggregation phenomena.  相似文献   

2.
Diseases of viral origin in humans are among the most serious threats to health and the global economy. As recent history has shown the virus has a high pandemic potential, among other reasons, due to its ability to spread by air, hence the identification, investigation, containment, and treatment of viral diseases should be considered of paramount importance. In this sense, the bioinformatics research has focused on finding fast and efficient algorithms that can identify highly toxic antiviral peptides and to serve as a first filter, so that trials in the laboratory are substantially reduced. The work presented here contributes to this effort through the use of an algorithm already published by this team, called polarity index method, which identifies with high efficiency antiviral peptides from the exhaustive analysis of the polar profile, using the linear sequence of the peptide. The test carried out included all peptides in APD2 Database and 60 antiviral peptides identified by Kumar and co-workers (Nucleic Acids Res 40:W199–204, 2012), to build its AVPpred algorithm. The validity of the method was focused on its discriminating capacity so we included the 15 sub-classifications of both Databases.  相似文献   

3.
The increase in the number of pathogens due to fungi that are tolerant to therapies does not grow at the same speed than the advance on new antifungal drugs. In this sense, it is imperative to find anti-fungi peptides that are not detrimental to mammalian cells and have an effective toxicity to fungi. In this work, we use a method called polarity index, to identify anti-fungi peptides with an efficiency of 70 %. This method already published, initially identified selective antibacterial peptides from APD2 Database, and was characterized by developing a comprehensive analysis of the polar dynamics of a peptide from its linear sequence. Discriminating tests showed that in addition to being efficient in this identification, it was also good at rejecting other classifications of peptides found in that same database.  相似文献   

4.
Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.  相似文献   

5.
6.
Direct cellular entry of potentially useful polar compounds into cells is prevented by the hydrophobic barrier of the membrane. Toward circumventing this barrier, we used high throughput screening to identify a family of peptides that carry membrane-impermeant cargos across synthetic membranes. Here we characterize the plasma membrane translocation of these peptides with polar cargos under a variety of conditions. The spontaneous membrane-translocating peptides (SMTPs) delivered the zwitterionic, membrane-impermeant dye tetramethylrhodamine (TAMRA) into cells even when the conditions were not permissive for endocytosis. They also delivered the larger, anionic membrane-impermeant dye Alexa Fluor 546 but did not deliver a quantum dot nanoparticle. Under all conditions, the SMTP-cargo filled the cytoplasm with a diffuse, non-punctate fluorescence that was partially excluded from the nucleus. d-Amino acid peptides behaved identically in vitro, ruling out proteolysis as an important factor in the diffuse cellular distribution. Thus, cytosolic delivery of SMTP-cargo conjugates is dominated by direct membrane translocation. This is in sharp contrast to Arg9-TAMRA, a representative highly cationic, cell-penetrating peptide, which entered cells only when endocytosis was permitted. Arg9-TAMRA triggered large scale endocytosis and did not appreciably escape the endosomal compartments in the 1-h timescales we studied. When injected into mice, SMTP-TAMRA conjugates were found in many tissues even after 2 h. Unconjugated TAMRA was rapidly cleared and did not become systemically distributed. SMTPs are a platform that could improve delivery of many polar compounds to cells, in the laboratory or in the clinic, including those that would otherwise be rejected as drugs because they are membrane-impermeant.  相似文献   

7.
Abstract: The major pathological feature of Alzheimer's disease is the presence of a high density of amyloid plaques in the brain tissue of patients. The plaques are predominantly composed of human β-amyloid peptide (Aβ), a 39–43-mer peptide the neurotoxicity of which is related to its aggregation state. Previous work has demonstrated that certain metals that have been implicated as risk factors for Alzheimer's disease (Al, Fe, and Zn) also cause substantial aggregation of Aβ. In particular, we reported that zinc cations at concentrations of >10?4M dramatically accelerate the rate of Aβ aggregation at physiological peptide concentrations at 37°C in vitro. In the present study, we investigate the effect of Zn2+ on aggregation of radiolabeled and unlabeled human and rat Aβ over a wide range of peptide concentrations in the presence and absence of salt and blocking protein. Aggregation was assayed by centrifugation and filtration using amino acid analysis, immunoassay, and γ-counting for quantification over a wide range of concentrations of Zn2+ and Aβ above and below physiological values. The results of this study demonstrate the following: (a) Radio-iodinated Aβ accurately tracked unlabeled Aβ, (b) zinc concentrations of at least 10?4M were required to induce significant aggregation of Aβ, and (c) rat and human Aβ species were cleared from aqueous solutions by similar concentrations of zinc. These results stand in significant quantitative disagreement (~100-fold in zinc concentration) with one previous study that reported significant aggregation of Aβ by <1 µM Zn2+. Differences between the present study and the latter study from another laboratory appear to result from inappropriate reliance on optical density to measure Aβ concentrations and nonspecific loss of Aβ to plastic in the absence of blocking protein.  相似文献   

8.
Several neurodegenerative diseases are characterized by the aggregation and posttranslational modifications of Tau protein. Its “repeat domain” (TauRD) is mainly responsible for the aggregation properties, and oligomeric forms are thought to dominate the toxic effects of Tau. Here we investigated the conformational transitions of this domain during oligomerization and aggregation in different states of β-propensity and pseudo-phosphorylation, using several complementary imaging and spectroscopic methods. Although the repeat domain generally aggregates more readily than full-length Tau, its aggregation was greatly slowed down by phosphorylation or pseudo-phosphorylation at the KXGS motifs, concomitant with an extended phase of oligomerization. Analogous effects were observed with pro-aggregant variants of TauRD. Oligomers became most evident in the case of the pro-aggregant mutant TauRDΔK280, as monitored by atomic force microscopy, and the fluorescence lifetime of Alexa-labeled Tau (time-correlated single photon counting (TCSPC)), consistent with its pronounced toxicity in mouse models. In cell models or primary neurons, neither oligomers nor fibrils of TauRD or TauRDΔK280 had a toxic effect, as seen by assays with lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, respectively. However, oligomers of pro-aggregant TauRDΔK280 specifically caused a loss of spine density in differentiated neurons, indicating a locally restricted impairment of function.  相似文献   

9.
Fragments of proteins containing an expanded polyglutamine (polyQ) tract are thought to initiate aggregation and toxicity in at least nine neurodegenerative diseases, including Huntington''s disease. Because proteasomes appear unable to digest the polyQ tract, which can initiate intracellular protein aggregation, preventing polyQ peptide aggregation by chaperones should greatly improve polyQ clearance and prevent aggregate formation. Here we expressed polyQ peptides in cells and show that their intracellular aggregation is prevented by DNAJB6 and DNAJB8, members of the DNAJ (Hsp40) chaperone family. In contrast, HSPA/Hsp70 and DNAJB1, also members of the DNAJ chaperone family, did not prevent peptide-initiated aggregation. Intriguingly, DNAJB6 and DNAJB8 also affected the soluble levels of polyQ peptides, indicating that DNAJB6 and DNAJB8 inhibit polyQ peptide aggregation directly. Together with recent data showing that purified DNAJB6 can suppress fibrillation of polyQ peptides far more efficiently than polyQ expanded protein fragments in vitro, we conclude that the mechanism of DNAJB6 and DNAJB8 is suppression of polyQ protein aggregation by directly binding the polyQ tract.  相似文献   

10.
Typical of many viral fusion proteins, the sequence of the Newcastle disease virus (NDV) fusion protein has several heptad repeat regions. One, HR1, is located just carboxyl terminal to the fusion peptide, while the other, HR2, is located adjacent to the transmembrane domain. The structure and function of a synthetic peptide with a sequence from the region of the NDV HR1 region (amino acids 150 to 173) were characterized. The peptide inhibited fusion with a half-maximal concentration of approximately 2 microM; however, inhibition was observed only if the peptide was added prior to protease activation of the fusion protein. This inhibition was virus specific since the peptide had minimal effect on fusion directed by the Sendai virus glycoproteins. To explore the mechanism of action, the potential HR1 peptide interaction with a previously characterized fusion inhibitory peptide with a sequence from the HR2 domain (J. K. Young, R. P. Hicks, G. E. Wright, and T. G. Morrison, Virology 238:291-304, 1997) was characterized. The results demonstrated an interaction between the two peptides both functionally and directly. First, while the individual peptides each inhibit fusion, equimolar mixtures of the two peptides had minimal effect on fusion, suggesting that the two peptides form a complex preventing their interaction with a target protein. Second, an HR2 peptide covalently linked with biotin was found to bind specifically to HR1 peptide in a Western blot. The structure of the HR1 peptide was analyzed by nuclear magnetic resonance spectroscopy and found to be an alpha helix.  相似文献   

11.
Genetic, biochemical and pathological evidence support that self-assembly of amyloid-beta (Aβ) peptide into toxic aggregates is implicated as the cause of Alzheimer’s disease. An attractive therapeutic strategy for the treatment of AD is to prevent or interfere with Aβ aggregation. A systematic investigation of the effects of proline-, glycine-, arginine- and lysine- containing peptides (PGKLVYA, KKLVFFARRRRA and KKLVFFA) on the beta-amyloid aggregation was made using FTIR, circular dichroism, ANS binding, ThT binding and TEM analysis. These peptides are based on the central hydrophobic region of Aβ (residues 16–20), which is believed to be crucial in Aβ self-association. There is increasing evidence to suggest that protein aggregation, including amyloid fibril formation results from the strong self-association tendency of the partially folded intermediates. Addition of PGKLVYA and KKLVFFARRRRA resulted in increase in ANS fluorescence intensity, suggesting enhanced exposure of hydrophobic surface area. As observed by ThT and TEM analysis PGKLVYA and KKLVFFARRRRA promote non-fibrillar ensembles, while peptide KKLVFFA accelerated the fibrillization of Aβ peptide by stabilizing intermolecular interactions. Circular dichroism and FTIR data showed that PGKLVYA and KKLVFFARRRRA effectively prevented amyloid-beta (Aβ) peptide adopting the beta-sheet secondary structure correlated with fibrillogenesis. This result indicates that PGKLVYA and KKLVFFARRRRA might have triggered another mechanism of Aβ assembly.  相似文献   

12.
The Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10) on the surface of lung cells through amino acids 273–341 located in the Basic Region (BR) domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (r)BR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122–166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs) of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae) may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.  相似文献   

13.
Peptide inhibitors derived from HIV-gp41 envelope protein play a pivotal role in deciphering the molecular mechanism of HIV-cell fusion. According to accepted models, N-heptad repeat (NHR) peptides can bind two targets in an intermediate fusion conformation, thereby inhibiting progression of the fusion process. In both cases the orientation towards the endogenous intermediate conformation should be important. To test this, we anchored NHR to the cell membrane by conjugating fatty acids with increasing lengths to the N- or C-terminus of N36, as well as to two known N36 mutants; one that cannot bind C-heptad repeat (CHR) but can bind NHR (N36 MUTe,g), and the second cannot bind to either NHR or CHR (N36 MUTa,d). Importantly, the IC50 increased up to 100-fold in a lipopeptide-dependent manner. However, no preferred directionality was observed for the wild type derived lipopeptides, suggesting a planar orientation of the peptides as well as the endogenous NHR region on the cell membrane. Furthermore, based on: (i) specialized analysis of the inhibition curves, (ii) the finding that N36 conjugates reside more on the target cells that occupy the receptors, and (iii) the finding that N36 MUTe,g acts as a monomer both in its soluble form and when anchored to the cell membrane, we suggest that anchoring N36 to the cell changes the inhibitory mode from a trimer which can target both the endogenous NHR and CHR regions, to mainly monomeric lipopetides that target primarily the internal NHR. Besides shedding light on the mode of action of HIV-cell fusion, the similarity between functional regions in the envelopes of other viruses suggests a new approach for developing potent HIV-1 inhibitors.  相似文献   

14.
Increased amyloid beta (AB) peptide concentration is one of the initiating factors in the neurodegeneration process. It has been suggested that cholesterol induces the synthesis of AB peptide from amyloid precursor protein or facilitates the formation of amyloid plaque by lowering the aggregation threshold of the peptide. It is also shown that AB peptides may affect cholesterol metabolism and the synthesis of steroid hormones such as progesterone and estradiol. Pregnenolone (P) and pregnenolone sulfate (PS) are the major steroids produced from cholesterol in neural tissue. In toxicity conditions, the effect of AB peptides on P and PS levels has not yet been determined. Furthermore, it has not been clearly defined how changes in cellular P and PS levels affect neuronal cell survival. The aim of this study was to determine the effects of AB peptides on cellular changes in P and PS levels depending on the level of their main precursor, cholesterol. Cholesterol and toxic concentrations of AB fragments (AB 25–35, AB 1–40 and AB 1–42) were applied to PC-12 and SH-SY5Y cells. Changes in cellular cholesterol, P and PS levels were determined simultaneously in a dose—and time-dependent manner. The cell viability and cell death types were also evaluated. AB peptides affected both cell viability and P/PS levels. Steroid levels were altered depending on AB fragment type and the cholesterol content of the cells. Treatment with each of the AB fragments alone increased P levels by twofold. However, combined treatment with AB peptides and cholesterol increased P levels by approximately sixfold, while PS levels were increased only about 2.5 fold in both cell lines. P levels in the groups treated with AB 25–35 were higher than those in AB 1–40 and AB 1–42 groups. The cell viabilities were significantly low in the group treated by AB and cholesterol (9 mM). The effect of AB peptides on P levels might be a result of cellular self-defense. On the other hand, the rate of P increase might be playing a key role in the cell death mechanism of AB toxicity depending on cellular cholesterol levels.  相似文献   

15.

Background

The secretory proteins of Mycobacterium tuberculosis (M. tuberculosis) have been known to be involved in the virulence, pathogenesis as well as proliferation of the pathogen. Among this set, many proteins have been hypothesized to play a critical role at the genesis of the onset of infection, the primary site of which is invariably the human lung.

Methodology/Principal Findings

During our efforts to isolate potential binding partners of key secretory proteins of M. tuberculosis from a human lung protein library, we isolated peptides that strongly bound the virulence determinant protein Esat6. All peptides were less than fifty amino acids in length and the binding was confirmed by in vivo as well as in vitro studies. Curiously, we found all three binders to be unusually rich in phenylalanine, with one of the three peptides a short fragment of the human cytochrome c oxidase-3 (Cox-3). The most accessible of the three binders, named Hcl1, was shown also to bind to the Mycobacterium smegmatis (M. smegmatis) Esat6 homologue. Expression of hcl1 in M. tuberculosis H37Rv led to considerable reduction in growth. Microarray analysis showed that Hcl1 affects a host of key cellular pathways in M. tuberculosis. In a macrophage infection model, the sets expressing hcl1 were shown to clear off M. tuberculosis in much greater numbers than those infected macrophages wherein the M. tuberculosis was not expressing the peptide. Transmission electron microscopy studies of hcl1 expressing M. tuberculosis showed prominent expulsion of cellular material into the matrix, hinting at cell wall damage.

Conclusions/Significance

While the debilitating effects of Hcl1 on M. tuberculosis are unrelated and not because of the peptide''s binding to Esat6–as the latter is not an essential protein of M. tuberculosis–nonetheless, further studies with this peptide, as well as a closer inspection of the microarray data may shed important light on the suitability of such small phenylalanine-rich peptides as potential drug-like molecules against this pathogen.  相似文献   

16.

Background

Feline infectious peritonitis (FIP) is a lethal immune-mediated disease caused by feline coronavirus (FCoV). Currently, no therapy with proven efficacy is available. In searching for agents that may prove clinically effective against FCoV infection, five analogous overlapping peptides were designed and synthesized based on the putative heptad repeat 2 (HR2) sequence of the spike protein of FCoV, and the antiviral efficacy was evaluated.

Methods

Plaque reduction assay and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cytotoxicity assay were performed in this study. Peptides were selected using a plaque reduction assay to inhibit Feline coronavirus infection.

Results

The results demonstrated that peptide (FP5) at concentrations below 20 μM inhibited viral replication by up to 97%. The peptide (FP5) exhibiting the most effective antiviral effect was further combined with a known anti-viral agent, human interferon-α (IFN-α), and a significant synergistic antiviral effect was observed.

Conclusion

Our data suggest that the synthetic peptide FP5 could serve as a valuable addition to the current FIP prevention methods.  相似文献   

17.
18.
International Journal of Peptide Research and Therapeutics - Platelets have a well-established role in atherosclerosis and related diseases. Lebetins from the venom of Vipera lebetina, lacking the...  相似文献   

19.
Molecular Biology - In experiments on mouse and human cells it was demonstrated that rDNA plays an important role in epigenetic regulation of many genes. To identify and study rDNA-contacting genes...  相似文献   

20.
Abstract

A number of different energy transfer dye labeled-cassettes were synthesized using aminoacid based trifunctional linkers and coupled to the propargylamino-substituted dideoxynucleoside-5′-triphosphates (ddNTPs). These terminators were evaluated for their energy transfer efficiency and DNA sequencing potential using thermostable DNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号