首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the characteristics of photoinhibition and the primary defense mechanisms of ephemeral plant leaves against photodestruction under high temperature stress, inhibitors and the technology to determine chlorophyll fluorescence were used to explore the protective effects of D1 protein turnover and the lutein cycle in the high temperature stress of the leaves of three ephemeral plants. The results showed that the maximum light conversion efficiency (Fv/Fm) of the ephemeral plant leaves decreased, and the initial fluorescence (Fo) increased under 35°C ± 1°C heat stress for 1–4 h or on sunny days in the summer. Both Fv/Fm and Fo could be recovered after 8 h of darkness or afternoon weakening of the external temperature. Streptomycin sulfate (SM) or dithiothreitol (DTT) accelerated the decrease of Fv/Fm and the photochemical quenching coefficient (qP) in the leaves of three ephemeral plants at high temperature, and the decrease was greater in the SM than in the DTT treatment. When the high temperature stress was prolonged, the Y(II) values of light energy distribution parameters of PSII decreased, and the Y(NPQ) and Y(NO) values increased gradually in all the treatment groups of the three ephemeral plants. The results showed that the leaves of the three ephemeral plants had their own highly advanced mechanisms to protect against photodamage, which inhibited the turnover of D1 protein and xanthophyll cycle. This can damage the PSII reaction center in the leaves of the three ephemeral plants under high temperature. The protective effect of D1 protein turnover on heat stress in Erodium oxyrrhynchum and Senecio subdentatus was greater than that of the lutein cycle, while the protective effect of lutein cycle was greater than that of D1 protein turnover in Heliotropium acutiflorum subjected to heat damage.  相似文献   

2.
High irradiance and relatively low temperature, which characterize Mediterranean winters, cause chilling stress in plants. Downregulation of photosynthetic efficiency is a mechanism that allows plants to survive these conditions. This study aims to address whether this process shows a regular spatial pattern across leaf surface or not. Three species (Buxus sempervirens, Cistus albidus and Arctostaphylos uva-ursi) with contrasting responses to winter stress were studied. During 7 days, macro and micro Fv/Fm spatial patterns were monitored by the use of chlorophyll fluorescence imaging techniques. In the field, the strongest photoinhibition was found in B. sempervirens, while there was almost no chronic photoinhibition in C. albidus. In leaves of the first species, Fv/Fm decreased from base to tip while in C. albidus it was uniform over the leaf lamina. An intermediate behavior is shown by A. uva-ursi leaves. Spatial heterogeneity distribution of Fv/Fm was found inside the leaves, resulting in greater Fv/Fm values in the inner layers than in the outer ones. Neither xanthophyll-linked downregulation of Fv/Fm nor protein remobilization were the reasons for such spatial patterns since pigment composition and nitrogen content did not reveal tip-base differences. During recovery from winter, photoinhibition changes occurred in Fv/Fm, pigments and chloroplast ultrastructure. This work shows for the first time that irrespective of physiological mechanisms responsible for development of winter photoinhibition, there is an acclimation response with strong spatio-temporal variability at leaf level in some species. This observation should be taken into account when modeling or scaling up photosynthetic responses.  相似文献   

3.
阳成伟  陈贻竹  彭长连 《广西植物》2002,22(6):534-536-536
经ABA处理的水稻幼苗叶片和对照相比 ,PSII光化学效率 (Fv/Fm)和非光化学猝灭系数 (qN)显著受抑制。经高光处理 1h后 ,ABA处理的水稻幼苗叶片光抑制程度比对照小 ,这暗示ABA对高光光抑制具有一定的光保护作用 ,且间接表明ABA提高水稻幼苗抗光抑制的能力与叶黄素循环密切相关。  相似文献   

4.
investigated through chlorophyll fluorescence parameters in morning glory (Ipomoea setosa) leaves, which were dipped into water, dithiothreitol (DTT) and lincomycin (LM), respectively. During the stress, both the xanthophyll cycle and D1 protein turnover could protect PSI from photoinhibition. In DTT leaves, non-photochemical quenching (NPQ) was inhibited greatly and the oxidation level of P700 (P700+) was the lowest one. However, the maximal photochemical efficiency of PSII (Fv/Fm) in DTT leaves was higher than that of LM leaves and was lower than that of control leaves. These results suggested that PSI was more sensitive to the loss of the xanthophyll cycle than PSII under high irradiance. In LM leaves, NPQ was partly inhibited, Fv/Fm was the lowest one among three treatments under high irradiance and P700+ was at a similar level as that of control leaves. These results implied that inactivation of PSII reaction centers could protect PSI from further photoinhibition. Additionally, the lowest of the number of active reaction centers to one inactive reaction center for a PSII cross-section (RC/CSo), maximal trapping rate in a PSII cross-section (TRo/CSo), electron transport in a PSII cross-section (ETo/CSo) and the highest of 1-qP in LM leaves further indicated that severe photoinhibition of PSII in LM leaves was mainly induced by inactivation of PSII reaction centers, which limited electrons transporting to PSI. However, relative to the LM leaves the higher level of RC/CSo, TRo/CSo, Fv/Fm and the lower level of 1-qP in DTT leaves indicated that PSI photoinhibition was mainly induced by the electron accumulation at the PSI acceptor side, which induced the decrease of P700+ under high irradiance.  相似文献   

5.
We examined the photosynthetic responses to photoinhibition in dehydrated leaves of hot pepper (Capsicum annuum L.). Stress was induced by immersing the roots of whole plants in Hoaglands solution containing polyethylene glycol (PEG) under high light (900 μmol photons m-2 · s-1). This PEG-treatment lowered the leaf water potential and the maximal rate of photosynthetic O2 evolution (Pmax) linearly, in a time-dependent manner, to about 50% inhibition after 6 h. Pmax also decreased linearly as the period of high-light treatment lengthened. That inhibitory response was not as extreme, showing about 30% inhibition after 6 h. However, when the treatments of dehydration and high light were simultaneously administered, Pmax decreased more rapidly, in a synergistic fashion, showing about 90% inhibition within 2 h. Dehydration, in contrast to the light treatment, did not lower the maximal photochemical efficiency (Fv/Fm). Furthermore, this decline in Fv/Fm for light-treated, dehydrated leaves was almost identical to the response of photoinhibited leaves that were not dehydrated. Similar changes were observed in the number of functional PSII complexes. The decrease in Pmax and the amount of functional PSII was linearly correlated in photoinhibited leaves, but not in dehydrated leaves, regardless of light treatment. Therefore, we have demonstrated that exacerbated photoinhibition in dehydrated leaves occurs without an incremental loss of functional PSII.  相似文献   

6.
To determine whether the net loss of D1 protein is the main cause of photoinhibition of photosynthesis in wheat leaves under field conditions in the absence of any environmental stress other than strong sunlight, the D1 protein content, photosynthetic evolution of oxygen and chlorophyll a fluorescence parameters were measured in field grown wheat leaves. After exposure to midday strong light for about 3 h, apparent photosynthetic quantum efficiency (Φ), Fv/Fm and Fo in wheat leaves declined, and these parameters recovered almost completely 1 h after transfer to the weak light of 30~40 ttmol photons · m-2 · s-1. No evident change in the D1 protein content was observed in the leaves after exposure to midday strong light for 3 h. After 3 hours exposure to strong light, the slow-relaxed fluorescence quenching in the leaves treated with streptomycin (SM) increased much more than that in the control leaves, but there was no effect SM on the recovery of Fv/Fm and F0; dithiothretol (DTT) treatment enhanced photoinhibition of photosynthesis and reduced the D1 protein content in the leaves after exposure to midday strong light. These results indicated that under field conditions with no environmental stress other than strong sunlight, photoinhibition of photosynthesis in wheat leaves was not due to the net loss of D1 protein, and it could be attributed mainly by the increased nonradiative energy dissipation.  相似文献   

7.
A possible implication of the plastid NADH-plastoquinone-oxidoreductase (Ndh) complex in the response against ozone-mediated oxidative stress in barley (Hordeum vulgare L.) leaves was investigated. After a 4 h treatment, exposure of barley seedlings to moderate ozone concentrations produced leaf-age-dependent increases in lipid peroxidation, peroxidase, and Ndh complex activities in the thylakoid membranes. A significant amount and activity of the Ndh complex were detected in mature barley leaves, but not in young barley leaves. In fact, young barley leaves behaved like ndh-deficient leaves in most of the aspects studied. When plants were exposed to photo-oxidative light after ozone fumigation, the recovery of Fv/Fm was lower in young leaves than in mature leaves. Ozone treatment significantly decreased non-photochemical quenching (qN) in young leaves, but not in mature leaves. Mature leaves showed higher levels of the energy (DeltamuH+) dependent (qE) component of qN. Treatment with antimycin A, an inhibitor of cyclic electron flow, increased the decay of qN produced by ozone in young leaves, but not in mature ones. The reduction state of plastoquinone increased after ozone treatment in mature dark-adapted leaves and was strongly quenched by far red light. It is proposed that the function of the Ndh complex helps the maintenance of qN, probably through the poising of the redox steady-state level of the intersystem carriers and then by optimizing the rate of cyclic electron flow. This should constitute an age-dependent early response in barley leaves, by contributing to minimize photoinhibition in the presence of ozone and high light.  相似文献   

8.
Effect of photoinhibition of sorghum leaves and isolated chloroplasts on chlorophyll fluorescence, peroxidation of thylakoid lipids and activity of antioxidant enzymes were studied. Photoinhibition of intact leaves and isolated chloroplasts decreased Fv/Fm ratio and qP, while qN increased. Photoinhibitory damage was more at 5 degrees C than at 30 degrees or 50 degrees C. Peroxidation of thylakoid lipids was 5 times greater when photoinhibited at 50 degrees C compared to control. Photoinhibition of chloroplasts under low oxygen condition or when supplemented with anti-oxidants (beta-carotene, ascorbate and GSH) resulted in significantly less damage to photosynthesis (Fv/Fm ratio) and peroxidation level. Photoinhibition also resulted in many fold increase in the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and decrease in catalase. Data presented here suggest that photoinhibition resulted in production of oxygen radicals and photoinhibition of chloroplasts in the presence of low oxygen level or when supplemented with antioxidants decreased the damage to Fv/Fm ratio and peroxidation level to a great extent since former prevented the formation of oxygen radicals and later could scavenge the oxygen radicals thus the protection. Increase activity of SOD and APX may also be to metabolise the oxygen radicals produced during photoinhibition treatment, thereby, protecting the seedlings against photooxidative damage.  相似文献   

9.
水淹对水芹叶片结构和光系统II光抑制的影响   总被引:3,自引:0,他引:3  
通过探讨在水淹条件下水芹(Oenanthe javanica)叶片结构的变化以及出水对其光系统II功能和光抑制的影响, 阐明水芹光合机构在水淹条件下及出水后死亡的可能原因。结果表明: 水淹条件下新生沉水功能叶光系统II(PSII)最大光化学效率(Fv/Fm) 、电子传递活性与对照叶片差异很小, 但水淹使气生功能叶的Fv/Fm显著降低; 植株总生物量呈负增长趋势; 活体弱光条件下, 沉水叶出水后2小时叶片相对含水量(RWC)和Fv/Fm无显著变化; 中等光强和强光条件下其RWC和Fv/Fm迅速降低; 离体条件下, 5小时的中等光强对沉水叶的Fv/Fm影响不显著, 在随后的弱光下能恢复到出水时的初始状态; 强光能使沉水叶的Fv/Fm大幅降低, 且弱光下不能恢复到出水时的初始水平; 在解剖结构上, 水芹沉水叶的叶片总厚度、上下表皮厚度和气孔大小都显著低于气生叶, 而且沉水叶没有明显的栅栏组织分化, 但是沉水叶上表皮的气孔密度显著高于气生叶。研究结果表明, 水淹使水芹原气生叶PSII功能迅速衰退, 但对新生沉水叶片影响很小。水芹植株出水后, 沉水叶片结构变化使其在光下保水能力下降, 而强光导致了光合机构的光抑制和反应中心失活。田间条件下两者共同作用则加剧了对叶片光合机构的破坏, 进而致使其死亡。  相似文献   

10.
We investigated the effects of low-dose inplanta irradiation on red pepper plants treated with gamma rays of 2, 4, 8, and 16 Gy. Growth was stimulated at 2 and 4 Gy but inhibited at 8 and 16 Gy. Photochemical quenching (qP) increased slightly in all treatment groups for 1 d after irradiation (DAl), whereas non-photochemical quenching (NPQ) decreased more noticeably. These changes in qP and NPQ were transient and had almost recovered to the control level by 2 DAl. Although carotenoid pigments also fluctuated during the experimental period, chlorophylls were almost entirely insensitive to the gamma rays. Irradiation also partially protected leaves from a decrease in photochemical efficiency (Fv/Fm) under conditions of UV-B (2.2 W m-2) and high light intensity (800 μmol m-2 s-1). This enhanced stress resistance could be partly explained by higher levels of SOD and APX activities, as well as ascorbate content. Our results demonstrate for the first time that the carotenoid pigments are the most radio-sensitive and fastest recovering compounds in plants, and that SOD, APX, and ascorbate are important inducible factors for improving stress resistance through the use ofin planta gamma-irradiation.  相似文献   

11.
During recovery from chilling-induced photoinhibition in rice leaves, we compared the reactivation kinetics of PSII photochemical efficiency (Fv/Fm) with that of zeaxanthin (Z) epoxidation and the dephosphorylation of CP34 (i.e., the phosphorylated form of CP29). The latter two processes were kinetically similar to the slow increase in Fv/Fm measured in our control leaves. However, the rate of Z epoxidation was significantly retarded by an epoxidase inhibitor, 5 mM salicylaldoxime (SA), without any significant changes in the processes of PSII reactivation and CP34 dephosphorylation. When chilled leaves were incubated at 10°C in the dark, both reactivation and dephosphorylation were significantly blocked, but Z epoxidation was not. Finally, we observed that the kinetics of CP34 dephosphorylation matched very well with those of PSII recovery in two rice cultivars with different chilling sensitivities. These results suggest that PSII reactivation from low-temperature photoinhibition is more closely related to CP34 dephosphorylation than to Z epoxidation.  相似文献   

12.
冷锻炼对甜椒叶片光合作用及其低温光抑制的影响   总被引:5,自引:1,他引:4  
以冷敏感植物甜椒 (CapsicumannuumL .)抗冷性不同的两个品种为试材 ,利用CIRAS 1光合测定系统和FMS2调制式荧光仪 ,在控温控光条件下分析比较了冷锻炼苗与未经锻炼苗的叶片光合特性、叶绿素荧光参数对温度的响应。结果表明 ,随着温度的降低 ,无论是否经过锻炼 ,低温主要通过抑制碳同化能力来影响光合作用 ,并使光能过剩 ,导致低温光抑制。提高环境CO2 浓度以增强暗反应对光能的利用 ,低温光抑制减轻。 5d的亚适温锻炼过程中甜椒叶片已发生一定程度的光抑制 ,但锻炼苗叶片能在低温下维持较高的光系统II光化学效率(ФPSII)、光化学猝灭系数 (qP)和光适应下光系统II最大光化学效率 (Fv′/Fm)值 ;冷锻炼提高了两品种低温下对光抑制的抗性 ,而且对抗冷品种的作用效果更明显  相似文献   

13.
研究6-BA预处理对低温(15℃/5℃)弱光(100μmol·m^-2·s^-1)下辣椒品种‘湘研16号’幼苗叶片中叶绿素a荧光参数和膜脂过氧化影响。结果表明,0.08mmol·L^-16-BA减缓低温弱光下辣椒幼苗光系统II(PSII)最大光化学效率(Fv/Fm)、PSH实际光化学效率(ΦPSII)和PSII反应中心光能捕获效率(Fv’/Fm’)的下降以及叶片膜透性和丙二醛(malondialdehyde,MDA)含量的增加,但是提高了超氧化物歧化酶(superoxidedismutase,SCD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)以及抗坏血酸过氧化物酶(ascorbate peroxidase,APX)的活性。  相似文献   

14.
通过探讨在水淹条件下水芹(Oenanthe javanica)叶片结构的变化以及出水对其光系统II功能和光抑制的影响,阐明水芹光合机构在水淹条件下及出水后死亡的可能原因。结果表明:水淹条件下新生沉水功能叶光系统Ⅱ(PSⅡ)最大光化学效率(Fv/Fm)、电子传递活性与对照叶片差异很小,但水淹使气生功能叶的Fv/Fm显著降低;植株总生物量呈负增长趋势;活体弱光条件下,沉水叶出水后2小时叶片相对含水量(RWC)和Fv/Fm无显著变化;中等光强和强光条件下其RWC和Fv/Fm迅速降低;离体条件下,5小时的中等光强对沉水叶的Fv/Fm影响不显著,在随后的弱光下能恢复到出水时的初始状态;强光能使沉水叶的Fv/Fm大幅降低,且弱光下不能恢复到出水时的初始水平;在解剖结构上,水芹沉水叶的叶片总厚度、上下表皮厚度和气孔大小都显著低于气生叶,而且沉水叶没有明显的栅栏组织分化,但是沉水叶上表皮的气孔密度显著高于气生叶。研究结果表明,水淹使水芹原气生叶PSⅡ功能迅速衰退,但对新生沉水叶片影响很小。水芹植株出水后,沉水叶片结构变化使其在光下保水能力下降,而强光导致了光合机构的光抑制和反应中心失活。田间条件下两者共同作用则加剧了对叶片光合机构的破坏,进而致使其死亡。  相似文献   

15.
 通过测定西双版纳热带雨林冠层树种绒毛番龙眼(Pometia tomentosa)完全伸展嫩叶和成熟叶的叶片解剖、生理特征和雨季晴天自然条件下叶绿素a荧光以及午间强光对部分保护酶活性和膜脂过氧化作用的影响,探讨了两种不同发育阶段叶片光合作用的光抑制与强光和温度的关系。结果表明:绒毛番龙眼全展嫩叶和成熟叶表现出明显的解剖和生理特征差异。与全展嫩叶相比,成熟叶的叶片较厚、叶绿素含量高、气孔导度大、羧化效率高、最大净光合速率和光饱和点高,而气孔密度和保卫细胞长度没有显著差别。在雨季晴天自然条件下,午间最高光强可达2 200 μmol·m-2·s-1以上,最高叶温比气温高7~8 ℃,而成熟叶片的最高温度比全展嫩叶高1.5~2 ℃。上午随光强的增大,两种叶片的非光化学猝灭系数(NPQ)增大,PSⅡ原初光化学效率(Fv/Fm)、实际光化学效率[(Fm′_Fs)/Fm′]逐渐减小,在15∶30左右达最小。下午随着光强的减弱,Fv/Fm逐渐恢复,在傍晚基本恢复到清晨值。初始荧光(F0)在一天中变化很小。这表明绒毛番龙眼叶片光抑制是非辐射能量耗散增加引起的保护光合机构免受光破坏的保护性反应,而非光破坏。全展嫩叶比成熟叶有较低的光化学效率和非辐射耗散能力,对强光和高温处理的敏感性也较强,但在自然条件下一天中的光抑制程度与成熟叶没有显著差别。田间午间强光导致两种叶片的保护酶活性(超氧化物歧化酶,SOD;抗坏血酸过氧化物酶,APX)升高,而H2O2含量变化较小。其中,全展嫩叶的保护酶活性高,丙二醛(MDA)含量低。这表明自然条件下,与成熟叶相比,绒毛番龙眼全展嫩叶通过较低的光能利用效率、较低的叶温和高的保护酶活性减轻了强光高温的光抑制程度。  相似文献   

16.
Under 30-min high irradiance (1500μmol m^-2 s^-1), the roles of the xanthophyll cycle and D1 protein turnover were investigated through chlorophyll fluorescence parameters in morning glory (Ipomoea setosa) leaves, which were dipped into water, dithiothreitol (DTT) and lincomycin (LM), respectively. During the stress, both the xanthophyll cycle and D1 protein turnover could protect PSI from photoinhibition. In DTT leaves, non-photochemical quenching (NPQ) was inhibited greatly and the oxidation level of P700 (P700^+) was the lowest one. However, the maximal photochemical efficiency of PSII (Fv/Fm) in DTT leaves was higher than that of LM leaves and was lower than that of control leaves. These results suggested that PSI was more sensitive to the loss of the xanthophyll cycle than PSII under high irradiance. In LM leaves, NPQ was partly inhibited, Fv/Fm was the lowest one among three treatments under high irradiance and P700^+ was at a similar level as that of control leaves. These results implied that inactivation of PSII reaction centers could protect PSI from further photoinhibition. Additionally, the lowest of the number of active reaction centers to one inactive reaction center for a PSII cross-section (RC/CSo), maximal trapping rate in a PSll cross-section (TRo/CSo), electron transport in a PSll cross-section (ETo/CSo) and the highest of 1-qP in LM leaves further indicated that severe photoinhibition of PSII in LM leaves was mainly induced by inactivation of PSII reaction centers, which limited electrons transporting to PSh However, relative to the LM leaves the higher level of RC/CSo, TRo/CSo, Fv/Fm and the lower level of 1-qP in DTT leaves indicated that PSI photoinhibition was mainly induced by the electron accumulation at the PSI acceptor side, which induced the decrease of P700^+ under high irradiance.  相似文献   

17.
Physiological indices related to the efficiency ( Fv/Fm ) of light energy conversion in PSⅡ and the peroxidation of membrane lipid were measured in leaves of Oryza sativa L. sp. indica rice cv. “Shanyou 63” and sp. japonica rice cv. “9516” under different temperatures and light intensities for 4 days. No changes in Fv/Fm and membrane lipid peroxidation product (MDA) were observed, so neither photoinhibition nor photooxidation happened in both rice cultivars under moderate temperature and medium light intensity. However, Fv/Fm dropped obviously with no change in MDA contents, and photoinhibition appeared in indica rice cv. “Shanyou 63” under medium temperature and strong light intensity. Furthermore, both photoinhibition and photooxidation were observed in two rice cultivars under chilling temperature and strong light intensity. Experiments with inhibitors under chilling temperature and strong light intensity showed that indica rice had a decrease in D1 protein content and SOD activity, and the extent of inhibition of xanthophyll cycle and nonphotochemical quenching ( qN ) was larger, and a higher level of MDA was observed. The photoinhibition and photooxidation in indica rice were more distinct as compared with japonica rice. The authors suggested that PSⅡ light energy conversion efficiency ( Fv/Fm ) and membrane lipid peroxidation were the key indices for the detection of photooxidation.  相似文献   

18.
Recovery of photosynthesis in winter-stressed Scots pine   总被引:9,自引:5,他引:4  
Abstract. . Winter-induced inhibition of photosynthesis in Scots pine (Pinns sylvestris L.) is caused by the combined effects of light and freezing temperatures; light causes photoinhibition of photosystem II (Strand & Oquist, 1985b, Physiologic Plantarum, 65 , 117–123), whereas frost causes inhibition of enzymatic steps of photosynthesis (Strand & Öquist, 1988, Plant, Cell & Environment, 11 , 231–238). To reveal limiting steps during recovery from winter stress, the potential of photosynthesis to recover and the actual recovery outdoors during spring, were studied in Scots pine. Studies of light dependent O2-evolution under saturating CO2 and recordings of room temperature fluorescence induction kinetics were used. When branches of pine, in February and March, were brought into the laboratory and kept at 18°Cand 100μmol m?2 s?1, light saturated rates and apparent quantum yields of photo-synthetic O2-evolution recovered fully within approximately 48h. The photochemical efficiency of photosystem II, as measured by Fv/Fm ratios, recovered fully within 24h after an initial lag-phase of 2-3 h. Under natural winter conditions, the Fv/Fm ratio decreased more in exposed than in shaded pine, whereas the efficiency of photosynthesis was similarly inhibited in exposed and shadedpine. However, when recovery from winter stress occurred during spring, the Fv/Fm ratios of both shaded and exposed pine recovered well before photosynthesis. It is concluded that the light-induced photoinhibition component of winter stress in photosynthesis of pine recovers well before the frost induced component(s) of winter stress. In this context, reversible photoinhibition of photosynthesis in evergreen conifers is considered as a dynamic down-regulation of photosystem II to prevent more severe photodynamic damage of the thylakoid membrane when photosynthesis is inhibited by frost.  相似文献   

19.
In different marine red algae (Chondrus crispus, Delesseria sanguinea, Membranoptera alata, Phycodrys rubens, Phyllophora truncata, Polyneura hilliae) photoinhibition of photosynthesis has been investigated by means of both fluorescence and oxygen measurements. Measurements of absolute oxygen production show that photoinhibition causes a decline in the initial slope and in the rate of bending of the fluence rate-response curve (i.e. the photosynthetic efficiency at non-saturating fluence rates), as well as a decline in the photosynthetic capacity (Pm) at saturating fluence rates. Fluorescence data (Fv/Fm) were consistent with the results of oxygen measurements. Under excessive light photoinhibition protects photosynthesis against photo-damage in red algae. However, an increase in the initial fluorescence (Fo) after photoinhibitory treatment indicates that it could not prevent photodamage entirely. Action spectra of photoinhibition demonstrate that the main photoinhibition site in Polyneura hiliae is PS II, because far red light absorbed by PS I was ineffective. The strong increase of Fo in the blue wavelength range and the slight and partial recovery in weak blue light indicate that blue light especially causes photodamage. Recovery of photosynthesis requires dim white light conditions. Experiments with monochromatic light also show a wavelength dependence of recovery. Moreover, the recovery of photosynthesis after a photoinhibitory treatment is strongly temperature dependent, indicating participation of enzymatic processes. The comparison of fluorescence and oxygen measurement of the recovery shows different results in some species. The rate of oxygen production in red control light increased immediately after photoinhibited algae were exposed to weak light conditions. Surprisingly, the ratio of variable to maximum fluorescence (Fv/Fm) of Phyllophora truncata and the maximum fluorescence (Fm) of Polyneura hilliae show first a delay of the recovery under weak light conditions. Thus, in recovery experiments fluorescence and oxygen data are not quite consistent.  相似文献   

20.
以烟草Nicotianatabacum抗旱品种NC82和干旱敏感品种云烟87幼苗为材料,利用PEG-6000对幼苗进行干旱胁迫处理,研究干旱胁迫对烟草不同品种Fv/Fm、SOD活性、POD活性、MDA含量等生理生化指标及NtDEGP5基因表达的影响,为进一步开展NtDEGP5基因的功能研究提供依据。结果表明,干旱胁迫对烟苗的Fv/Fm、SOD活性、POD活性、MDA含量有影响,随着干旱的持续,Fv/Fm呈逐渐下降趋势,POD、SOD活性和MDA含量呈先升高后降低的趋势;不同品种对干旱胁迫的响应有差异,在干旱胁迫0~9 h,云烟87幼苗的Fv/Fm降幅大于NC82,POD、SOD活性、MDA含量的增幅小于NC82,胁迫12h后与对照差异不显著。干旱胁迫下不同品种、不同器官间的Nt DEGP5基因表达有差异,云烟87幼苗根、茎、叶中的表达量均较低,NC82幼苗根中的表达量较低,但干旱胁迫9~12 h后叶和茎的表达量较高。NC82幼苗叶片NtDEGP5基因表达量与Fv/Fm、POD活性、MDA含量呈显著正相关。Fv/Fm、SOD活性、POD活性、MDA含量可作为烟草苗期抗旱性评价指标,NtD...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号