首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of surface probe density on DNA hybridization   总被引:25,自引:14,他引:11       下载免费PDF全文
The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for the analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density effects may account for the observed variation in target-capture rates, which have previously been attributed to thermodynamic effects.  相似文献   

2.
The ability to immobilize DNA probes onto gold substrates at an optimum surface density is key in the development of a wide range of DNA biosensors. We present a method to accurately control probe DNA surface density by the simultaneous co-immobilization of thiol modified probes and mercaptohexanol. Probe surface density is controlled by the thiol molar ratio in solution, with a linear relationship between thiol molar ratio and probe density spanning (1-9) x10(12)/cm2. The probe surface density per microscopic surface area was determined using chronocoulometry, and a detailed analysis of the method presented. Using this sample preparation method, the effect of probe density and hybridization on the charge transfer resistance with the negatively charged ferri/ferrocyanide redox couple was determined. Above a threshold probe surface density of 2.5 x 10(12)/cm2, electrostatic repulsion from the negatively charged DNA modulates the charge transfer resistance, allowing hybridization to be detected. Below the threshold density no change in charge transfer resistance with probe density or with hybridization occurs. The probe surface density was optimized to obtain the maximum percentage change in charge transfer resistance with hybridization.  相似文献   

3.
In situ hybridization of complementary DNA (cDNA) synthesized from total cytoplasmic polyadenylated RNA isolated from Chinese hamster cells was employed to investigate the distribution of messenger specifying sequences on mammalian chromosomes. The kinetics of cDNA-nuclear DNA annealing indicate that about 85% of the cDNA represents sequences which are transcribed from non-repetitive DNA sequences. When cDNA is hybridized back to its template RNA, the reaction kinetics show that more than 60% of the poly(A) RNA is at least 104 times more complex than rabbit globin mRNA. In situ hybridization of cDNA to Chinese hamster cells fixed on slides shows no significant clustering of silver grains on interphase nuclei. On metaphase chromosomes the majority of silver grains are localized in euchromatic areas. It appears that all euchromatic segments have similar grain densities. Chromosomes 1 and 2, which have relatively little heterochromatin, do not have a higher grain density than the other chromosomes. However, the Y chromosome, which is entirely heterochromatic, contains only about 1/3 the grain density of the chromosomes 1 or 2. — When the cDNA, which anneals only to the high abundancy class of poly(A) RNA was fractionated and hybridized in situ to Chinese hamster chromosomes, the distribution of silver grains is localized in the euchromatic areas. The Y chromosome and the heterochromatic arm of the X chromosome contain less grains; telomeres of some autosomes have higher grain densities. The oligo-(dT) primer in cDNA did not affect the results of this study since no grains are found when 3H-poly(dT) was used as probe for in situ hybridization. The majority (>90%) of the grains could be blocked by competition with excess repetitive DNA in the hybridization reaction, indicating that the in situ hybridization involved predominantly repetitive sequences.  相似文献   

4.
We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2]2+, where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2]2+ acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2]2+ were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10−12 to 1 × 10−6 M with a detection limit of 1.99 × 10−13 M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied.  相似文献   

5.
Quantitative information about the nucleic acids hybridization reaction on microarrays is fundamental to designing optimized assays for molecular diagnostics. This study presents the kinetic, equilibrium, and thermodynamic analyses of DNA hybridization in a microarray system designed for fast molecular testing of pathogenic bacteria. Our microarray setup uses a porous, nylon membrane for probe immobilization and flowthrough incubation. The Langmuir model was used to determine the reaction rate constants of hybridization with antisense targets specific to Staphylococcus epidermidis and Staphylococcus aureus strains. The kinetic analysis revealed a sequence-dependent reaction rate, with association rate constants on the order of 105 M−1 s−1 and dissociation rate constants of 10−4 s−1. We found that by increasing the probe surface density from 1011 to 1012 molecules/cm2, the hybridization rate and efficiency are suppressed while the melting temperature of the DNA duplex increases. The maximum fraction of hybridized capture probes at equilibrium did not exceed 50% for hybridization with antisense sequences and was below 6% for hybridization with long targets obtained from PCR. The van’t Hoff analysis of the temperature denaturation data showed that the DNA hybridization in our porous, flowthrough microarray is thermodynamically less favorable than the hybridization of the same sequences in solution.  相似文献   

6.
A mathematical model based on receptor-ligand interactions at a cell surface has been modified and further developed to represent heterogeneous DNA-DNA hybridization on a solid surface. The immobilized DNA molecules with known sequences are called probes, and the DNA molecules in solution with unknown sequences are called targets in this model. Capture of the perfectly complementary target is modeled as a combined reaction-diffusion limited irreversible reaction. In the model, there are two different mechanisms by which targets can hybridize with the complementary probes: direct hybridization from the solution and hybridization by molecules that adsorb nonspecifically and then surface diffuse to the probe. The results indicate that nonspecific adsorption of single-stranded DNA on the surface and subsequent two-dimensional diffusion can significantly enhance the overall reaction rate. Heterogeneous hybridization depends strongly on the rate constants for DNA adsorption/desorption in the non-probe-covered regions of the surface, the two-dimensional (2D) diffusion coefficient, and the size of probes and targets. The model shows that the overall kinetics of DNA hybridization to DNA on a solid support may be an extremely efficient process for physically realistic 2D diffusion coefficients, target concentrations, and surface probe densities. The implication for design and operation of a DNA hybridization surface is that there is an optimal surface probe density when 2D diffusion occurs; values above that optimum do not increase the capture rate. Our model predicts capture rates in agreement with those from recent experimental literature. The results of our analysis predict that several things can be done to improve heterogeneous hybridization: 1) the solution phase target molecules should be about 100 bases or less in size to speed solution-phase and surface diffusion; 2) conditions should be created such that reversible adsorption and two-dimensional diffusion occur in the surface regions between DNA probe molecules; 3) provided that 2) is satisfied, one can achieve results with a sparse probe coverage that are equal to or better than those obtained with a surface totally covered with DNA probes.  相似文献   

7.
The design of microarrays is currently based on studies focusing on DNA hybridization reaction in bulk solution. However, the presence of a surface to which the probe strand is attached can make the solution‐based approximations invalid, resulting in sub‐optimum hybridization conditions. To determine the effect of surfaces on DNA duplex formation, the authors studied the dependence of DNA melting temperature (Tm) on target concentration. An automated system was developed to capture the melting profiles of a 25‐mer perfect‐match probe–target pair initially hybridized at 23°C. Target concentrations ranged from 0.0165 to 15 nM with different probe amounts (0.03–0.82 pmol on a surface area of 1018 Å2), a constant probe density (5 × 1012 molecules/cm2) and spacer length (15 dT). The authors found that Tm for duplexes anchored to a surface is lower than in‐solution, and this difference increases with increasing target concentration. In a representative set, a target concentration increase from 0.5 to 15 nM with 0.82 pmol of probe on the surface resulted in a Tm decrease of 6°C when compared with a 4°C increase in solution. At very low target concentrations, a multi‐melting process was observed in low temperature domains of the curves. This was attributed to the presence of truncated or mismatch probes. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
A novel label-free biosensor concept based on surface plasmon-enhanced diffraction by micro- patterned interfaces was applied to the study of hybridization reactions of target DNA oligonucleotides (15mers and 75mers) from solution to probe DNA oligonucleotides attached via streptavidin to the sensor surface. The self-referencing and quadratic signal amplification mechanism of the sensor allowed highly sensitive detection of the hybridization process. Association and dissociation processes of DNA targets could be recorded in real time and used for the quantification of their binding affinities, which differ considerably with a single base pair mismatch. An equilibrium titration approach was also applied in order to obtain the binding affinities for 15mer targets, yielding similar affinity values. The hybridization efficiencies were found to be higher for the 15mers than for the 75mers, although the latter contained the same recognition sequences. The hybridization efficiency was shown to depend on the probe density and reached nearly 100% for the 15mer fully complementary targets at a probe density of ~1.2 × 1012 molecules/cm2. Using the assay as an end-point determination method, the lowest detectable coverage of a 15mer oligonucleotide was at least ~1.1 × 1011 molecules/cm2. The diffraction sensing concept offers a completely novel way to integrate a reference channel in large-scale, label-free screening applications, to improve the stability and to enhance the sensitivity of microarray read-out systems.  相似文献   

9.
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes − 2.3 kcal mol 1 to − 0.9 kcal mol 1 (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of + 1.3 kcal mol 1. Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.  相似文献   

10.

Background  

DNA microarrays contain thousands of different probe sequences represented on their surface. These are designed in such a way that potential cross-hybridization reactions with non-target sequences are minimized. However, given the large number of probes, the occurrence of cross hybridization events cannot be excluded. This problem can dramatically affect the data quality and cause false positive/false negative results.  相似文献   

11.
An electrochemical biosensor was developed for Hg2+ determination based on DNA hybridization. In the presence of Hg2+, the target and probe DNAs with thymine–thymine (T–T) mismatches could hybridize by forming T–Hg2+–T complex. This induced DNA hybridization led to the decrease in reduction peak currents of ethyl green (EG) as electroactive label, which could be used for determination of Hg2+. The difference in the value of the peak currents of EG before and after DNA hybridization (ΔI) was linear with the concentration of Hg2+ in the range of 9.0 × 10−11–1.0 × 10−9 M. The detection limit was 3.08 × 10−11 M.  相似文献   

12.
13.
A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques.  相似文献   

14.
Powdery mildew of grapevines is difficult to assess visually at the weighbridge, particularly in large consignments of machine-harvested fruit. To facilitate accurate methods for the detection and quantification of the disease in grape samples obtained from both the vineyard and winery, we developed a DNA probe for the pathogen Erysiphe necator. The E. necator-specific 450 bp DNA fragment pEnA1, targets highly repetitive sequences and was isolated from a partial genomic library. In screening for species specificity, clone pEnA1 was used in slot-blot hybridization and detected E. necator DNA from grapes and resultant must and juice, but not from clarified juice and wine. The detection threshold was approximately 50 pg ofE. necator DNA per 100 ng total DNA of grape sample and was equivalent to 1–5 % of a grape bunch visually affected by powdery mildew. Disease severity, expressed as the percentage of surface area of a bunch with powdery mildew, and E. necator DNA content were highly correlated, r2 = 0.955, P < 0.001. The DNA-based hybridization assay has the potential to predict the severity of powdery mildew in grape samples from the vineyard and in must and juice samples at the winery. The DNA sequence of clone pEnA1 was used to design species-specific primers, the results maintaining the same specificity patterns observed in the initial hybridization assays. The PCR-based assay was sensitive enough to detect approximately 1 pg DNA, being equivalent to 1 conidium per sample. This is the first report to date of the detection of all known phenetic groups of E. necator DNA and of the quantification of DNA from grape samples at the winery. Accurate information on the extent of powdery mildew contamination of grape lots would enable wineries to make more informed decisions about the use of fruit and must.  相似文献   

15.
A localized surface plasmon resonance immunoassay has been developed to determine prolactin hormone in human serum samples. Gold nanoparticles were synthesized, and the probe was prepared by electrostatic adsorption of antibody on the surfaces of gold nanoparticles. The pH and the antibody-to-gold nanoparticle ratio, as the factors affecting the probe functions, were optimized. The constructed nanobiosensor was characterized by dynamic light scattering. The sensor was applied for the determination of prolactin antigen concentration based on the amount of localized surface plasmon resonance peak shift. A linear dynamic range of 1–40 ng ml−1, a detection limit of 0.8 ng ml−1, and sensitivity of 10 pg ml−1 were obtained. Finally, the nanobiosensor was applied for the determination of prolactin in human control serum sample.  相似文献   

16.
DNA biosensors, especially those based upon detection of the intrinsic negative charge of target DNA, can be greatly improved by the use of uncharged peptide nucleic acid (PNA) probes. Hybridization causes an increased electrostatic barrier for the negatively charged ferri/ferrocyanide redox couple, resulting in an increase in charge transfer resistance R(ct) that is measured using electrochemical impedance spectroscopy. We report on the optimization of PNA probe surface density by the simultaneous co-immobilization of thiol-modified probes and mercaptohexanol, with the PNA surface density controlled by the thiol mole ratio in solution. Maximum R(ct) change upon hybridization is obtained with 10% PNA mole fraction. The effect of the measurement buffer ionic strength is investigated. The electrostatic barrier for charge transfer to the ferri/ferrocyanide redox couple is approximately independent of ionic strength with PNA probes, but greatly increases with decreasing ionic strength, after hybridization with target DNA. This significantly enhances the R(ct) change upon hybridization. The optimization of PNA surface density and measurement buffer ionic strength leads to a 385-fold increase in R(ct) upon hybridization, a factor of 100 larger than previously reported results using either PNA or DNA probes.  相似文献   

17.
Two AT-rich satellite DNAs are present in the genome of Glyptotendipes barbipes. The two satellites have densities of 1.680 g/cm3 (=21% GC) and of 1.673 g/cm3 (=13% GC) in neutral CsCl-density gradients. The main band DNA has a density of 1.691 g/cm3 (=32% GC). This value is in agreement with the 33% GC-content of G. barbipes DNA calculated from thermal denaturation (TM=83° C). — In brain DNA as well as in salivary gland DNA the two satellite sequences together comprise 12–15% of the total G. barbipes DNA. Comparisons of the density profiles of DNA extracted from polytene and non-polytene larval tissue gave no hints for underreplication of the satellite DNAs during polytenization. — The two satellite DNAs have been isolated from total DNA by Hoechst 33258-CsCl density centrifugation and then localized in the polytene salivary gland chromosomes by in situ hybridization. Both satellite sequences hybridize to all heterochromatic centromere bands of all four chromosomes of G. barbipes. Satellite I (1.673 g/cm3) hybridizes mainly with the middle of the heterochromatin, satellite II (1.680 g/cm3) hybridizes with two bands at the margin of the heterochromatin. In situ hybridization with polytene chromosomes of Chironomus thummi revealed the presence of G. barbipes satellite sequences also in the Ch. thummi genome at various locations, mainly the centromere regions.  相似文献   

18.
In this article we introduce a strategy of preanncaling labeled auxiliary oligonucleotides to single-stranded target DNA, prior to hybridization of the DNA target to oligonucleotide arrays (genosensors) formed on glass slides for the purpose of mutation analysis. Human genomic DNA samples from normal individuals and cystic fibrosis (CF) patients (including homozygous δF508 and heterozygous δF508/wild type (wt) in the region examined) were used. A PCR fragment of length 138 bp (wt) or 135 bp (mutant) was produced from exon l0 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, using a new pair of polymerase chain reaction (PCR) primers. This fragment contains four of the most frequent mutation sites causing the disease (Q493X, δI507, δF508, and V520F). Each of these mutations was tested using a pair of nonamer (9-mer) probes covalently attached to glass slides, representing the normal (wt) and the mutant allcles. Single-stranded target DNA was isolated from the PCR fragment using one PCR primer labeled with biotin and a streptavidin minicolumn to capture the biotin-labeled strand. Prior to hybridization to the 9-mer array on a glass slide, the unlabeled target strand was preannealed with one, three, or four auxiliary oligonucleotides, at least one being labeled with32P. As observed previously in several laboratories, the discrimination between normal (wt) and mutant alleles at each site using oligonucleotide array hybridization ranged from very good to poor, depending on the number and location of mismatches between probe and target. Terminal mismatches along the probe were difficult to discriminate, internal mismatches were more easily discriminated, and multiple mismatches were very well discriminated. An exceptionally intense hybridization signal was obtained with a 9-mer probe that hybridized contiguously (in tandem) with one auxiliary oligonucleotide preannealed to the target DNA. The increased stability is apparently caused by strong base slacking interactions between the “capture probe” and the auxiliary oligonucleotide. The presence of the δF508 mutation was delected with this system, including discrimination between homozygous and heterozygous conditions. Base mismatch discrimination using the arrayed 9-mcr probes was improved by increasing the temperature of hybridization from 15 to 25‡C. Auxiliary oligonucleotides, preannealed to the single-stranded template, may serve several purposes to enable a more robust genosensor-based DNA sequence analysis:
A convenient means of introducing label into the target DNA molecule.
Disruption of interfering short-range secondary structure in the region of analysis.
Covering up of redundant binding sites in the target strand (i.e., where a given probe has more than one complement within the target).
Tandem hybridization with the capture probe (providing contiguous stacking) as a means for achieving efficient mismatch discrimination at the terminal position of the capture probe (adjacent to the auxiliary oligonucleotide).
By use of multiple auxiliary oligonucleolides. all of the above benefits can be derived simultaneously.  相似文献   

19.
Aims: We developed improved methods for DNA‐based fluorescence in situ hybridization (FISH) for rapid detection of Candida spp. and Candida albicans via flow cytometry. Methods and Results: Two previously reported C. albicans‐targeted DNA probes were evaluated against whole cells of C. albicans and related Candida species using a rapid, high‐temperature hybridization protocol. One probe (CalB2208) was shown for the first time to be suitable as a FISH probe. Although cell labelling for both probes was relatively bright, we were able to substantially improve our results by altering fixation and hybridization conditions. For fixation, a 60 : 40 mixture of 10% buffered formalin and ethanol was most effective. Probe intensity was improved as much as ten‐fold through the use of unlabelled helper probes, and buffer containing 0·9 mol l?1 NaCl plus 10% formamide yielded the best hybridizations for both probe/helper cocktails. Although optimal labelling occurred with longer hybridizations, we found that C. albicans could be completely differentiated from the nontarget yeast Rhodotorula glutinis after only 15 min using the brightest probe (Calb‐1249) and that a formal washing step was not required. Specificities of probe/helper cocktails under optimal conditions were determined using a panel of target and nontarget cell types, including four strains of Candida dubliniensis. Calb‐1249 cross‐reacted slightly with Candida parapsilosis and strongly with both Candida tropicalis and C. dubliniensis. In contrast, we found that CalB2208 was exclusive for C. albicans. The molecular basis of this specificity was confirmed by DNA sequencing. Conclusions: We describe DNA probe‐based approaches for rapid and bright labelling of Candida spp. and for specific labelling of C. albicans without cross‐reaction with C. dubliniensis. Our work improves upon previously described methods. Significance and Impact of the Study: The methods described here for rapid FISH‐based detection of Candida spp. may have applications in both clinical and food microbiology.  相似文献   

20.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号