首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The acidic, partly folded states of bovine carbonic anhydrase II (BCAII) were used as an experimental system to study the interactions of partly denatured proteins with lipid membranes. The pH dependence of their interactions with palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) membranes was studied. A filtration binding assay shows that acidic partly folded states of BCAII bind to POPC membranes. Fluorescence emission spectra from Trp residues of the bound protein are slightly shifted to shorter wavelength and can be quenched by a water-soluble quencher of fluorescence, indicating that the binding occurs without deep penetration of Trp residues into the membrane. The content of beta-structures of the protein in solution, as revealed by FT-IR spectroscopy, decreases in the partly folded states and the binding to POPC membrane occurs without further changes of secondary structure. In the presence of 0.1 M NaCl, a partly folded state self-aggregates and does not bind to POPC membrane. At acidic pH, BCAII binds to POPG membranes both at high and low ionic strength. The binding to the anionic lipid occurs with protein self-aggregation within the lipid-protein complexes and with changes in the secondary structure; large blue shifts in the fluorescence emission spectra and the decrease in the exposure to water-soluble acrylamide quencher of Trp fluorescence strongly suggest that BCAII penetrates the hydrocarbon domain in the POPG-protein complexes.  相似文献   

2.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

3.
Q Teng  R E Koeppe  S F Scarlata 《Biochemistry》1991,30(32):7984-7990
We have used fluorescence spectroscopy to investigate the effect of salt and membrane fluidity on the rotational motion of a 5-(dimethylamino)naphthalene-1-sulfonyl (dansyl) derivative of gramicidin C (dansyl-gC) in dimyristoylphosphatidylcholine bilayers, under conditions where the peptide is a formyl-NH to formyl-NH terminal dimer, and in octyl glucoside micelles, where the peptide is an intertwined helical dimer. Energy-transfer experiments showed no changes in either conformation or dimer aggregation under the conditions explored here (15-40 degrees C, 1-350 bar, 0-0.33 M Mg2+, and 0-1 M Na+). The addition of permeable (Na+) or nonpermeable (Mg2+) ions did not affect the temperature or pressure behavior of dansyl rotation. However, fluorescence lifetime measurements indicated an increase in solvent accessibility in the presence of sodium. In bilayers, the temperature dependence of the fluorescence polarization and lifetime shows strong interactions between the dansyl residue and the peptide, and at no time did the dansyl motions become solvent controlled as has been observed for aqueous solvent peptides [Scarlata, S. F., Rholam, M., & Weber, G. (1984) Biochemistry 23, 6789]. In micelles, the change in rotational motion with temperature followed solvent expansion, showing that in this case the dansyl residue does not associate extensively with the peptide. Our results indicate that because of the extensive coupling between the dansyl residue and the rest of the peptide, membrane fluidity does not play a major role in controlling side-chain motions.  相似文献   

4.
Fluorescence anisotropy studies of molecularly imprinted polymers.   总被引:1,自引:0,他引:1  
A molecularly imprinted polymer (MIP) is a biomimetic material that can be used as a biochemical sensing element. We studied the steady-state and time-resolved fluorescence and fluorescence anisotropy of anthracene-imprinted polyurethane. We compared MIPs with imprinted analytes present, MIPs with the imprinted analytes extracted, MIPs with rebound analytes, non-imprinted control polymers (non-MIPs) and non-MIPs bound with analytes to understand MIP's binding behaviour. MIPs and non-MIPs had similar steady-state fluorescence anisotropy in the range 0.11-0.24. Anthracene rebound in MIPs and non-MIPs had a fluorescence lifetime of tau = 0.64 ns and a rotational correlation time of phi(F) = 1.2-1.5 ns, both of which were shorter than that of MIPs with imprinted analytes present (tau = 2.03 ns and phi(F) = 2.7 ns). The steady-state anisotropy of polymer solutions increased exponentially with polymerization time and might be used to characterize the polymerization extent in situ.  相似文献   

5.
Dynamic fluorescence properties of bacterial luciferase intermediates   总被引:1,自引:0,他引:1  
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1988,27(13):4862-4870
Three fluorescent species produced by the reaction of bacterial luciferase from Vibrio harveyi with its substrates have the same dynamic fluorescence properties, namely, a dominant fluorescence decay of lifetime of 10 ns and a rotational correlation time of 100 ns at 2 degrees C. These three species are the metastable intermediate formed with the two substrates FMNH2 and O2, both in its low-fluorescence form and in its high-fluorescence form following light irradiation, and the fluorescent transient formed on including the final substrate tetradecanal. For native luciferase, the rotational correlation time is 62 or 74 ns (2 degrees C) derived from the decay of the anisotropy of the intrinsic fluorescence at 340 nm or the fluorescence of bound 8-anilino-1-naphthalenesulfonic acid (470 nm), respectively. The steady-state anisotropy of the fluorescent intermediates is 0.34, and the fundamental anisotropy from a Perrin plot is 0.385. The high-fluorescence intermediate has a fluorescence maximum at 500 nm, and its emission spectrum is distinct from the bioluminescence spectrum. The fluorescence quantum yield is 0.3 but decreases on dilution with a quadratic dependence on protein concentration. This, and the large value of the rotational correlation time, would be explained by protein complex formation in the fluorescent intermediate states, but no increase in protein molecular weight is observed by gel filtration or ultracentrifugation. The results instead favor a proposal that, in these intermediate states, the luciferase undergoes a conformational change in which its axial ratio increases by 50%.  相似文献   

6.
Steady-state and time-resolved fluorescence from the single tyrosine in the inactivating peptide of the Shaker B potassium channel (ShB peptide) and in a noninactivating peptide mutant, ShB-L7E, has been used to characterize their interaction with anionic phospholipid membranes, a model target mimicking features of the inactivation site on the channel protein. Partition coefficients derived from steady-state anisotropy indicate that both peptides show a high affinity for anionic vesicles, being higher in ShB than in ShB-L7E. Moreover, differential quenching by lipophilic spin-labeled probes and fluorescence energy transfer using trans-parinaric acid as the acceptor confirm that the ShB peptide inserts deep into the membrane, while the ShB-L7E peptide remains near the membrane surface. The rotational mobility of tyrosine in membrane-embedded ShB, examined from the decay of fluorescence anisotropy, can be described by two different rotational correlation times and a residual constant value. The short correlation time corresponds to fast rotation reporting on local tyrosine mobility. The long rotational correlation time and the high residual anisotropy suggest that the ShB peptide diffuses in a viscous and anisotropic medium compatible with the aliphatic region of a lipid bilayer and support the hypothesis that the peptide inserts into it as a monomer, to configure an intramolecular beta-hairpin structure. Assuming that this hairpin structure behaves like a rigid body, we have estimated its dimensions and rotational dynamics, and a model for the peptide inserted into the bilayer has been proposed.  相似文献   

7.
The amphipathic helix plays a key role in many membrane-associating peptides and proteins. The dynamics of helices on membrane surfaces might be of importance to their function. The fluorescence anisotropy decay of tryptophan is a sensitive indicator of local, segmental, and global dynamics within a peptide or protein. We describe the use of frequency domain dynamic depolarization measurements to determine the site-specific tryptophan dynamics of single tryptophan amphipathic peptides bound to a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide that is known to associate at the interface of phospholipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. Association of the peptides with egg phosphatidylcholine vesicles results in complex behavior of both the tryptophan intensity decay and the anisotropy decay. The anisotropy decays were biphasic and were fitted to an associated model where each lifetime component in the intensity decay is associated with a particular rotational correlation time from the anisotropy decay. In contrast, an unassociated model where all components of the intensity decay share common rotational modes was unable to provide an adequate fit to the data. Two correlation times were resolved from the associated analysis: one whose contribution to the anisotropy decay was dependent on the exposure of the tryptophan to the aqueous phase, and the other whose contribution reflected the position of the tryptophan in the sequence. The results are compared with existing x-ray structural data and molecular dynamics simulations of membrane-incorporated peptides.  相似文献   

8.
Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C labeled in the ring epsilon-carbons of the single tyrosine residue. To eliminate effects of differences in peptide concentration, the same motilin sample was used in both experiments. NMR relaxation rates of the tyrosine ring C(epsilon)-H(epsilon) vectors, measured at four magnetic field strengths (9.4, 11.7, 14.1, and 18.8 Tesla) were used to map the spectral density function. When the data were analyzed using dynamic models with the same number of components, the dynamic parameters from NMR and fluorescence are in excellent agreement. However, the estimated rotational correlation times depend on the choice of dynamic model. The correlation times estimated from the two-component model-free approach and the three-component models were significantly different (1.7 ns and 2.2 ns, respectively). Various earlier studies of protein dynamics by NMR and fluorescence were compared. The rotational correlation times estimated by NMR for samples with high protein concentration were on average 18% longer for folded monomeric proteins than the corresponding times estimated by fluorescence polarization anisotropy decay, after correction for differences in viscosity due to temperature and D(2)O/H(2)O ratio.  相似文献   

9.
Binding of Nile Red to tubulin enhances and blue-shifts fluorescence emission to about 623 nm with a "shoulder" around 665 nm. Binding is reversible and saturable with an apparent Kd of approximately 0.6 microM. Nile Red does not alter tubulin polymerization, and polymerization in 2-(N-morpholino)ethanesulfonic acid (Mes) buffer does not alter the spectrum of the Nile Red-tubulin complex. In contrast, polymerization in glutamate buffer results in a red shift, reduction of intensity, and a decrease in lifetime, suggesting an increase in "polarity" of the binding environment. Lifetimes of 4.5 and 0.6 ns fluorescence in Mes buffer are associated with the 623-nm peak and the 665-nm shoulder, respectively. Indirect excitation spectra for these components are distinct and the 4.5-ns component exhibits tryptophan to Nile Red energy transfer. Acrylamide quenching yields linear Stern-Volmer plots with unchanged lifetimes, indicating static quenching. Apparent quenching constants are wavelength-dependent; global analysis reveals a quenchable component corresponding to the 4.5 ns component and an "unquenchable" component superposing the 0.6-ns spectrum. Analysis of anisotropy decay required an "associative" model which yielded rotational correlation times of greater than 50 ns for the 4.5-ns lifetime and 0.3 ns for the 0.6-ns lifetime. Dilution of tubulin in Mes results in an apparent red shift of emission without lifetime changes, due only to loss of the 623-nm component. These data are reconciled in terms of a model with two binding sites on the tubulin dimer. The more "nonpolar" site is located in a region of subunit-subunit contact which accounts for the fluorescence changes upon dilution; this permits estimation of a subunit dissociation constant of 1 microM.  相似文献   

10.
The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5-1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems.  相似文献   

11.
The influence of the binding of the high-affinity inhibitor, 4-methylbenzenesulfonamide, to the active site of bovine carbonic anhydrase B was studied by 15N- and 13C-NMR spectroscopy. The rotational correlation time dependence on temperature and concentration of the complex was determined by time-resolved fluorescence depolarization measurements. Our experiment provides evidence that the stoichiometry of the interaction of 4-methylbenzenesulfonamide with carbonic anhydrase B is 1:1 and the inhibitor is bound in anionic form. The 15N-NMR relaxation parameters confirm our previous conclusions about the presence of librational motions in the active site of carbonic anhydrase and indicate that the internal motion in the enzyme-inhibitor complex is more restricted than the backbone motion in the uncomplexed native enzyme.  相似文献   

12.
The slow folding of a single tryptophan-containing mutant of barstar has been studied in the presence of 2 M urea at 10 degrees C, using steady state and time-resolved fluorescence methods and far and near-UV CD measurements. The protein folds in two major phases: a fast phase, which is lost in the dead time of measurement during which the polypeptide collapses to a compact form, is followed by a slow observable phase. During the fast phase, the rotational correlation time of Trp53 increases from 2.2 ns to 7.2 ns, and its mean fluorescence lifetime increases from 2.3 ns to 3.4 ns. The fractional changes in steady-state fluorescence, far-UV CD, and near-UV CD signals, which are associated with the fast phase are, respectively, 36 %, 46 %, and 16 %. The product of the fast phase can bind the hydrophobic dye ANS. These observations together suggest that the folding intermediate accumulated at the end of the fast phase has: (a) about 20 % of the native-state secondary structure, (b) marginally formed or disordered tertiary structure, (c) a water-intruded and mobile protein interior; and (d) solvent-accessible patches of hydrophobic groups. Measurements of the anisotropy decay of Trp53 suggest that it undergoes two types of rotational motion in the intermediate: (i) fast (tau(r) approximately 1 ns) local motion of its indole side-chain, and (ii) a slower (tau(r) approximately 7.2 ns) motion corresponding to global tumbling of the entire protein molecule. The ability of the Trp53 side-chain to undergo fast local motion in the intermediate, but not in the fully folded protein where it is completely buried in the hydrophobic core, suggests that the core of the intermediate is still poorly packed. The global tumbling time of the fully folded protein is faster at 5.6 ns, suggesting that the volume of the intermediate is 25 % more than that of the fully folded protein. The rate of folding of this intermediate to the native state, measured by steady-state fluorescence, far-UV CD, and near-UV CD, is 0.07(+/-0.01) min(-1) This rate compares to a rate of folding of 0.03(+/-0.005) min(-1), determined by double-jump experiments which monitor directly formation of native protein; and to a rate of folding of 0.05 min(-1), when determined from time-resolved anisotropy measurements of the long rotational correlation time, which relaxes from an initial value of 7.2 ns to a final value of 5. 6 ns as the protein folds. On the other hand, the amplitude of the short correlation time decreases rapidly with a rate of 0.24(+/-0.06) min(-1). These results suggest that tight packing of residues in the hydrophobic core occurs relatively early during the observable slow folding reaction, before substantial secondary and tertiary structure formation and before final compaction of the protein.  相似文献   

13.
Steady-state and time-resolved fluorescence anisotropy measurements of eosin in solution and eosin-5-maleimide bound to purified myosin were made to study localized motions of the "head region" of this protein. The lifetime and apparent Debye rotational relaxation times of eosin in aqueous solution are essentially invariant with changes in excitation wavelength. In more viscous solvents, such as propylene glycol/water mixtures, the apparent Debye rotational relaxation times of eosin differ upon excitation in the regions of positive and negative anisotropy. Using eosin attached to the SH-1 thiol of the myosin head differing rotational modes of the bound probe were detected, dependent upon excitation wavelength. The main features of the anisotropy data for eosin-myosin are consistent with the existence of a 'crevice' or 'pocket' in the myosin head. A model is presented which allows estimation of the ratio of distinct rotational diffusion terms (selected by different excitation wavelengths) that produce both the observed steady-state anisotropy and differential phase results.  相似文献   

14.
The fluorescence dynamics of the dye 3,3'-diethyloxadicarbocyanine iodide (DODCI) was used to probe the microenvironment of cytochrome c oxidase (CcO) and cardiolipin. The dye was partitioned between an aqueous and a hydrophobic phase. The 'bound' and 'free' populations of DODCI could be separated by analysis of the time-resolved fluorescence decay of the dye. The anisotropy decay of the DODCI bound to CcO showed a unique 'dip and rise' shape that was analyzed by a combination of rotational correlation times with time-dependent weight factors for each lifetime component. Rotational dynamics studies revealed the existence of a restricted motion of the dye bound at the enzyme surface. Adriamycin, an anticancer, albeit cardiotoxic drug, was previously proposed to affect the surface structure of CcO, most likely by causing a disorder to the surface lipid arrangement. A drastic change in the rotational correlation time of the dye bound to the enzyme surface was observed, which suggested a depletion of cardiolipin layer due to complexation with the drug. The effect of Adriamycin on cardiolipin was drastic, leading to its phase separation. The present study suggests that the effect of Adriamycin on CcO is primarily a segregation of the cardiolipins.  相似文献   

15.
A number of fluorescence studies, both of trp residues and bound NADH, have been reported for porcine malate dehydrogenase (MDH). The large number of trp residues (six) complicates the interpretation of some studies. To circumvent this we have performed studies with a two-tryptophan (per subunit) MDH from Bradyrhizobium japonicum 3I1B-143 bacteroids. We have performed phase/modulation fluorescence lifetime measurements, as a function of temperature and added quencher KI, in order to resolved the 1.2-ns (blue) and 6.5-ns (red) contributions from the two classes of trp residues. Anisotropy decay studies have also been performed. The binding of NADH dynamically quenches the fluorescence of both trp residues, but, unlike mammalian cytoplasmic and mitochondrial MDH, there is not a large enhancement in fluorescence of bound NADH upon forming a ternary complex with either tartronic acid or D-malate.  相似文献   

16.
We have evaluated the effects of acetonitrile on the structure and function of bovine carbonic anhydrase II. The potential structural and functional changes in carbonic anhydrase in the presence of different acetonitrile/buffer ratios (0%, 17.5% and 47.5% v/v) were determined using a variety of methods. These included simple spectrophotometric methods to record enzyme velocity, fluorescence measurements and calculation of accessible surface area (ASA) to identify possible alterations in tertiary structure of the protein, CD measurements to search for secondary structure conversions, and thermal scanning to determine structural stability of the protein in different media. The Far-UV CD studies indicated that carbonic anhydrase, for the most part, retains its secondary structure in the presence of acetonitrile. Fluorescence measurements using iodide ion and ANS along with ASA calculations revealed that in the presence of acetonitrile some degree of conformational change occurs in the carbonic anhydrase structure. In addition to the hydrophobic pockets, two additional tryptophanyl residues become exposed to the solvent, thereby increasing the surface hydrophobicity of the protein. These alterations dramatically reduce the catalytic activity, thermal stability, and aggregation velocity of the enzyme. Thus, our results support a molten globule-like structure of carbonic anhydrase in the presence of acetonitrile.  相似文献   

17.
GdmCl-induced unfolding of rabbit muscle creatine kinase, CK, has been studied by a variety of physico-chemical methods including near and far UV CD, SEC, intrinsic fluorescence (intensity, anisotropy and lifetime) as well as intensity and lifetime of bound ANS fluorescence. The formation of several stable unfolding intermediates, some of which were not observed previously, has been established. This was further confirmed by representation of fluorescence data in terms of "phase diagram", i.e. I(lambda1) versus I(lambda2) dependence, where I(lambda1) and I(lambda2) are fluorescence intensity values measured on wavelengths lambda(1) and lambda(2) under the different experimental conditions for a protein undergoing structural transformations. The unfolding behavior of CK was shown to be strongly affected by association of partially folded intermediates. A model of CK unfolding, which takes into account both structural perturbations and association of partially folded intermediates has been elaborated.  相似文献   

18.
The structural dynamics of bovine erythrocyte Cu, Zn superoxide dismutase (BSOD) was studied by time-resolved fluorescence spectroscopy. BSOD is a homodimer containing a single tyrosine residue (and no tryptophan) per subunit. Frequency-domain fluorometry revealed a heterogeneous fluorescence decay that could be described with a Lorentzian distribution of lifetimes. The lifetime distribution parameters (center and width) were markedly dependent on temperature. The distribution center (average lifetime) displayed Arrhenius behavior with an Ea of 4.2 kcal/mol, in contrast with an Ea of 7.4 kcal/mol for the single-exponential decay of L-tyrosine. This indicated that thermal quenching of tyrosine emission was not solely responsible for the effect of temperature on the lifetimes of BSOD. The distribution width was broad (1 ns at 8 degrees C) and decreased significantly at higher temperatures. Furthermore, the width of the lifetime distribution increased in parallel to increasing viscosity of the medium. The combined effects of temperature and viscosity on the fluorescence decay suggest the existence of multiple conformational substrates in BSOD that interconvert during the excited-state lifetime. Denaturation of BSOD by guanidine hydrochloride produced an increase in the lifetime distribution width, indicating a larger number of conformations probed by the tyrosine residue in the denatured state. The rotational mobility of the tyrosine in BSOD was also investigated. Analysis of fluorescence anisotropy decay data enabled resolution of two rotational correlation times. One correlation time corresponded to a fast (picosecond) rotation that contributed 62% of the anisotropy decay and likely reported local mobility of the tyrosine ring. The longer correlation time was 50% of the expected value for rotation of the whole (dimeric) BSOD molecule and appeared to reflect segmental motions in the protein in addition to overall tumbling. Comparison between rotational correlation times and fluorescence lifetimes of BSOD indicates that the heterogeneity in lifetimes does not arise from mobility of the tyrosine per se, but rather from dynamics of the protein matrix surrounding this residue which affect its fluorescence decay.  相似文献   

19.
Actinomycin D and 7-aminoactinomycin D binding to single-stranded DNA   总被引:3,自引:0,他引:3  
R M Wadkins  T M Jovin 《Biochemistry》1991,30(39):9469-9478
The potent RNA polymerase inhibitors actinomycin D and 7-aminoactinomycin D are shown to bind to single-stranded DNAs. The binding occurs with particular DNA sequences containing guanine residues and is characterized by hypochromic UV absorption changes similar to those observed in interactions of the drugs with double-stranded duplex DNAs. The most striking feature of the binding is the dramatic (ca. 37-fold) enhancement in fluorescence that occurs when the 7-aminoactinomycin is bound to certain single-stranded DNAs. This fluorescence of the complex is also characterized by a 40-nm hypsochromic shift in the emission spectrum of the drug and an increase in the emission anisotropy relative to the free drug or the drug bound to calf thymus DNA. The fluorescence lifetimes change in the presence of the single-stranded DNA in a manner compatible with the intensity difference. Thus, there is an increase in the fraction of the emission corresponding to a 2-ns lifetime component compared to the predominant approximately 0.5-ns lifetime of the free drug. The 7-aminoactinomycin D comigrates in polyacrylamide gels with the single-stranded DNAs, and the fluorescence of the bound drug can be visualized by excitation with 540-nm light. The binding interactions are characterized by association constants of 2.0 x 10(6) to 1.1 x 10(7) M-1.  相似文献   

20.
Nolan V  Perduca M  Monaco HL  Montich GG 《Biochemistry》2005,44(23):8486-8493
Chicken liver bile acid-binding protein (formerly known as chicken liver basic fatty acid-binding protein) binds to anionic lipid membranes acquiring a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B., and Montich, G. (2003) Biochim. Biophys. Acta 1611, 98-106]. To understand the mechanisms of its interactions with membranes, we have investigated the presence of partly folded states in solution. Using fluorescence spectroscopy of the single Trp residue, circular dichroism in the far- and near-UV, Fourier transform infrared spectroscopy, and size-exclusion chromatography, we found that L-BABP was partly unfolded at pH 2.5 and low ionic strength, retaining some of its secondary structure. Addition of 0.1 M NaCl at pH 2.5 or decreasing the pH to 1.5 produced a more compact partly folded state, with a partial increase of secondary structure and none of tertiary structure. Fluorescence emission spectra of this state indicate that the Trp residue is within an environment of low polarity, similar to the native state. This environment is not produced by the insertion of the Trp into soluble aggregates as revealed by size-exclusion chromatography, fluorescence anisotropy, and infrared spectroscopy. The presence of partly folded states under acidic conditions in solution suggests the possibility that membrane binding of L-BABP occurs via this state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号