首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experimental groups comprising mixed Norwegian sea run and freshwater resident brown trout Salmo trutta were infected with sea lice Lepeophtheirus salmonis in replicate tanks. Comparison of mean abundance and louse development between the sea run and resident groups revealed highly significant differences in lice abundance. The resident trout had an average abundance ± of 6·3±0·37 and 6·6±0·43 lice whilst the sea trout had an average abundance of 3·5 ±0·25 and 3·3 ±0·28 lice 29 days post infection at 9° C. No differences in development of lice, of either sex, were detected between the groups. As host groups were naive to sea lice at the start of the experiment, this suggests that there was a significant difference in susceptibility to sea lice infection between them, which may be genetically determined.  相似文献   

2.
Juvenile and adult anadromous trout Salmo trutta utilize the sea for feeding during the winter in the Skagerrak. This finding conflicts with the traditional view that anadromous trout overwinter in fresh water. Adults, just prior to spawning, were captured at sea in October to December, and spent fish were caught at sea from October to April, showing that the fish may leave the stream and move to sea just after spawning and spend the winter there. During mid‐winter (January to February), the feeding probability (chance of finding a fish with food in its stomach) increased markedly with increasing body length, with no similar effect during early and late winter (October to December and March to April). Among individuals with food in their stomach (72·5%), there was no evidence for variation in feeding intensity [stomach fullness = (mass of stomach content)(fish body mass)−1] among early, mid‐, and late winter.  相似文献   

3.
Physiological impact of sea lice on swimming performance of Atlantic salmon   总被引:6,自引:0,他引:6  
Atlantic salmon Salmo salar were infected with two levels of sea lice Lepeophtheirus salmonis (0·13 ± 0·02 and 0·02 ± 0·00 sea lice g−1). Once sea lice became adults, the ventral aorta of each fish was fitted with a Doppler cuff to measure cardiac output ( ̇ ), heart rate ( f H) and stroke volume ( V S) during swimming. Critical swimming speeds ( U crit) of fish with higher sea lice numbers [2·1 ± 0·1 BL (body lengths) s−1] were significantly lower ( P  < 0·05) than fish with lower numbers (2·4 ± 0·1 BL s−1) and controls (sham infected, 2·6 ± 0·1 BL s−1). After swimming, chloride levels in fish with higher sea lice numbers (184·4 ± 11·3 mmol l−1) increased significantly (54%) from levels at rest and were significantly higher than fish with fewer lice (142·0 ± 3·7 mmol l−1) or control fish (159·5 ± 3·5 mmol l−1). The f H of fish with more lice was 9% slower than the other two groups at U crit. This decrease resulted in ̇ not increasing from resting levels. Sublethal infection by sea lice compromised the overall fitness of Atlantic salmon. The level of sea lice infection used in the present study was lower than has previously been reported to be detrimental to wild Atlantic salmon.  相似文献   

4.
Brown trout (Salmo trutta) display extensive plasticity in marine migratory behaviours, with marine migrations considered to be an adaptive strategy which enables sea trout to maximize growth and reproductive potential. However, marine migrations are not without associated costs, including threats posed by ever-increasing salmon lice (Lepeophtheirus salmonis) infestations. In the present study, we used passive integrated transponder technology to characterize variability in sea trout migration behaviour amongst three catchments situated in a region of intensive salmon farming in central Norway. Specifically, we investigate how lice infestation, out-migration date and body size alter sea trout return rate and marine residence duration during the first out-migration to sea from each catchment. Distinct catchment-specific differences in sea trout out-migration size and the number of cohorts were observed, but larger body size did not guarantee the successful return of migrating trout. The marine residence duration of individuals that successfully returned to freshwater was positively correlated with lice infestation risk, suggesting for these individuals the lethal infestation threshold had not been reached. Our results also suggest that sea trout populations from lotic-dominated catchments are potentially at greater risk from size-related threats to their survival encountered during their marine migrations than sea trout from lentic-dominated catchments. The variability in sea trout migratory behaviour amongst catchments observed here emphasizes the challenges fisheries managers face when deciding the best actions to take to protect the anadromous portion of brown trout populations.  相似文献   

5.
The relationship between aquaculture and infestations of sea lice on wild sea trout (Salmo trutta) populations is controversial. Although some authors have concluded that there is a link between aquaculture and lice burdens on wild fish, others have questioned this interpretation. Lice levels have been shown to be generally higher on Atlantic salmon farms during the second years of two-year production cycles. Here we investigate whether this pattern relates to lice burdens on wild fish across broad temporal and spatial axes. Within Loch Shieldaig across five successive farm cycles from 2000 to 2009, the percentage of sea trout with lice, and those above a critical level, were significantly higher in the second year of a two-year production cycle. These patterns were mirrored in 2002–2003 across the Scottish west coast. The results suggest a link between Atlantic salmon farms and sea lice burdens on sea trout in the west of Scotland.  相似文献   

6.
Lice-infected sea trout populations were monitored using fish traps in the Romsdalsfjord (Norway). The reliability and efficiency of this capture technique, which allows estimation of lice infestation rates without killing the fish, was evaluated through a mark–recapture study. A total of 2447 sea trout smolts were captured, tagged and released over a three-year period. There was a considerable variation in capture rates (range: 0.4–17.7 fish per day) and sea lice numbers (number of lice per fish: 2.8–30.3; number of lice per gram body weight: 0.02–0.69) among localities, sampling times and years. Recapture rates of tagged fish with traps, which were low (2% or 0.11 fish per day), showed that the risk for pseudoreplication was minor, in terms of counting lice on the same fish several times. Most of the tagged sea trout (90%) were recaptured within the first two months after release, and no significant variations in lice numbers were found between tagging and recapture. The lack of differences in lice levels between tagging and recapture during the first week after tagging indicated that the method most likely would not significantly underestimate the lice infestations due to loss of lice during handling. Therefore, our results confirm that the use of fish traps is a suitable method for estimation of lice numbers on wild salmonids.  相似文献   

7.
The effect of two known rates of repeated blood loss on rainbow trout Oncorhynchus mykiss swimming performance was measured and blood‐feeding rates of sea lice Lepeophtheirus salmonis were calculated to predict the point at which blood ingestion causes anaemia in infected fish. Known quantities of blood were sampled from rainbow trout over a 5 day period followed by critical swimming performance ( U crit) testing. A predictive equation was developed using masses of blood‐feeding sea lice and host blood loss calculated for increasing levels of sea lice infection. Blood loss of 8% total blood volume caused a decrease in U crit for rainbow trout. Total blood volume losses of 3·2% reduced erythrocyte stores, but did not affect fish swimming performance. The predictive feeding rate model suggests that 15–25% of the tissue consumed by sea lice is blood. This consumption of blood at higher sub‐lethal infection levels (≥0·5 sea lice g−1) may cause anaemia and a further decrease in swimming performance. Anaemia would compound the osmotic balance problems due to infection and potentially precipitate the morbidity seen at lethal sea lice levels (0·75–1·0 lice g−1).  相似文献   

8.
Atlantic salmon Salmo salar were infected with sea lice Lepeophtheirus salmonis (0·08 ± 0·007 sea lice g−1) over a period of 4 h. Both infected and non‐infected fish were swim tested in sea water (SW) and fresh water (FW). The ventral aorta of each fish was fitted with a Doppler cuff in order to measure cardiac output, stroke volume and heart rate during swim testing. Blood samples were taken at rest and after exercise. Critical swimming speed of infected fish in SW (2·14 ± 0·08 body lengths, bl s−1) was significantly lower ( P  < 0·05) than infected fish switched to FW (2·81 ± 0·08 bl s−1) and non‐infected fish in SW (2·42 ± 0·04 bl s−1) and FW (2·61 ± 0·08 bl s−1). Cardiac and blood results indicated infected fish exposed to FW did experience stress, but relief from osmotic and ionic distress probably reduces energy expenditure, allowing the increase in performance. As the performance of sea lice‐infected fish improved upon transfer to FW, it is likely that heavily infected salmonids do return to FW to restore compromised osmotic and ionic balance, and remove sea lice in the process.  相似文献   

9.
Experiments were conducted to estimate the threshold water temperature rise (Δt) for avoidance by smolts of sea trout Salmo trutta . In three out of four experiments, the median avoidance threshold was found to be c . +6° C (+5·4 to +6·4° C). In the fourth experiment, the fish were able to detect and avoid temperature rises of < +1° C.  相似文献   

10.
A field experiment conducted in the River Lønningdalselven in spring 1992 supports the hypothesis that salmon lice, Lepeophtheirus salmonis, infestations may cause premature return of sea trout, Salmo trutta, juveniles, either to estuaries or to rivers. When lice infested (exposed) and uninfested (control) sea trout juveniles (post smolts) were released simultaneously into the sea, exposed fish returned to the estuarine area earlier compared with controls. Within the following two days, exposed sea trout migrated further into freshwater. At that time they were infested with a median of 62.5 lice, dominated by chalimus larvae and late juveniles. Exposed sea trout suffered from an osmoregulatory failure in sea water and this is considered one reason for infested fish returning to brackish water. While only a few control fish returned to the estuary on the day of release, some more returned to freshwater the following four days. During this time they had become heavily infested with copepodids, and carried a median of 150.0 lice. It is suggested that physiological stress and high infection pressure in the sea results in sea trout juveniles returning to estuaries and freshwater.  相似文献   

11.
The body composition of protein and fat in Atlantic salmon Salmo salar and brown trout Salmo trutta before and after winter was investigated in a temperate, small river, normally ice covered from the middle of November until the end of March. Fat, protein and specific energy declined greatly in winter but were replenished rapidly in spring. Rates of decline were slower for the smallest fish, which also had the lowest specific content of fat, protein, and energy, while the differences in absolute amounts were greatest for the largest fish. The mean specific fat content was reduced by 45–70% during winter, relative to the pre-winter period (September). Mean daily reductions in specific enegy of the larger size groups of brown trout (3·7 × 10−3 kJ g−1 day−1) were almost half of the corresponding values for the largest Atlantic salmon (6·3 × 10−3 kJ g−1 day−1) during winter. A minor reduction in protein content was found during winter, with mean reductions of 6–10% in comparison to those in September. During spring the fat content was replenished rapidly, particularly for the smallest salmon fry (a threefold increase from April to June). Fat content in the larger salmon and trout increased by about 1·8 times. Based on estimated metabolic rates, digested energy during wintertime may contribute about two-thirds of the brown trout fry's energy demand. For Atlantic salmon, the corresponding value is about 50%. The winter period put considerable stress on the young salmonids living in lotic environments, in particular for the smallest fry with the lowest energy content before winter and the largest losses during winter. This should make the fry more vulnerable to adverse abiotic and biotic factors.  相似文献   

12.
The marine feeding pattern of anadromous brown trout (sea trout) Salmo trutta and Arctic charr Salvelinus alpinus was studied during June to August in 1992–1993 and 2000–2004 in a fjord in northern Norway. In general sea trout fed proportionally more on fishes than on crustaceans and insects (81, 1 and 18% by mass, respectively) by comparison with Arctic charr (52, 25 and 22% by mass, respectively). Herring Clupea harengus dominated the total fish diet of both species, but the Arctic charr also fed significantly on gadoids and sandlance Ammodytes spp. While sea trout became virtually all piscivorous at fork lengths ( L F) ≥250 mm, the Arctic charr was ≥400 mm L F before shifting totally to a fish diet. Despite annual variation in diet and forage ratios, there was a clear shift in diet from 1992–1993 to 2000–2004. Sandlance and different crustaceans constituted most of the diet during the initial period with a shift towards gadoids and especially herring during the latter period. This shift seemed to be associated with a high abundance of herring larvae during the latter sampling period, indicating a preferential selection on herring when present, particularly by sea trout. Furthermore, an index indicated dietary overlap in years with intensive feeding on herring of both species, and usually differences in the trophic ecology during years feeding mostly on other prey species. In combination, it was hypothesized that the two species reflect the type of marine prey present within a fjord system over time, and therefore provide an index of variation in the production and biological diversity of their potential prey within fjords.  相似文献   

13.
Atlantic salmon salmo salar smolts of wild, hybrid and farmed parentage were individually tagged then reared in a sea cage for 8 months. The fish were sampled three times during this period. On all occasions, farmed Atlantic salmon displayed the highest abundance and density of sea lice Lepeophtheirus salmonis , whilst no significant differences were observed between hybrid and wild Atlantic salmon. Percentage variation between the lowest and highest infected groups was as high as 175 and 144% for L. salmonis abundance and density respectively (sample 2). The temporal stability of interindividual sea lice infection levels was investigated pair‐wise between samples using correlation (sample 1 v . 2, 1 v . 3 and 2 v . 3). When calculated using sea louse abundance, correlations ranged from r 2 = 0·11, P  < 0·01 to r 2 = 0·39, P  < 0·001, but, when the effects of fish size were controlled for by converting abundance to density, all correlations were <  r 2 = 0·1. Therefore, these data indicate that a fish's relative infection level in one sample was a weak predictor of its relative infection level in another sample. This suggests that identification of individual Atlantic salmon that display reduced susceptibility to sea lice, may be problematic.  相似文献   

14.
Salmon lice Lepeophtheirus salmonis Kr?yer have caused disease problems in farmed Atlantic salmon Salmo salar L. since the mid-1970s in Norway. High infection intensities and premature return of wild sea trout Salmo trutta L. were first reported in 1992. Later emaciated wild Atlantic salmon smolts carrying large amounts of lice have been observed both in fjords and offshore. The Norwegian Animal Health Authority regulations to control the problem, which came into operation in 1998, included compulsory louse level monitoring in farms and maximum legal numbers of lice per fish. Here, we present a model of salmon louse egg production in Norway and show that the effect of the current public management strategy is critically dependent on the yearly increase in salmon production. This is because the infection pressure is the product of the number of fish in the system, and the number of lice per fish. Due to the much larger number of farmed than wild salmonids, it is highly likely that lice originating from farmed salmon infect wild stock. Estimated tolerance limits for wild salmonids vary widely, and the level of louse egg production in farms which would be needed to decimate wild populations is not known. Two possible thresholds for total lice egg production are investigated: (1) 1986 to 1987 level (i.e. before adverse effects on sea trout were recorded), and (2) a level corresponding to a doubling of the estimated natural infection pressure. The farm lice per fish limits that would have to be observed to keep louse production within the 2 thresholds are calculated for the period 1986 to 2005. A steady decrease in the permitted number of lice per fish may keep the total louse production stable, but the number of salmon required for verification of lice numbers will increase as the prevalence to be verified is decreased. At threshold (2), the model estimated that lice limits should have been 0.05 louse per fish in 1999. This would require 60 fish from each pen to be collected, anaesthetised and examined for a good estimate at a confidence level of 95%. Such sample numbers are likely to be opposed by farmers. The use of national delousing programs to solve the problem is discussed.  相似文献   

15.
Sea lice infestations have become a major health problem for farmed salmonids throughout the world including Chile. In southern Chile, 6 geographical areas, divided into 22 geographical zones with a total of 127 salmon farming centers and 1519 sea pens, were regularly sampled from December 1999 to April 2002. A linear mixed-effects model (LME) approach was used to describe the infestations of adult forms of sea lice on 3 salmonid species farmed in southern Chile. The variables fish species, water temperature, water salinity, fish weight, juvenile parasite count, pen shape, treatment status in previous month and the interaction of previous and current month treatments were found to be statistically significant fixed effects for the population sampled. The most susceptible species to sea lice infestation was rainbow trout Oncorhynchus mykiss, while the least susceptible species was coho salmon O. kisutch. Fishes in pens treated in the previous month with avermectins were associated with the smallest sea lice count compared to fishes in pens not treated or treated with other products. The variability in sea lice infestations in areas and zones within areas was not statistically significant when controlling for the previously mentioned fixed variables. The variability between centers, the within-pen variability, and the interaction between within-pen effect and the date of measurement were statistically significant and not explained by the fixed effects. Potential sources for this variability are discussed. We conclude that the epidemiology of sea lice infestations in farmed salmonids in southern Chile is complex and in need of further study.  相似文献   

16.
Adult and mobile preadult sea lice Lepophtheirus salmonis were incubated with mucus samples from rainbow trout (Oncorhynchus mykiss), coho salmon (O. kisutch), Atlantic salmon (Salmo salar), and winter flounder (Pseudopleuronectes americanus) to determine the response of L. salmonis to fish skin mucus as assessed by the release of proteases and alkaline phosphatase. There was variation in the release of respective enzymes by sea lice in response to different fish. As well, sealice collected from British Columbia responded differently than New Brunswick sea lice to coho salmon mucus. Fish mucus and seawater samples were also analyzed using protease gel zymography to observe changes in the presence of low molecular weight (LMW) proteases after L. salmonis incubation. Significantly higher proportions of sea lice secreted multiple bands of L. salmonis-derived LMW proteases after incubation with rainbow trout or Atlantic salmon mucus in comparison with seawater, coho salmon, or winter flounder mucus. Susceptibility to L. salmonis infections may be related to the stimulation of LMW proteases from L. salmonis by fish mucus. The resistance of coho salmon to L. salmonis infection may be due to agents in their mucus that block the secretion of these LMW proteases or factors may exist in the mucus of susceptible species that stimulate their release.  相似文献   

17.
Sea lice are a major problem in Norwegian fish farms; however, data on drug treatment patterns or treatment rates of sea lice infestations are not available. Such data are important for analysing resistance patterns against drugs used for such infestations. The main objective of the present study was to develop a method to estimate the treatment patterns and treatment rates for drugs used in the treatment against sea lice (Lepeophtheirus salmonis and Caligus elongatus) in farm salmonids by means of national sales statistics. Annual sales figures, as weight of active substances, were obtained from the drug wholesalers and the feed mills. The weight of active drug substances is not useful as a unit of measurement of drug use in an epidemiological context because it does not correct for dosage differences and number of repeat treatments. To correct for these factors, we introduced approved daily dose (ADD(farm fish)) and treatment course-doses(farm fish) kg(-1) live-weight fish. To express the drug treatment patterns, the biomass (in weight) of farm salmonids treated with 1 course of a drug were estimated. When measured as kg active substance, the quantities of drugs for the treatment of sea lice infestations declined by 98% during the study period (1989 to 2002) but this figure increased 5-fold when it was corrected for differences in dosage. To correct for amounts of farm salmonids liable to require treatment we estimated the annual treatment rate, defined as the number of treatments for sea lice infestations per biomass slaughtered Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss. The annual treatment rate increased gradually during the study period; however, it varied considerably (range 0.45 to 1.34, mean 0.90). Before 1995, organophosphates were the most frequently used drugs against sea lice; since then pyrethroids have become the dominating drug group.  相似文献   

18.
Synopsis The sea trout,Salmo trutta, from the Vardnes River generally stays in freshwater during winter. The results from 11 years of tagging experiments showed that the mean annual duration of the feeding migration in the sea was 68 ± 21 days (yearly means ranging between 54 and 88 days). A pronounced variation was found with size, sex and time of migration of the fish and between the different years. The males stayed for a shorter time in the sea (mean 66 days) than the females (mean 69 days) and they usually descended later and ascended earlier. Those fish that descended first stayed for the longest period in the sea. The mean annual duration of stay in the sea for first and second time migrants to the sea was positively correlated with the mean sea temperature in May (r2 > 0.5). A positive correlation was also found between the annual duration of stay in the sea for the sea trout above 33 cm and the mean temperature in the river in July (r2 > 0. 6). Prolonged mean yearly sea sojourn was generally correlated with higher sea temperatures. Water temperature-salinity effects are discussed.  相似文献   

19.
Hatchery‐reared Atlantic salmon Salmo salar ( n  = 25) and wild anadromous brown trout (sea trout) Salmo trutta ( n  = 15) smolts were tagged with coded acoustic transmitters and released at the mouth of the River Eira on the west coast of Norway. Data logging receivers recorded the fish during their outward migration at 9, 32, 48 and 77 km from the release site. Seventeen Atlantic salmon (68%) and eight sea trout (53%) were recorded after release. Mean migratory speeds between different receiver sites ranged from 0·49 to 1·82 body lengths (total length) per second (bl s−1) for Atlantic salmon and 0·11–2·60 bl s−1 for sea trout. Atlantic salmon were recorded 9, 48 and 77 km from the river mouth on average 28, 65 and 83 h after release, respectively. Sea trout were recorded 9 km from the release site 438 h after release. Only four (23%) sea trout were detected in the outer part of the fjord system, while the rest of the fish seemed to stay in the inner fjord system. The Atlantic salmon stayed for a longer time in the inner part than in the outer parts of the fjord system, but distinct from sea trout, migrated through the whole fjord system into the ocean.  相似文献   

20.
There was no di.erence in survival or growth rate over 63 days for young-of-the-year sea trout Salmo trutta in fresh and brackish Baltic Sea water (6·7 psu). Hence, such sea trout parr that migrate from the freshwater habitat in which they hatch to the Baltic coastal zone, without smolting, should experience little or no physiological cost in survival and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号