首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The X-ray crystal structure of Shewanella oneidensis OmcA, an extracellular decaheme cytochrome involved in mineral reduction, was solved to a resolution of 2.7 Å. The four OmcA molecules in the asymmetric unit are arranged so the minimum distance between heme 5 on adjacent OmcA monomers is 9 Å, indicative of a transient OmcA dimer capable of intermolecular electron transfer. A previously identified hematite binding motif was identified near heme 10, forming a hydroxylated surface that would bring a heme 10 electron egress site to ∼10 Å of a mineral surface.  相似文献   

2.
The thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus. We have characterized the conformational properties of TDH by small-angle X-ray scattering (SAXS), ultracentrifugation and transmission electron microscopy. Sedimentation equilibrium and velocity studies revealed that the protein is tetrameric in aqueous solvents. The Guinier plot derived from SAXS data provided a radius of gyration of 29.0 Å. The elongated pattern with a shoulder of a pair distance distribution function derived from SAXS data suggested the presence of molecules with an anisotropic shape having a maximum diameter of 98 Å. Electron microscopic image analysis of the negatively stained TDH oligomer showed the presence of C4 symmetric particles with edge and diagonal lengths of 65 Å and 80 Å, respectively. Shape reconstruction was carried out by ab initio calculations using the SAXS data with a C4 symmetric approximation. These results suggested that the tetrameric TDH assumes an oblate structure. The hydrodynamic parameters predicted from the ab initio model differed slightly from the experimental values, suggesting the presence of flexible segments.  相似文献   

3.
Structural changes of barnase during folding were investigated using time-resolved small-angle X-ray scattering (SAXS). The folding of barnase involves a burst-phase intermediate, sometimes designated as the denatured state under physiological conditions, Dphys, and a second hidden intermediate. Equilibrium SAXS measurements showed that the radius of gyration (Rg) of the guanidine unfolded state (U) is 26.9 ± 0.7 Å, which remains largely constant over a wide denaturant concentration range. Time-resolved SAXS measurements showed that the Rg value extrapolated from kinetic Rg data to time zero, Rg,0, is 24.3 ± 0.1 Å, which is smaller than that of U but which is expanded from that of folding intermediates of other proteins with similar chain lengths (19 Å). After the burst-phase change, a single-exponential reduction in Rg2 was observed, which corresponds to the formation of the native state for the major component containing the native trans proline isomer. We estimated Rg of the minor component of Dphys containing the non-native cis proline isomer (Dphys,cis) to be 25.7 ± 0.6 Å. Moreover, Rg of the major component of Dphys containing the native proline isomer (Dphys,tra) was estimated as 23.9 ± 0.2 Å based on Rg,0. Consequently, both components of the burst-phase intermediate of barnase (Dphys,tra and Dphys,cis) are still largely expanded. It was inferred that Dphys possesses the N-terminal helix and the center of the β-sheet formed independently and that the formation of the remainder of the protein occurs in the slower phase.  相似文献   

4.
Prokaryotic thermophiles supply stable human protein homologs for structural biology; yet, eukaryotic thermophiles would provide more similar macromolecules plus those missing in microbes. Alvinella pompejana is a deep-sea hydrothermal-vent worm that has been found in temperatures averaging as high as 68 °C, with spikes up to 84 °C. Here, we used Cu,Zn superoxide dismutase (SOD) to test if this eukaryotic thermophile can provide insights into macromolecular mechanisms and stability by supplying better stable mammalian homologs for structural biology and other biophysical characterizations than those from prokaryotic thermophiles. Identification, cloning, characterization, X-ray scattering (small-angle X-ray scattering, SAXS), and crystal structure determinations show that A. pompejana SOD (ApSOD) is superstable, homologous, and informative. SAXS solution analyses identify the human-like ApSOD dimer. The crystal structure shows the active site at 0.99 Å resolution plus anchoring interaction motifs in loops and termini accounting for enhanced stability of ApSOD versus human SOD. Such stabilizing features may reduce movements that promote inappropriate intermolecular interactions, such as amyloid-like filaments found in SOD mutants causing the neurodegenerative disease familial amyotrophic lateral sclerosis or Lou Gehrig's disease. ApSOD further provides the structure of a long-sought SOD product complex at 1.35 Å resolution, suggesting a unified inner-sphere mechanism for catalysis involving metal ion movement. Notably, this proposed mechanism resolves apparent paradoxes regarding electron transfer. These results extend knowledge of SOD stability and catalysis and suggest that the eukaryote A. pompejana provides macromolecules highly similar to those from humans, but with enhanced stability more suitable for scientific and medical applications.  相似文献   

5.
Previously reported crystal structures of free and DNA-bound dimers of λ Cro differ strongly (about 4 Å backbone rmsd), suggesting both flexibility of the dimer interface and induced-fit protein structure changes caused by sequence-specific DNA binding. Here, we present two crystal structures, in space groups P3221 and C2 at 1.35 and 1.40 Å resolution, respectively, of a variant of λ Cro with three mutations in its recognition helix (Q27P/A29S/K32Q, or PSQ for short). One dimer structure (P3221; PSQ form 1) resembles the DNA-bound wild-type Cro dimer (1.0 Å backbone rmsd), while the other (C2; PSQ form 2) resembles neither unbound (3.6 Å) nor bound (2.4 Å) wild-type Cro. Both PSQ form 2 and unbound wild-type dimer crystals have a similar interdimer β-sheet interaction between the β1 strands at the edges of the dimer. In the former, an infinite, open β-structure along one crystal axis results, while in the latter, a closed tetrameric barrel is formed. Neither the DNA-bound wild-type structure nor PSQ form 1 contains these interdimer interactions. We propose that β-sheet superstructures resulting from crystal contact interactions distort Cro dimers from their preferred solution conformation, which actually resembles the DNA-bound structure. These results highlight the remarkable flexibility of λ Cro but also suggest that sequence-specific DNA binding may not induce large changes in the protein structure.  相似文献   

6.
Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 × 100 × 100 μm, belonged to space group P43212, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 Å resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C380, revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.  相似文献   

7.
Clostridium difficile is a nosocomial bacterial pathogen causing antibiotic-associated diarrhea and fatal pseudomembranous colitis. Key virulence factors are toxin A and toxin B (TcdB), two highly related toxins that are members of the large clostridial toxin family. These large multifunctional proteins disrupt cell function using a glucosyltransferase domain that is translocated into the cytosol after vesicular internalization of intact holotoxin. Although substantial information about the biochemical mechanisms of intoxication exists, research has been hampered by limited structural information, particularly of intact holotoxin. Here, we used small-angle X-ray scattering (SAXS) methods to obtain an ab initio low-resolution structure of native TcdB, which demonstrated that this molecule is monomeric in solution and possesses a highly asymmetric shape with a maximum dimension of ∼ 275 Å. Combining this SAXS information with crystallographic or modeled structures of individual functional domains of TcdB reveals for the first time that the three-dimensional structure of TcdB is organized into four distinct structural domains. Structures of the N-terminal glucosyltransferase, the cysteine protease, and the C-terminal repeat region can be aligned within three domains of the SAXS envelope. A fourth domain, predicted to be involved in the translocation of the glucosyltransferase, appears as a large solvent-exposed protrusion. Knowledge of the shapes and relative orientations of toxin domains provides new insight into defining functional domain boundaries and provides a framework for understanding how potential intra-domain interactions enable conformational changes to propagate between domains to facilitate intoxication processes.  相似文献   

8.
The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3 Å and 1.8 Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition.  相似文献   

9.
Sulfide:quinone oxidoreductase from the acidophilic and chemolithotrophic bacterium Acidithiobacillus ferrooxidans was expressed in Escherichia coli and crystallized, and its X-ray molecular structure was determined to 2.3 Å resolution for native unbound protein in space group P42212 . The decylubiquinone-bound structure and the Cys160Ala variant structure were subsequently determined to 2.3 Å and 2.05 Å resolutions, respectively, in space group P6222  . The enzymatic reaction catalyzed by sulfide:quinone oxidoreductase includes the oxidation of sulfide compounds H2S, HS, and S2− to soluble polysulfide chains or to elemental sulfur in the form of octasulfur rings; these oxidations are coupled to the reduction of ubiquinone or menaquinone. The enzyme comprises two tandem Rossmann fold domains and a flexible C-terminal domain encompassing two amphipathic helices that are thought to provide for membrane anchoring. The second amphipathic helix unwinds and changes its orientation in the hexagonal crystal form. The protein forms a dimer that could be inserted into the membrane to a depth of approximately 20 Å. It has an endogenous flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the N-terminal domain. Several wide channels connect the FAD cofactor to the exterior of the protein molecule; some of the channels would provide access to the membrane. The ubiquinone molecule is bound in one of these channels; its benzoquinone ring is stacked between the aromatic rings of two conserved Phe residues, and it closely approaches the isoalloxazine moiety of the FAD cofactor. Two active-site cysteine residues situated on the re side of the FAD cofactor form a branched polysulfide bridge. Cys356 disulfide acts as a nucleophile that attacks the C4A atom of the FAD cofactor in electron transfer reaction. The third essential cysteine Cys128 is not modified in these structures; its role is likely confined to the release of the polysulfur product.  相似文献   

10.
The LYS49-PLA2s myotoxins have attracted attention as models for the induction of myonecrosis by a catalytically independent mechanism of action. Structural studies and biological activities have demonstrated that the myotoxic activity of LYS49-PLA2 is independent of the catalytic activity site. The myotoxic effect is conventionally thought to be to due to the C-terminal region 111-121, which plays an effective role in membrane damage. In the present study, Bn IV LYS49-PLA2 was isolated from Bothrops neuwiedi snake venom in complex with myristic acid (CH3(CH2)12COOH) and its overall structure was refined at 2.2 Å resolution. The Bn IV crystals belong to monoclinic space group P21 and contain a dimer in the asymmetric unit. The unit cell parameters are a = 38.8, b = 70.4, c = 44.0 Å. The biological assembly is a “conventional dimer” and the results confirm that dimer formation is not relevant to the myotoxic activity. Electron density map analysis of the Bn IV structure shows clearly the presence of myristic acid in catalytic site. The relevant structural features for myotoxic activity are located in the C-terminal region and the Bn IV C-terminal residues NKKYRY are a probable heparin binding domain. These findings indicate that the mechanism of interaction between Bn IV and muscle cell membranes is through some kind of cell signal transduction mediated by heparin complexes.  相似文献   

11.
Because of their cell surface locations, the outer membrane c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 have been suggested to be the terminal reductases for a range of redox-reactive metals that form poorly soluble solids or that do not readily cross the outer membrane. In this work, we determined the kinetics of reduction of a series of Fe(III) complexes with citrate, nitrilotriacetic acid (NTA), and EDTA by MtrC and OmcA using a stopped-flow technique in combination with theoretical computation methods. Stopped-flow kinetic data showed that the reaction proceeded in two stages, a fast stage that was completed in less than 1 s, followed by a second, relatively slower stage. For a given complex, electron transfer by MtrC was faster than that by OmcA. For a given cytochrome, the reaction was completed in the order Fe-EDTA > Fe-NTA > Fe-citrate. The kinetic data could be modeled by two parallel second-order bimolecular redox reactions with second-order rate constants ranging from 0.872 μM−1 s−1 for the reaction between MtrC and the Fe-EDTA complex to 0.012 μM−1 s−1 for the reaction between OmcA and Fe-citrate. The biphasic reaction kinetics was attributed to redox potential differences among the heme groups or redox site heterogeneity within the cytochromes. The results of redox potential and reorganization energy calculations showed that the reaction rate was influenced mostly by the relatively large reorganization energy. The results demonstrate that ligand complexation plays an important role in microbial dissimilatory reduction and mineral transformation of iron, as well as other redox-sensitive metal species in nature.  相似文献   

12.
Aqueous dispersions of 50 mM dimyristoylphosphatidylglycerol (DMPG) in the presence of increasing salt concentrations (2-500 mM NaCl) were studied by small angle X-ray scattering (SAXS) and optical microscopy between 15 and 35 °C. SAXS data show the presence of a broad peak around q ∼ 0.12 Å− 1 at all temperatures and conditions, arising from the electron density contrasts within the bilayer. Up to 100 mM NaCl, this broad peak is the main feature observed in the gel and fluid phases. At higher ionic strength (250-500 mM NaCl), an incipient lamellar repeat distance around d = 90-100 Å is detected superimposed to the bilayer form factor. The data with high salt were fit and showed that the emergent Bragg peak is due to loose multilamellar structures, with the local order vanishing after ∼ 4d. Optical microscopy revealed that up to 20 mM NaCl, DMPG is arranged in submicroscopic vesicles. Giant (loose) multilamellar vesicles (MLVs) start to appear with 50 mM NaCl, although most lipids are arranged in small vesicles. As the ionic strength increases, more and denser MLVs are seen, up to 500 mM NaCl, when MLVs are the prevailing structure. The DLVO theory could account for the experimentally found interbilayer distances.  相似文献   

13.
The iron-reducing bacterium Shewanella oneidensis MR-1 has the capacity to contribute to iron cycling over the long term by respiring on crystalline iron oxides such as hematite when poorly crystalline phases are depleted. The ability of outer membrane cytochromes OmcA and MtrC of MR-1 to bind to and transfer electrons to hematite has led to the suggestion that they function as terminal reductases when this mineral is used as a respiratory substrate. Differences in their redox behavior and hematite-binding properties, however, indicate that they play different roles in the electron transfer reaction. Here, we investigated how these differences in cytochrome behavior with respect to hematite affected biofilm development when the mineral served as terminal electron acceptor (TEA). Upon attachment to hematite, cells of the wild-type (WT) strain as well as those of a ΔomcA mutant but not those of a ΔmtrC mutant replicated and accumulated on the mineral surface. The results indicate that MtrC but not OmcA is required for growth when this mineral serves as TEA. While an OmcA deficiency did not impede cell replication and accumulation on hematite prior to achievement of a maximum surface cell density comparable to that established by WT cells, OmcA was required for efficient electron transfer and cell attachment to hematite once maximum surface cell density was achieved. OmcA may therefore play a role in overcoming barriers to electron transfer and cell attachment to hematite imposed by reductive dissolution of the mineral surface from cell respiration associated with achievement of high surface cell densities.  相似文献   

14.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

15.
Hideyuki Adachi  Isao Enami  Nobuo Kamiya 《BBA》2009,1787(2):121-128
Crystal structure of photosystem II (PSII) has been reported from prokaryotic cyanobacteria but not from any eukaryotes. In the present study, we improved the purification procedure of PSII dimers from an acidophilic, thermophilic red alga Cyanidium caldarium, and crystallized them in two forms under different crystallization conditions. One had a space group of P2221 with unit cell constants of a = 146.8 Å, b = 176.9 Å, and c = 353.7 Å, and the other one had a space group of P212121 with unit cell constants of a = 209.2 Å, b = 237.5 Å, and c = 299.8 Å. The unit cell constants of both crystals and the space group of the first-type crystals are different from those of cyanobacterial crystals, which may reflect the structural differences between the red algal and cyanobacterial PSII, as the former contains a fourth extrinsic protein of 20 kDa. X-ray diffraction data were collected and processed to a 3.8 Å resolution with the first type crystal. For the second type crystal, a post-crystallization treatment of dehydration was employed to improve the resolution, resulting in a diffraction data of 3.5 Å resolution. Analysis of this type of crystal revealed that there are 2 PSII dimers in each asymmetric unit, giving rise to 16 PSII monomers in each unit cell, which contrasts to 4 dimers per unit cell in cyanobacterial crystals. The molecular packing of PSII within the unit cell was constructed with the molecular replacement method and compared with that of the cyanobacterial crystals.  相似文献   

16.
Cathepsin K is the major collagenolytic enzyme produced by bone-resorbing osteoclasts. We showed earlier that the unique triple-helical collagen-degrading activity of cathepsin K depends on the formation of complexes with bone-or cartilage-resident glycosaminoglycans, such as chondroitin 4-sulfate (C4-S). Here, we describe the crystal structure of a 1:n complex of cathepsin K:C4-S inhibited by E64 at a resolution of 1.8 Å. The overall structure reveals an unusual “beads-on-a-string”-like organization. Multiple cathepsin K molecules bind specifically to a single cosine curve-shaped strand of C4-S with each cathepsin K molecule interacting with three disaccharide residues of C4-S. One of the more important sets of interactions comes from a single turn of helix close to the N terminus of the proteinase containing a basic amino acid triplet (Arg8-Lys9-Lys10) that forms multiple hydrogen bonds either to the caboxylate or to the 4-sulfate groups of C4-S. Altogether, the binding sites with C4-S are located in the R-domain of cathepsin K and are distant from its active site. This explains why the general proteolytic activity of cathepsin K is not affected by the binding of chondroitin sulfate. Biochemical analyses of cathepsin K and C4-S mixtures support the presence of a 1:n complex in solution; a dissociation constant, Kd, of about 10 nM was determined for the interaction between cathepsin K and C4-S.  相似文献   

17.
α-L-Rhamnosidase (EC 3.2.1.40) catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides. Bacillus sp. GL1 α-L-rhamnosidase (RhaB), a member of glycoside hydrolase (GH) family 78, is responsible for degrading the bacterial biofilm gellan, and also functions as a debittering agent for citrus fruit in the food and beverage industries through the release of rhamnose from plant glycoside, naringin. The X-ray crystal structure of RhaB was determined by single-wavelength anomalous diffraction using a selenomethionine derivative and refined at 1.9 Å resolution with a final R-factor of 18.2%. As is seen in the homodimeric form of the active enzyme, the structure of RhaB in crystal packing is a homodimer containing 1908 amino acids (residues 3-956), 43 glycerol molecules, four calcium ions, and 1755 water molecules. The overall structure consists of five domains, four of which are β-sandwich structures designated as domains N, D1, D2, and C, and an (α/α)6-barrel structure designated as domain A. Structural comparison by DALI showed that RhaB shares its highest level of structural similarity with chitobiose phosphorylase (Z score of 25.3). The structure of RhaB in complex with the reaction product rhamnose (inhibitor constant, Ki = 1.8 mM) was also determined and refined at 2.1 Å with a final R-factor of 19.5%. Rhamnose is bound to the deep cleft of the (α/α)6-barrel domain, as is seen in the clan-L GHs. Several negatively charged residues, such as Asp567, Glu572, Asp579, and Glu841, conserved in GH family 78 enzymes, interact with rhamnose, and RhaB mutants of these residues have drastically reduced enzyme activity, indicating that the residues are crucial for enzyme catalysis and/or substrate binding. To our knowledge, this is the first report on the determination of the crystal structure of α-L-rhamnosidase and identification of its clan-L (α/α)6-barrel as a catalytic domain.  相似文献   

18.
Dissimilatory iron-reducing bacteria transfer electrons to solid ferric respiratory electron acceptors. Outer-membrane cytochromes expressed by these organisms are of interest in both microbial fuel cells and biofuel cells. We use optical waveguide lightmode spectroscopy (OWLS) to show that OmcA, an 85 kDa decaheme outer-membrane c-type cytochrome from Shewanella oneidensis MR-1, adsorbs to isostructural Al2O3 and Fe2O3 in similar amounts. Adsorption is ionic-strength and pH dependent (peak adsorption at pH 6.5-7.0). The thickness of the OmcA layer on Al2O3 at pH 7.0 [5.8 ± 1.1 (2σ) nm] from OWLS is similar, within error, to that observed using atomic force microscopy (4.8 ± 2 nm). The highest adsorption density observed was 334 ng cm−2 (2.4 × 1012 molecules cm−2), corresponding to a monolayer of 9.9 nm diameter spheres or submonolayer coverage by smaller molecules. Direct electrochemistry of OmcA on Fe2O3 electrodes was observed using cyclic voltammetry, with cathodic peak potentials of −380 to −320 mV versus Ag/AgCl. Variations in the cathodic peak positions are speculatively attributed to redox-linked conformation change or changes in molecular orientation. OmcA can exchange electrons with ITO electrodes at higher current densities than with Fe2O3. Overall, OmcA can bind to and exchange electrons with several oxides, and thus its utility in fuel cells is not restricted to Fe2O3.  相似文献   

19.
A novel mixture cations templated indium phosphates, Li(C2N2H10)[In2(HPO4)3(PO4)], has been synthesized under mild hydrothermal conditions and characterized by elemental analysis and FT-IR spectrum. The crystal structure of title compound was determined by single crystal X-ray diffraction data. It belongs to monoclinic, space group P2/n with unit cell dimension a = 9.4692(13) Å, b = 9.1622(12) Å, c = 9.7063(14) Å, β = 117.5620(10)°. Its structure is characterized as a three-dimensional open-framework with 8-membered ring channels along a axis, where the inorganic lithium cation and organic double-protonated ethylenediamine cation are located and interact with the framework both electrostatically and via hydrogen bonds of N-H?O.  相似文献   

20.
Phosphoribosyl pyrophosphate (PRPP) synthetase catalyzes the transfer of the pyrophosphate group from ATP to ribose-5-phosphate (R5P) yielding PRPP and AMP. PRPP is an essential metabolite that plays a central role in cellular metabolism. The enzyme from a thermophilic archaeon Thermoplasma volcanium (Tv) was expressed in Escherichia coli, crystallized, and its X-ray molecular structure was determined in a complex with its substrate R5P and with substrate analogs β,γ-methylene ATP and ADP in two monoclinic crystal forms, P21. The β,γ-methylene ATP- and the ADP-bound binary structures were determined from crystals grown from ammonium sulfate solutions; these crystals diffracted to 1.8 Å and 1.5 Å resolutions, respectively. Crystals of the ternary complex with ADP-Mg2+ and R5P were grown from a polyethylene glycol solution in the absence of sulfate ions, and they diffracted to 1.8 Å resolution; the unit cell is approximately double the size of the unit cell of the crystals grown in the presence of sulfate. The Tv PRPP synthetase adopts two conformations, open and closed, at different stages in the catalytic cycle. The binding of substrates, R5P and ATP, occurs with PRPP synthetase in the open conformation, whereas catalysis presumably takes place with PRPP synthetase in the closed conformation. The Tv PRPP synthetase forms a biological dimer in contrast to the tetrameric or hexameric quaternary structures of the Methanocaldococcus jannaschii and Bacillus subtilis PRPP synthetases, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号