首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ~1.7 μm2/s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ~0.1 μm2/s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties.  相似文献   

2.
3.
4.
Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell’s proliferation potential.  相似文献   

5.
This review examines acyclic nucleoside analogs as therapeutic agents, potential progenitor candidates to RNA, and novel building blocks for nucleic‐acid nanotechnology. Together, these areas of research provide new insights into the structural and functional properties of nucleic acids and suggest new paradigms for nucleic acid self‐assembly.  相似文献   

6.
7.
8.
The Turnover of Nucleic Acids in Lemna minor   总被引:18,自引:12,他引:6       下载免费PDF全文
A method is described for measuring the rate constants of both synthesis and degradation of nucleic acids in sterile growing cultures of Lemna minor which avoids the difficulties of environmental changes in isotope uptake and precursor pool size. In fast growing cultures the half-life of ribosomal RNA has been estimated to be between 5 and 8 days.  相似文献   

9.

Background

Architectural proteins have important roles in compacting and organising chromosomal DNA. There are two potential histone counterpart peptide sequences (Alba1 and Alba2) in the Aeropyrum pernix genome (APE1832.1 and APE1823).

Methodology/Principal Findings

These two peptides were expressed and their interactions with various DNAs were studied using a combination of various experimental techniques: surface plasmon resonance, UV spectrophotometry, circular dichroism–spectropolarimetry, gel-shift assays, and isothermal titration calorimetry.

Conclusions/Significance

Our data indicate that there are significant differences in the properties of the Alba1 and Alba2 proteins. Both of these Alba proteins can thermally stabilise DNA polynucleotides, as seen from UV melting curves. Alba2 and equimolar mixtures of Alba1/Alba2 have greater effects on the thermal stability of poly(dA-dT).poly(dA-dT). Surface plasmon resonance sensorgrams for binding of Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 to DNA oligonucleotides show different binding patterns. Circular dichroism indicates that Alba2 has a less-ordered secondary structure than Alba1. The secondary structures of the Alba proteins are not significantly influenced by DNA binding, even at high temperatures. Based on these data, we conclude that Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 show different properties in their binding to various DNAs.  相似文献   

10.
Secondary or tertiary structure in an mRNA, such as a pseudoknot, can create a physical barrier that requires the ribosome to generate additional force to translocate. The presence of such a barrier can dramatically increase the probability that the ribosome will shift into an alternate reading frame, in which a different set of codons is recognized. The detailed biophysical mechanism by which frameshifting is induced remains unknown. Here we employ optical trapping techniques to investigate the structure of a −1 programmed ribosomal frameshift (−1 PRF) sequence element located in the CCR5 mRNA, which encodes a coreceptor for HIV-1 and is, to our knowledge, the first known human −1 PRF signal of nonviral origin. We begin by presenting a set of computationally predicted structures that include pseudoknots. We then employ what we believe to be new analytical techniques for measuring the effective free energy landscapes of biomolecules. We find that the −1 PRF element manifests several distinct unfolding pathways when subject to end-to-end force, one of which is consistent with a proposed pseudoknot conformation, and another of which we have identified as a folding intermediate. The dynamic ensemble of conformations that CCR5 mRNA exhibits in the single-molecule experiments may be a significant feature of the frameshifting mechanism.  相似文献   

11.
Secondary or tertiary structure in an mRNA, such as a pseudoknot, can create a physical barrier that requires the ribosome to generate additional force to translocate. The presence of such a barrier can dramatically increase the probability that the ribosome will shift into an alternate reading frame, in which a different set of codons is recognized. The detailed biophysical mechanism by which frameshifting is induced remains unknown. Here we employ optical trapping techniques to investigate the structure of a −1 programmed ribosomal frameshift (−1 PRF) sequence element located in the CCR5 mRNA, which encodes a coreceptor for HIV-1 and is, to our knowledge, the first known human −1 PRF signal of nonviral origin. We begin by presenting a set of computationally predicted structures that include pseudoknots. We then employ what we believe to be new analytical techniques for measuring the effective free energy landscapes of biomolecules. We find that the −1 PRF element manifests several distinct unfolding pathways when subject to end-to-end force, one of which is consistent with a proposed pseudoknot conformation, and another of which we have identified as a folding intermediate. The dynamic ensemble of conformations that CCR5 mRNA exhibits in the single-molecule experiments may be a significant feature of the frameshifting mechanism.  相似文献   

12.
13.
Abstract

Locked nucleic acid (LNA) is a conformationally constrained DNA analogue that exhibits exceptionally high affinity for complementary DNA and RNA strands. The deoxyribose sugar is modified by a 2′-O, 4′-C oxymethylene bridge, which projects into the minor groove. In addition to changing the distribution of functional groups in the groove and the overall helical geometry relative to unmodified DNA, the bridge likely alters the hydration of the groove. Each of these factors will impact the ability of small molecules, proteins and other nucleic acids to recognize LNA-containing hybrids. This report describes the ability of several DNA-intercalating ligands and one minor groove binder to recognize LNA-DNA and LNA-RNA hybrid duplexes. Using UV-vis, fluorescence and circular dichroism spectroscopies, we find that the minor groove binder as well as the intercalators exhibit significantly lower affinity for LNA-containing duplexes. The lone exception is the alkaloid ellipticine, which intercalates into LNA-DNA and LNA-RNA duplexes with affinities comparable to unmodified DNA-DNA and RNA-DNA duplexes.  相似文献   

14.
The double ring-shaped chaperonin GroEL binds a wide range of non-native polypeptides within its central cavity and, together with its cofactor GroES, assists their folding in an ATP-dependent manner. The conformational cycle of GroEL/ES has been studied extensively but little is known about how the environment in the central cavity affects substrate conformation. Here, we use the von Hippel-Lindau tumor suppressor protein VHL as a model substrate for studying the action of the GroEL/ES system on a bound polypeptide. Fluorescent labeling of pairs of sites on VHL for fluorescence (Förster) resonant energy transfer (FRET) allows VHL to be used to explore how GroEL binding and GroEL/ES/nucleotide binding affect the substrate conformation. On average, upon binding to GroEL, all pairs of labeling sites experience compaction relative to the unfolded protein while single-molecule FRET distributions show significant heterogeneity. Upon addition of GroES and ATP to close the GroEL cavity, on average further FRET increases occur between the two hydrophobic regions of VHL, accompanied by FRET decreases between the N- and C-termini. This suggests that ATP- and GroES-induced confinement within the GroEL cavity remodels bound polypeptides by causing expansion (or racking) of some regions and compaction of others, most notably, the hydrophobic core. However, single-molecule observations of the specific FRET changes for individual proteins at the moment of ATP/GroES addition reveal that a large fraction of the population shows the opposite behavior; that is, FRET decreases between the hydrophobic regions and FRET increases for the N- and C-termini. Our time-resolved single-molecule analysis reveals the underlying heterogeneity of the action of GroES/EL on a bound polypeptide substrate, which might arise from the random nature of the specific binding to the various identical subunits of GroEL, and might help explain why multiple rounds of binding and hydrolysis are required for some chaperonin substrates.  相似文献   

15.
16.
Corn seeds were treated with 0.01 M sodium fluoride for various time periods. The treated seeds were germinated and grown until the seedling roots reached a standard size of 12±3 mm. Analyses were made for RNA and DNA contents of 3-mm seedling root tips. Determinations also were made for growth rate, rate of cell elongation, cell multiplication, and tissue maturity of 12-mm roots. RNA contents of 3-mm root tips were found to be directly proportional to the growth rates of the entire seedling root of corn seeds treated with sodium fluoride for various periods of time. The RNA content was reduced on a cell basis and was independent of the root tip cell number. The amount of DNA was not related to the growth rate of the intact seedling roots. Since fluoride reduced the number of mitotic figures, it was likely that fluoride inhibited DNA synthesis during the interphase of the mitotic cycle. Growth by cell multiplication was inhibited more than that by cell elongation in the sample treated with fluoride for a shorter period. The two types of growth, however, showed a similar level of growth reduction in the sample treated with fluoride for a longer period. Fluoride seemed to reduce the rates of cellular elongation and multiplication not more than about 40 per cent of the control value in these tissues under present experimental conditions. Fluoride also induced maturity in the seedling roots in proportion to the periods of fluoride treatment.  相似文献   

17.
Most active biopolymers are dynamic structures; thus, ensembles of such molecules should be characterized by distributions of intra- or intermolecular distances and their fast fluctuations. A method of choice to determine intramolecular distances is based on Förster resonance energy transfer (FRET) measurements. Major advances in such measurements were achieved by single molecule FRET measurements. Here, we show that by global analysis of the decay of the emission of both the donor and the acceptor it is also possible to resolve two sub-populations in a mixture of two ensembles of biopolymers by time resolved FRET (trFRET) measurements at the ensemble level. We show that two individual intramolecular distance distributions can be determined and characterized in terms of their individual means, full width at half maximum (FWHM), and two corresponding diffusion coefficients which reflect the rates of fast ns fluctuations within each sub-population. An important advantage of the ensemble level trFRET measurements is the ability to use low molecular weight small-sized probes and to determine nanosecond fluctuations of the distance between the probes. The limits of the possible resolution were first tested by simulation and then by preparation of mixtures of two model peptides. The first labeled polypeptide was a relatively rigid Pro7 and the second polypeptide was a flexible molecule consisting of (Gly-Ser)7 repeats. The end to end distance distributions and the diffusion coefficients of each peptide were determined. Global analysis of trFRET measurements of a series of mixtures of polypeptides recovered two end-to-end distance distributions and associated intramolecular diffusion coefficients, which were very close to those determined from each of the pure samples. This study is a proof of concept study demonstrating the power of ensemble level trFRET based methods in resolution of subpopulations in ensembles of flexible macromolecules.  相似文献   

18.
Ion channels are dynamic multimeric proteins that often undergo multiple unsynchronized structural movements as they switch between their open and closed states. Such structural changes are difficult to measure within the context of a native lipid bilayer and have often been monitored via macroscopic changes in Förster resonance energy transfer (FRET) between probes attached to different parts of the protein. However, the resolution of this approach is limited by ensemble averaging of structurally heterogeneous subpopulations. These problems can be overcome by measurement of FRET in single molecules, but this presents many challenges, in particular the ability to control labeling of subunits within a multimeric protein with acceptor and donor fluorophores, as well as the requirement to image large numbers of individual molecules in a membrane environment. To address these challenges, we randomly labeled tetrameric KirBac1.1 potassium channels, reconstituted them into lipid nanodiscs, and performed single-molecule FRET confocal microscopy with alternating-laser excitation as the channels diffused in solution. These solution-based single-molecule FRET measurements of a multimeric ion channel in a lipid bilayer have allowed us to probe the structural changes that occur upon channel activation and inhibition. Our results provide direct evidence of the twist-to-shrink movement of the helix bundle crossing during channel gating and demonstrate how this method might be applied to real-time structural studies of ion channel gating.  相似文献   

19.
Many time-resolved single-molecule biophysics experiments seek to characterize the kinetics of biomolecular systems exhibiting dynamics that challenge the time resolution of the given technique. Here, we present a general, computational approach to this problem that employs Bayesian inference to learn the underlying dynamics of such systems, even when they are much faster than the time resolution of the experimental technique being used. By accurately and precisely inferring rate constants, our Bayesian inference for the analysis of subtemporal resolution dynamics approach effectively enables the experimenter to super-resolve the poorly resolved dynamics that are present in their data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号