首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress induced by excessive production of reactive oxygen species (ROS) has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives–carboxyfullerenes–exhibits a strong free radical scavenging capacity. The permeation of C60-fullerene and its amphiphilic derivatives–C3-tris-malonic-C60-fullerene (C3) and D3-tris-malonyl-C60-fullerene (D3)–through a lipid bilayer mimicking the eukaryotic cell membrane was studied using molecular dynamics (MD) simulations. The free energy profiles along the normal to the bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for C60, C3 and D3 were calculated. We found that C60 molecules alone or in clusters spontaneously translocate to the hydrophobic core of the membrane and stay inside the bilayer during the whole period of simulation time. The incorporation of cluster of fullerenes inside the bilayer changes properties of the bilayer and leads to its deformation. In simulations of the tris-malonic fullerenes we discovered that both isomers, C3 and D3, adsorb at the surface of the bilayer but only C3 tends to be buried in the area of the lipid headgroups forming hydrophobic contacts with the lipid tails. We hypothesize that such position has implications for ROS scavenging mechanism in the specific cell compartments.  相似文献   

2.
Due to the large number of possible applications of nanoparticles in cosmetic and medical products, the possible hazards of nanoparticles in the human body are a major concern. A worst-case scenario is that nanoparticles might cause health issues such as skin damage or even induce cancer. As a first step to study the toxicity of nanoparticles, we investigate the energy behaviour of a C60 fullerene interacting with a lipid bilayer. Using the 6–12 Lennard-Jones potential function and the continuous approximation, the equilibrium spacing between the two layers of a bilayer is predicted to be 3.36 ?. On assuming that there is a circular hole in the lipid bilayer, a relation for the molecular interaction energy is determined, involving the circular radius b of the hole and the perpendicular distance Z of the spherical fullerene from the hole. A graph of the minimum energy location Z min verses the hole radius b shows that a C60 fullerene first penetrates through a lipid bilayer when b > 6.81 ?, and shows a simple circular relation \textZmin2 + b2 = 6.812 {\text{Z}}_{{\min }}^2 + {b^{{2}}} = {6}.{8}{{1}^{{2}}} for Z min positive and b ≤ 6.81 ?. For b > 6.81, the fullerene relocates from the surface of the bilayer to the interior, and as the hole radius increases further it moves to the centre of the bilayer and remains there for increasing hole radii. Accordingly, our modelling indicates that at least for the system with no external forces, the C60 fullerene will not penetrate through the lipid bilayer but rather remains encased between the two layers at the mid-plane location.  相似文献   

3.
In the eye lens, the oxygen partial pressure is very low and the cholesterol (Chol) content in cell membranes is very high. Disturbance of these quantities results in cataract development. In human lens membranes, both bulk phospholipid-Chol domains and the pure Chol bilayer domains (CBDs) were experimentally detected. It is hypothesized that the CBD constitutes a significant barrier to oxygen transport into the lens. Transmembrane profiles of the oxygen diffusion-concentration product, obtained with electron paramagnetic resonance spin-labeling methods, allow evaluation of the oxygen permeability (PM) of phospholipid membranes but not the CBD. Molecular dynamics simulation can independently provide components of the product across any bilayer domain, thus allowing evaluation of the PM across the CBD. Therefore, to test the hypothesis, MD simulation was used. Three bilayers containing palmitoyl-oleoyl-phosphorylcholine (POPC) and Chol were built. The pure Chol bilayer modeled the CBD, the 1:1 POPC-Chol bilayer modeled the bulk membrane in which the CBD is embedded, and the POPC bilayer was a reference. To each model, 200 oxygen molecules were added. After equilibration, the oxygen concentration and diffusion profiles were calculated for each model and multiplied by each other. From the respective product profiles, the PM of each bilayer was calculated. Favorable comparison with experimental data available only for the POPC and POPC-Chol bilayers validated these bilayer models and allowed the conclusion that oxygen permeation across the CBD is ~ 10 smaller than across the bulk membrane, supporting the hypothesis that the CBD is a barrier to oxygen transport into the eye lens.  相似文献   

4.
The effect of entrapped β-cyclodextrin (β-CD) on the stability of multilamellar vesicles (MLVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), prepared by the dehydration-rehydration method, was studied by monitoring the release of 5(6)-carboxyfluorescein encapsulated into the liposomes. Different hydrophobic guests, such as Fullerene C60, have been incorporated into the POPC bilayer in order to modify the membrane composition. The kinetic results as well as ESI-MS measurements evidenced that the destabilizing activity of β-CD is due to the formation of β-CD inclusion complexes and the consequent removal of selected bilayer constituents from the liposomal membrane. Hence, when β-CD was added to the liposomes in the form of a strong, water-soluble 2:1 β-CD/C60 inclusion complex, such a destabilizing effect was not observed. However, the same β-CD/C60 inclusion complex does not form as a result of C60 extraction from the bilayer. This may be attributed either to the overwhelming concentration of POPC with respect to C60 and/or to the fact that C60 is largely aggregated in the bilayer. Turbidimetric and fluorimetric determinations of lamellarity and entrapped volume of the studied MLVs provided further evidence of the alteration of the liposomal bilayer as a consequence of the addition of β-CD and/or the presence of the studied guests.  相似文献   

5.
BackgroundStrong electric fields are known to affect cell membrane permeability, which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on how this affects the cell membrane permeability.MethodWe here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.Results and conclusionsWe show how oxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.General significanceThis study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.  相似文献   

6.
《Biophysical journal》2022,121(9):1593-1609
The lipid bilayer of eukaryotic cells’ plasma membrane is almost impermeable to small ions and large polar molecules, but its miniscule basal permeability in intact cells is poorly characterized. This report describes the intrinsic membrane permeability of A549 cells toward the charged molecules propidium (Pr2+) and ATP4?. Under isotonic conditions, we detected with quantitative fluorescence microscopy, a continuous low-rate uptake of Pr (~150 × 10?21 moles (zmol)/h/cell, [Pr]o = 150 μM, 32°C). It was stimulated transiently but strongly by 66% hypotonic cell swelling reaching an influx amplitude of ~1500 (zmol/h)/cell. The progressive Pr uptake with increasing [Pr]o (30, 150, and 750 μM) suggested a permeation mechanism by simple diffusion. We quantified separately ATP release with custom wide-field-of-view chemiluminescence imaging. The strong proportionality between ATP efflux and Pr2+ influx during hypotonic challenge, and the absence of stimulation of transmembrane transport following 300% hypertonic shock, indicated that ATP and Pr travel the same conductive pathway. The fluorescence images revealed a homogeneously distributed intracellular uptake of Pr not consistent with high-conductance channels expressed at low density on the plasma membrane. We hypothesized that the pathway consists of transiently formed water pores evenly spread across the plasma membrane. The abolition of cell swelling-induced Pr uptake with 500 μM gadolinium, a known modulator of membrane fluidity, supported the involvement of water pores whose formation depends on the membrane fluidity. Our study suggests an alternative model of a direct permeation of ATP (and other molecules) through the phospholipid bilayer, which may have important physiological implications.  相似文献   

7.
Dynamic clusters of lipid-anchored Ras proteins are important for high-fidelity signal transduction in cells. The average size of Ras nanoclusters was reported to be independent of protein expression levels, and cholesterol depletion is commonly used to test the raft-preference of nanoclusters. However, whether protein concentration and membrane domain stability affect Ras clustering in a reversible manner is not well understood. We used coarse-grained molecular dynamics simulations to examine the reversibility of the effects of peptide and cholesterol concentrations as well as a lipid domain-perturbing nanoparticle (C60) on the dynamics and stability of H-Ras lipid-anchor nanoclusters. By comparing results from these simulations with previous observations from the literature, we show that effects of peptide/cholesterol concentrations on the dynamics and stability of H-Ras peptide nanoclusters are reversible. Our results also suggest a correlation between the stabilities of lipid domains and Ras nanoclusters, which is supported by our finding that C60 penetrates into the liquid-disordered domain of the bilayer, destabilizing lipid domains and thereby the stability of the nanoclusters.  相似文献   

8.
The kinetics of osmotic water permeability in proteoliposomes containing 1-acid glycoprotein was investigated by means of stopped-flow spectrophotometry. A biphasic time-course of scattered light with time was registered. The rate constants calculated from fits to an exponential function in the first phase were proportional to the final medium osmolarity. The apparent second order rate constants Kapp (Osm-1 sec-1) were determined at different glycoprotein concentrations in the original mixture for preparation of proteoliposomes. The value of Kapp at lipid:glycoprotein weight ratio = 1 was plotted in Arrhenius coordinates. The calculated activation energy for water permeation through the lipid bilayer suggests that eventual channel mechanism may be involved due to the presence of glycoprotein molecule in the liposomes.  相似文献   

9.

Background  

Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs) consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm) embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP) ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined.  相似文献   

10.
This paper deals with the effect of different size gold nanoparticles on the fluidity of lipid membrane at different regions of the bilayer. To investigate this, we have considered significantly large bilayer leaflets and incorporated only one nanoparticle each time, which was subjected to all atomistic molecular dynamics simulations. We have observed that, lipid molecules located near to the gold nanoparticle interact directly with it, which results in deformation of lipid structure and slower dynamics of lipid molecules. However, lipid molecules far away from the interaction site of the nanoparticle get perturbed, which gives rise to increase in local ordering of the lipid domains and decrease in fluidity. The bilayer thickness and area per head group in this region also get altered. Similar trend, but with different magnitude is also observed when different size nanoparticle interact with the bilayer.  相似文献   

11.
We have previously shown that the PEGylated LPD (liposome-polycation-DNA) nanoparticles were highly efficient in delivering siRNA to the tumor with low liver uptake. Its mechanism of evading the reticuloendothelial system (RES) is reported here. In LPD, nucleic acids were condensed with protamine into a compact core, which was then coated by two cationic lipid bilayers with the inner bilayer stabilized by charge-charge interaction (also called the supported bilayer). Finally, a detergent-like molecule, polyethylene glycol (PEG)-phospholipid is post-inserted into the lipid bilayer to modify the surface of LPD. The dynamic light scattering (DLS) data showed that LPD had improved stability compared to cationic liposomes after incubation with a high concentration of DSPE-PEG2000, which is known to disrupt the bilayer. LPD prepared with a multivalent cationic lipid, DSGLA, had enhanced stability compared to those containing DOTAP, a monovalent cationic lipid, suggesting that stronger charge-charge interaction in the supported bilayer contributed to a higher stability. Distinct nanoparticle structure was found in the PEGylated LPD by transmission electron microscopy, while the cationic liposomes were transformed into tubular micelles. Size exclusion chromatography data showed that approximately 60% of the total cationic lipids, which were located in the outer bilayer of LPD, were stripped off during the PEGylation; and about 20% of the input DSPE-PEG2000 was incorporated into the inner bilayer with about 10.6 mol% of DSPE-PEG2000 presented on the particle surface. This led to complete charge shielding, low liver sinusoidal uptake, and 32.5% injected dose delivered to the NCI-H460 tumor in a xenograft model.  相似文献   

12.
In the present study, we designed and developed novel lipids that include (Z)-1-(Octadec-9-en-1-yl)-pyrrolidine (Cy5T), 1, 1-Di-((Z)-octadec-9-en-1-yl)pyrrolidin-1-ium iodide (Cy5), (Z)-1-(Octadec-9-en-1-yl)-piperidine (Cy6T), and 1, 1-Di-((Z)-octadec-9-en-1-yl) piperidin-1-ium iodide (Cy6) to enhance the transdermal permeation of some selected drugs. Firstly, we evaluated the transdermal permeation efficacies of these lipids as chemical permeation enhancers in vehicle formulations for melatonin, ß-estradiol, caffeine, α-MSH, and spantide using franz diffusion cells. Among them Cy5 lipid was determined to be the most efficient by increasing the transdermal permeation of melatonin, ß-estradiol, caffeine, α-MSH, and spantide by 1.5 to 3.26-fold more at the epidermal layer and 1.3 to 2.5-fold more at the dermal layer, in comparison to either NMP or OA. Hence we developed a nanoparticle system (cy5 lipid ethanol drug nanoparticles) to evaluate any further improvement in the drug penetration. Cy5 lipid formed uniformly sized nanoparticles ranging from 150–200 nm depending on the type of drug. Further, Cy5 based nanoparticle system significantly (p<0.05) increased the permeation of all the drugs in comparison to the lipid solution and standard permeation enhancers. There were about 1.54 to 22-fold more of drug retained in the dermis for the Cy5 based nanoparticles compared to OA/NMP standard enhancers and 3.87 to 66.67-fold more than lipid solution. In addition, epifluorescent microscopic analysis in rhodamine-PE permeation studies confirmed the superior permeation enhancement of LEDs (detection of fluorescence up to skin depth of 340 μm) more than lipid solution, which revealed fluorescence up to skin depth of only 260 μm. In summary the present findings demonstrate that i) cationic lipid with 5 membered amine heterocyclic ring has higher permeating efficacy than the 6 membered amine hertocyclic ring. ii) The nanoparticle system prepared with Cy5 showed significant (p<0.05) increase in the permeation of the drugs than the control penetration enhancers, oleic acid and NMP.  相似文献   

13.
ABSTRACT

Biomineralization by living organisms are common phenomena observed everywhere. Molluskan shells are representative biominerals that have fine microstructures with controlled morphology, polymorph, and orientation of CaCO3 crystals. A few organic molecules involved in the biominerals play important roles in the formation of such microstructures. Analyses of structure–function relationships for matrix proteins in biominerals revealed that almost all matrix proteins have an acidic region for the binding of calcium ion in CaCO3 crystals and interaction domains for other organic molecules. On the other hand, biomineralization of metal nanoparticles by microorganisms were also investigated. Gold nanoparticles and quantum dots containing cadmium were successfully synthesized by bacteria or a fungus. The analyses of components revealed that glycolipids, oligosaccharides, and lactic acids have key roles to synthesize the gold nanoparticle in Lactobacillus casei as reductants and dispersants. These researches about biomineralization will give new insights for material and environmental sciences in the human society.  相似文献   

14.
Thin films of fullerene C60 and molybdenum oxide (MoO3) are ubiquitously used as the electron acceptor material and hole extraction interfacial layer for the fabrication of organic photovoltaic (OPV) cells. It is well known that light exposure induces color changes in MoO3 (photochromism) and the formation of intermolecular bonds between C60 molecules (photopolymerization). The influence of these photoinduced reactions on the long‐term stability of OPV cells, however, has not previously been studied in detail. Here, a study and discussion of the early (<5 days) aging mechanisms occurring in illuminated ITO/MoO3/organic cyanine dye/C60/Alq3/Ag bilayer solar cells under nitrogen atmosphere is presented. A degradation process at the organic heterojunction is identified and the formation of Mo5+ species during illumination is found to adversely affect cell behavior. For these widely used materials, the results suggest that light processing is a first necessary step before OPV characteristics can be meaningfully rated.  相似文献   

15.
The transdermal route provides numerous advantages over conventional drug delivery routes. However, passive delivery of large molecules such as proteins through the skin is challenging due to its barrier function. Therefore, to design a successful formulation, molecular interaction of these proteins with constituent molecules present in the skin responsible for its barrier function, is necessary. In this study, we have shown through extensive computer simulations that the therapeutic protein, interferon alpha (INF), can be co-delivered through the skin using the gold nanoparticle. We carried out both steered (umbrella sampling) and unrestrained coarse-grained molecular dynamics simulation to show the molecular mechanism of absorption/permeation of protein on/through skin layer in the absence/presence of gold nanoparticle. According to the steered simulations, when INF was taken alone, the free energy minimum was observed at the head group of the skin layer, whereas, when co-delivered with AuNP, it was observed in the interior of the bilayer. Unrestrained simulations have also shown that INF was adsorbed on the skin lipid bilayer head group, while in presence of AuNP, it first complexed with the AuNP and then breached the barrier. The MD simulations thus established the transdermal delivery as a possible pathway for delivery of INF protein.  相似文献   

16.
We study here the permeability of the hydrophobic O2 molecule through a model DPPC bilayer at 323K and 350K, and of the trace amine p-tyramine through PC bilayers at 310K. The tyramine results are compared to previous experimental work at 298K. Nonequilibrium work methods were used in conjunction to simultaneously obtain both the potential of mean force (PMF) and the position dependent transmembrane diffusion coefficient, D(z), from the simulations. These in turn were used to calculate the permeability coefficient, P, through the inhomogeneous solubility-diffusion model. The results for O2 are consistent with previous simulations, and agree with experimentally measured P values for PC bilayers. A temperature dependence in the permeability of O2 through DPPC was obtained, with P decreasing at higher temperatures. Two relevant species of p-tyramine were simulated, from which the PMF and D(z) were calculated. The charged species had a large energetic barrier to crossing the bilayer of ~ 21 kcal/mol, while the uncharged, deprotonated species had a much lower barrier of ~ 7 kcal/mol. The effective in silico permeability for p-tyramine was calculated by applying three approximations, all of which gave nearly identical results (presented here as a function of the pKa). As the permeability value calculated from simulation was highly dependent on the pKa of the amine group, a further pKa study was performed that also varied the fraction of the uncharged and zwitterionic p-tyramine species. Using the experimental P value together with the simulated results, we were able to label the phenolic group as responsible for the pKa1 and the amine for the pKa2, that together represent all of the experimentally measured pKa values for p-tyramine. This agrees with older experimental results, in contrast to more recent work that has suggested there is a strong ambiguity in the pKa values.  相似文献   

17.

Background

Pathogenic bacteria specifically recognize extracellular matrix (ECM) molecules of the host (e.g. collagen, fibrinogen and fibronectin) through their surface proteins known as MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) and initiate colonization. On implantation, biomaterials easily get coated with these ECM molecules and the MSCRAMMs mediate bacterial adherence to biomaterials. With the rapid rise in antibiotic resistance, designing alternative strategies to reduce/eliminate bacterial colonization is absolutely essential.

Methods

The Rhusiopathiae surface protein B (RspB) is a collagen‐binding MSCRAMM of Erysipelothrix rhusiopathiae. It also binds to abiotic surfaces. The crystal structure of the collagen‐binding region of RspB (rRspB31–348) reported here revealed that RspB also binds collagen by a unique ligand binding mechanism called “Collagen Hug” which is a common theme for collagen‐binding MSCRAMMs of many Gram-positive bacteria. Here, we report the interaction studies between rRspB31–348 and silver nanoparticles using methods like gel shift assay, gel permeation chromatography and circular dichroism spectroscopy.

Results

The “Collagen Hug” mechanism was inhibited in the presence of silver nanoparticles as rRspB31–348 was unable to bind to collagen. The total loss of binding was likely because of rRspB31–348 and silver nanoparticle protein corona formation and not due to the loss of the structural integrity of rRspB31–348 on binding with nanoparticles as observed from circular dichroism experiments.

General significance

Interaction of rRspB31–348 with silver nanoparticle impaired its ligand binding mechanism. Details of this inhibition mechanism may be useful for the development of antimicrobial materials and antiadhesion drugs.  相似文献   

18.
Summary The permeability of rabbit gallbladder to hydrophilic nonelectrolytes, with molecular weights from 20 to 60,000, has been studied. Restriction in the diffusion of the small electrolytes is very significant up to glycerol, which suggests permeation through aqueous pores with equivalent radii of 4 Å. An extracellular pathway is responsible for the permeation of the larger solutes. This extracellular pathway shows no restriction in diffusion of molecules up to the size of inulin. Dextran (15,000 to 17,000 mol wt) is significantly restricted. Albumin permeability is <10–8 cm sec–1. These observations can be equated with equivalent, pore radii of 40 Å for the shunt pathway.Increasing osmolarities of the incubation medium cause decreased cell-membrane permeability and increased shunt permeability. 0.5mm phloretin induces a 60% reduction in urea permeability and a 168% increase in antipyrine permeability. No effect on the osmotic water permeability or on the shunt permeability is observed in the presence of phloretin. The apparent activation energy of urea permeation changes from values consistent with diffusion in bulk water, to values consistent with diffusion through hydrocarbon regions. This suggests that the polar route for urea permeation is blocked by phloretin.The contribution of the shunt pathway to osmotic flow induced by sucrose or NaCl gradients is smaller than 16% according to Poiseuille's flow calculations. Tetraethylammoniumchloride and albumin have been shown to be osmotically more effective than sucrose, suggesting a greater shunt contribution to the total water flow.  相似文献   

19.
The continuous threat of increasing CO2 concentration in the atmosphere has altered the carbon balance of our planet causing global climate change. Biological fixation of atmospheric CO2 by unicellular microorganisms such as microalgae is a promising technology pursued extensively by researchers as a means for carbon capture. The study aimed to provide an atomic level of study that will demonstrate the effect of the salinity on the mechanism of CO2 absorption across microalgae lipid bilayer. Molecular dynamics simulations were utilized to calculate the free energies of CO2 molecule as it permeates inside the microalgae cell. In thermodynamics, the transport process of a molecule can be demonstrated through its free energy gradient. Thus, calculating the free energies of CO2 molecule across microalgae lipid bilayer can elucidate the mechanisms of permeation processes. Four microalgae lipid bilayer structures were constructed that contains 128-DPPC (dipalmitoylphosphatidylcholine) lipid bilayer with 3640 water molecules with different NaCl concentrations: 0, 3, 13, and 19 NaCl molecules which correspond to a salinity level of 0, 50, 200, and 300 mM, respectively. The cavity insertion Widom method was used to calculate the free energy of CO2 molecule along the lipid bilayer. The results demonstrated that the salinity does not affect the free energies significantly, thus, it does not hamper CO2 transport across microalgae lipid membrane.  相似文献   

20.
Molecular models of 5 nm sized ZnO/Zn(OH)2 core-shell nanoparticles in ethanolic solution were derived as scale-up models (based on an earlier model created from ion-by-ion aggregation and self-organization) and subjected to mechanistic analyses of surface stabilization by block-copolymers. The latter comprise a poly-methacrylate chain accounting for strong surfactant association to the nanoparticle by hydrogen bonding and salt-bridges. While dangling poly-ethylene oxide chains provide only a limited degree of sterical hindering to nanoparticle agglomeration, the key mechanism of surface stabilization is electrostatic shielding arising from the acrylates and a halo of Na+ counter ions associated to the nanoparticle. Molecular dynamics simulations reveal different solvent shells and distance-dependent mobility of ions and solvent molecules. From this, we provide a molecular rationale of effective particle size, net charge and polarizability of the nanoparticles in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号