首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
BackgroundMolecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.Scope of reviewFirst, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.Major conclusionsRecent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.General significanceMD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.  相似文献   

2.
For over 50 years, it has been known that the mitosis of eukaryotic cells is inhibited already at high hydrostatic pressure conditions of 30 MPa. This effect has been attributed to the disorganization of microtubules, the main component of the spindle apparatus. However, the structural details of the depolymerization and the origin of the pressure sensitivity have remained elusive. It has also been a puzzle how complex organisms could still successfully inhabit extreme high-pressure environments such as those encountered in the depth of oceans. We studied the pressure stability of microtubules at different structural levels and for distinct dynamic states using high-pressure Fourier-transform infrared spectroscopy and Synchrotron small-angle x-ray scattering. We show that microtubules are hardly stable under abyssal conditions, where pressures up to 100 MPa are reached. This high-pressure sensitivity can be mainly attributed to the internal voids and packing defects in the microtubules. In particular, we show that lateral and longitudinal contacts feature different pressure stabilities, and they define also the pressure stability of tubulin bundles. The intactness of both contact types is necessary for the functionality of microtubules in vivo. Despite being known to dynamically stabilize microtubules and prevent their depolymerization, we found that the anti-cancer drug taxol and the accessory protein MAP2c decrease the pressure stability of microtubule protofilaments. Moreover, we demonstrate that the cellular environment itself is a crowded place and accessory proteins can increase the pressure stability of microtubules and accelerate their otherwise highly pressure-sensitive de novo formation.  相似文献   

3.
MOTIVATION: Various multiple sequence alignment-based methods have been proposed to detect functional surfaces in proteins, such as active sites or protein interfaces. The effect that the choice of sequences has on the conclusions of such analysis has seldom been discussed. In particular, no method has been discussed in terms of its ability to optimize the sequence selection for the reliable detection of functional surfaces. RESULTS: Here we propose, for the case of proteins with known structure, a heuristic Metropolis Monte Carlo strategy to select sequences from a large set of homologues, in order to improve detection of functional surfaces. The quantity guiding the optimization is the clustering of residues which are under increased evolutionary pressure, according to the sample of sequences under consideration. We show that we can either improve the overlap of our prediction with known functional surfaces in comparison with the sequence similarity criteria of selection or match the quality of prediction obtained through more elaborate non-structure based-methods of sequence selection. For the purpose of demonstration we use a set of 50 homodimerizing enzymes which were co-crystallized with their substrates and cofactors.  相似文献   

4.
Application of high pressure can be used for gentle pasteurizing of food, minimizing undesirable alterations such as vitamin losses and changes in taste and color. In addition, pressure has become a useful tool for investigating structural changes in proteins. Treatments of proteins with high pressure can reveal conformations that are not obtainable by other physical variables like temperature, since pressure favors structural transitions accompanied with smaller volumes. Here, we discuss both the potential use of high pressure to inactivate infectious TSE material and the application of this thermodynamic parameter for the investigation of prion folding. This review summarizes our findings on the effects of pressure on the structure of native infectious scrapie prions in hamster brain homogenates and on the structure of infectious prion rods isolated from diseased hamsters brains. Native prions were found to be pressure sensitive, whereas isolated prions revealed an extreme pressure-resistant structure. The discussion will be focused on the different pressure behavior of these prion isoforms, which points out differences in the protein structure that have not been taken into consideration before.  相似文献   

5.
High hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of biomolecular systems, such as lipid bilayers and proteins, but also because high pressure is an important feature of certain natural membrane environments. By using a variety of spectroscopic and scattering techniques, the temperature and pressure dependent structure and phase behaviour of various lipid systems and proteins have been studied and are discussed. A thermodynamic approach is presented for studying the stability of proteins as a function of both temperature and pressure. Moreover, the effect of various chaotropic and kosmotropic cosolvents on the temperature- and pressure-dependent structure and stability of proteins is discussed. The results demonstrate that combined temperature-pressure-cosolvent dependent studies can help delineate the free energy landscape of proteins and hence help elucidate which features and thermodynamic parameters are essential in determining the stability of the native conformational state of proteins. We also introduce pressure as a kinetic variable. Applying the pressure-jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction and spectroscopic techniques, the kinetics of un/refolding of lipid mesophases and proteins has been studied. Finally, recent advances in using pressure for studying misfolding and aggregation of proteins will be elucidated.  相似文献   

6.
Responses of the halotolerant yeast Rhodotorula mucilaginosa YRH2 to salt stress was studied. Strain YRH2 was isolated from chemical industry park wastewater evaporation ponds that are characterized by large fluctuations in salinity and pH. Upon shift to high salt medium there is a shutdown of protein synthesis. Radiolabeling and separation of proteins from salt stressed and non-stressed cells identified down-regulated heat shock 70 proteins Ssb1/2p, by N-terminal sequencing and Western blotting. Ssb's role in salt stress in both R. mucilaginosa and S. cerevisiae was examined and we show that its response to salt stress and amino acid limitation is similar. Other proteins such as the heat shock 70 protein Kar2p/BiP and Protein Disulfide Isomerase were strongly induced in response to a shift to high salt in R. mucilaginosa and reacted in a manner similar to the effect of tunicamycin, a known unfolded protein response inducer. Also, assaying carboxypeptidase Y, we showed that high salt medium reduces the specific activity of the enzyme in R. mucilaginosa. It is suggested that the changes in the expression of the heat shock 70 proteins is a part of a mechanism which alleviates the damaging effects of high salt on protein folding in the yeast Rhodotorula mucilaginosa.  相似文献   

7.
This review focuses on the roles of two major cold-inducible RNA binding proteins known in human cells: CIRP and RBM3. Both proteins were discovered when they were shown to be induced after exposure to a moderate cold-shock and other cellular stresses such as UV radiation and hypoxia. Initially, it was suggested that these proteins have a suppressive rather stimulatory effect on proliferation; however, proliferative and/or proto-oncogenic functions have recently been assigned to CIRP and RBM3. In a high throughput genetic screen, we recently identified CIRP as an immortalized gene in murine primary cells. On the other hand, the role of RBM3 in transformation has already been demonstrated. Interestingly, both CIRP and RBM3 have been found to be up-regulated in human tumors. This article highlights the roles of CIRP and RBM3 in tumorigenesis, and proposes a model by which CIRP might contribute to senescence bypass by counteracting the deleterious effects of oxidative damage.  相似文献   

8.
Choi SC  Stone EA  Kishino H  Thorne JL 《Gene》2009,441(1-2):45-52
We consider the inference of which of two alleles is ancestral when the alleles have a single nonsynonymous difference and when natural selection acts via protein tertiary structure. Whereas the probability that an allele is ancestral under neutrality is equal to its frequency, under selection this probability depends on allele frequency and on the magnitude and direction of selection pressure. Although allele frequencies can be well estimated from intraspecific data, small fitness differences have a large evolutionary impact but can be difficult to estimate with only intraspecific data. Methods for predicting aspects of phenotype from genotype can supplement intraspecific sequence data. Recently developed statistical techniques can assess effects of phenotypes, such as protein tertiary structure on molecular evolution. While these techniques were initially designed for comparing protein-coding genes from different species, the resulting interspecific inferences can be assigned population genetic interpretations to assess the effect of selection pressure, and we use them here along with intraspecific allele frequency data to estimate the probability that an allele is ancestral. We focus on 140 nonsynonymous single nucleotide polymorphisms of humans that are in proteins with known tertiary structures. We find that our technique for employing protein tertiary structure information yields some biologically plausible results but that it does not substantially improve the inference of ancestral human allele types.  相似文献   

9.
Late embryogenesis abundant (LEA) proteins constitute a set of proteins widespread in the plant kingdom that show common physicochemical properties such as high hydrophilicity and high content of small amino acid residues such as glycine, alanine, and serine. Typically, these proteins accumulate in response to water deficit conditions imposed by the environment or during plant normal development. In this work, we show that the over-expression in Escherichia coli of proteins of the LEA 2 and the LEA 4 families from Arabidopsis thaliana leads to inhibition of bacterial growth and that this effect is dependent on discrete regions of the proteins. Our data indicate that their antimicrobial effect is achieved through their interaction with intracellular targets. The relevance of the cationic nature and the predicted structural organization of particular protein domains in this detrimental effect on the bacteria growth process is discussed.  相似文献   

10.
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.  相似文献   

11.
Pressure is a thermodynamic variable which is particularly suitable for exploration of the properties of biological macromolecules. For proteins, in particular, denaturation induced by pressure is different from that induced by temperature or denaturants. The response of proteins to pressure changes can provide information on properties of their native and non-native states. This review focuses on molecular dynamics studies of the effect of pressure on detailed atomic models of proteins. It also reports on other theoretical approaches, such as Monte Carlo simulations, which have been used to study simplified models. Another purpose of this review is to try to point out potential future studies that may be both interesting and feasible, with constantly increasing computing power.  相似文献   

12.
There have been repeated observations that proteins are surprisingly robust to site mutations, enduring significant numbers of substitutions with little change in structure, stability, or function. These results are almost paradoxical in light of what is known about random heteropolymers and the sensitivity of their properties to seemingly trivial mutations. To address this discrepancy, the preservation of biological protein properties in the presence of mutation has been interpreted as indicating the independence of selective pressure on such properties. Such results also lead to the prediction that de novo protein design should be relatively easy, in contrast to what is observed. Here, we use a computational model with lattice proteins to demonstrate how this robustness can result from population dynamics during the evolutionary process. As a result, sequence plasticity may be a characteristic of evolutionarily derived proteins and not necessarily a property of designed proteins. This suggests that this robustness must be re-interpreted in evolutionary terms, and has consequences for our understanding of both in vivo and in vitro protein evolution.  相似文献   

13.
Hydrostatic pressure can be considered as "thermodynamic tweezers" to approach the protein folding problem and to study the cases when folding goes wrong leading to the protein folding disorders. The main outcome of the use of high pressure in this field is the stabilization of folding intermediates such as partially folded conformations, thus allowing us to characterize their structural properties. Because partially folded intermediates are usually at the intersection between productive and off-pathway folding, they may give rise to misfolded proteins, aggregates and amyloids that are involved in many neurodegenerative diseases, such as transmissible spongiform encephalopathies, Alzheimer's disease, Parkinson's disease and Huntington's disease. Of particular interest is the use of hydrostatic pressure to unveil the structural transitions in prion conversion and to populate possible intermediates in the folding/unfolding pathway of the prion protein. The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform, the PrP(Sc) (from scrapie). It has been demonstrated that hydrostatic pressure affects the balance between the different prion species. The last findings on the application of high pressure on amyloidogenic proteins will be discussed here as regards to their energetic and volumetric properties. The use of high pressure promises to contribute to the identification of the underlying mechanisms of these neurodegenerative diseases and to develop new therapeutic approaches.  相似文献   

14.
High pressure-low temperature processing of food proteins   总被引:1,自引:0,他引:1  
High pressure-low temperature (HP-LT) processing is of interest in the food field in view of: (i) obtaining a "cold" pasteurisation effect, the level of microbial inactivation being higher after pressurisation at low or sub-zero than at ambient temperature; (ii) limiting the negative impact of atmospheric pressure freezing on food structures. The specific effects of freezing by fast pressure release on the formation of ice I crystals have been investigated on oil in water emulsions stabilized by proteins, and protein gels, showing the formation of a high number of small ice nuclei compared to the long needle-shaped crystals obtained by conventional freezing at 0.1 MPa. It was therefore of interest to study the effects of HP-LT processing on unfolding or dissociation/aggregation phenomena in food proteins, in view of minimizing or controlling structural changes and aggregation reactions, and/or of improving protein functional properties. In the present studies, the effects of HP-LT have been investigated on protein models such as (i) beta-lactoglobulin, i.e., a whey protein with a well known 3-D structure, and (ii) casein micelles, i.e., the main milk protein components, the supramolecular structure of which is not fully elucidated. The effects of HP-LT processing was studied up to 300 MPa at low or sub-zero temperatures and after pressure release, or up to 200 MPa by UV spectroscopy under pressure, allowing to follow reversible structural changes. Pressurisation of approximately 2% beta-lactoglobulin solutions up to 300 MPa at low/subzero temperatures minimizes aggregation reactions, as measured after pressure release. In parallel, such low temperature treatments enhanced the size reduction of casein micelles.  相似文献   

15.
As a typical product of microbial metabolism, the weak acid acetate is well known for its cytotoxic effects. In contrast to most other microbes, the so-called acetic acid bacteria can acquire significant resistance to high acetate concentrations when properly adapted to such hostile conditions. To characterize the molecular events that are associated with this adaptation, we analyzed global protein expression levels during adaptation of Acetobacter aceti by two-dimensional gel electrophoresis. Adaptation was achieved by using serial batch and continuous cultivations with increasing acetate supplementation. Computer-aided analysis revealed a complex proteome response with at least 50 proteins that are specifically induced by adaptation to acetate but not by other stress conditions, such as heat or oxidative or osmotic stress. Of these proteins, 19 were significantly induced in serial batch and continuous cultures and were thus noted as acetate adaptation proteins (Aaps). Here we present first microsequence information on such Aaps from A. aceti. Membrane-associated processes appear to be of major importance for adaptation, because some of the Aap bear N-terminal sequence homology to membrane proteins and 11 of about 40 resolved proteins from membrane protein-enriched fractions are significantly induced.  相似文献   

16.
During clathrin-mediated endocytosis, a patch of flat plasma membrane is deformed into a vesicle. In walled cells, such as plants and fungi, the turgor pressure is high and pushes the membrane against the cell wall, thus hindering membrane internalization. In this work, we study how a patch of membrane is deformed against turgor pressure by force and by curvature-generating proteins. We show that a large amount of force is needed to merely start deforming the membrane and an even larger force is needed to pull a membrane tube. The magnitude of these forces strongly depends on how the base of the membrane is constrained and how the membrane is coated with curvature-generating proteins. In particular, these forces can be reduced by partially, but not fully, coating the membrane patch with curvature-generating proteins. Our theoretical results show excellent agreement with experimental data.  相似文献   

17.
Lipases are known for their versatility in addition to their ability to digest fat. They can be used for the formulation of detergents, as food ingredients and as biocatalysts in many industrial processes. Because conventional enzymes are frangible at high temperatures, the replacement of conventional chemical routes with biochemical processes that utilize thermostable lipases is vital in the industrial setting. Recent theoretical studies on enzymes have provided numerous fundamental insights into the structures, folding mechanisms and stabilities of these proteins. The studies corroborate the experimental results and provide additional information regarding the structures that were determined experimentally. In this paper, we review the computational studies that have described how temperature affects the structure and dynamics of thermoenzymes, including the thermoalkalophilic L1 lipase derived from Bacillus stearothermophilus. We will also discuss the potential of using pressure for the analysis of the stability of thermoenzymes because high pressure is also important for the processing and preservation of foods.  相似文献   

18.
Arginine is finding a wide range of applications in production of proteins. Arginine has been used for many years to assist protein refolding. This effect was ascribed to aggregation suppression by arginine of folding intermediates during protein refolding. Recently, we have observed that arginine facilitates elution of antibodies during Protein-A chromatography and solubilizes insoluble proteins from inclusion bodies, which both can be ascribed to weakening of protein-protein interactions. In order to gain understanding on why arginine is effective in reducing protein-protein interactions and suppressing aggregation, the effects of arginine on stability and solubility of pure proteins have been examined, which showed that arginine is not a protein-stabilizer, but is an aggregation suppressor. However, there is no explanation proposed so far on why arginine suppresses aggregation of proteins. This review addresses such question and then attempts to show differences between arginine and strong denaturants, which are also known as an aggregation suppressor.  相似文献   

19.
A special class of proteins adopts an inactive conformation in aqueous solution and activates at an interface (such as the surface of lipid droplet) by switching their conformations. Lipase, an essential enzyme for breaking down lipids, serves as a model system for studying such interfacial proteins. The underlying conformational switch of lipase induced by solvent condition is achieved through changing the status of the gated substrate‐access channel. Interestingly, a lipase was also reported to exhibit pressure activation, which indicates it is drastically active at high hydrostatic pressure. To unravel the molecular mechanism of this unusual phenomenon, we examined the structural changes induced by high hydrostatic pressures (up to 1500 MPa) using molecular dynamics simulations. By monitoring the width of the access channel, we found that the protein undergoes a conformational transition and opens the access channel at high pressures (>100 MPa). Particularly, a disordered amphiphilic α5 region of the protein becomes ordered at high pressure. This positive correlation between the channel opening and α5 ordering is consistent with the early findings of the gating motion in the presence of a water–oil interface. Statistical analysis of the ensemble of conformations also reveals the essential collective motions of the protein and how these motions contribute to gating. Arguments are presented as to why heightened sensitivity to high‐pressure perturbation can be a general feature of switchable interfacial proteins. Further mutations are also suggested to validate our observations. Proteins 2016; 84:820–827. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
In dermal melanocytes of Rana pipiens, colchicine is known to produce a gradual, dosage-dependent dispersion of melanin granules, irreversible over several hours. This effect is potentiated by a number of chemical agents that normally produce a reversible dispersion of granules. In the present study we examined the effect of high hydrostatic pressure on changes induced in melanocytes by colchicine. In Ringer's solution, samples of skin from a single frog were incubated for 30 minutes at room temperature with or without colchicine, 9 × 10?5 M. Then two samples, one of which had been pretreated with colchicine, were successively subjected to 12,000 psi for one hour at 25 to 26°C. The degree of dispersion of melanin granules in melanocytes was observed before, during and after the period of pressure. In frog skin pretreated with colchicine, the usually gradual, irreversible dispersion of melanin granules in melanocytes was potentiated. Since high pressure is known to produce solational changes in protoplasm, such changes may accompany dispersion of melanin granules in melanocytes. If this be so, then sol-gel equilibria may be important in the action of dispersing and aggregating agents, many of which are hormones and other physiologically active agents. Finally, the present study supports the hypothesis that colchicine shifts protoplasmic sol-gel equilibria toward a less gelated condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号