首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report provides information on the morphology of rat intestinal epithelial cells during fat absorption. In addition, the role of protein metabolism in this process has been evaluated by blocking its synthesis with puromycin and studying the fine structure of mucosal cells from rats at various times after fat intubation. The results indicate that SER-derived vesicles, containing fat droplets, migrate from the apical cytoplasm of the absorptive cell and fuse with saccules or vacuoles of the Golgi complex. Arguments are made that the Golgi complex is important in completing chylomicron formation and in providing appropriate enveloping membranes for the chylomicron. Such membranes may be necessary for Golgi vacuoles to fuse with the lateral cell membranes and release chylomicra. Puromycin treatment causes the absorptive cell to accumulate increased quantities of lipid that are devoid of membrane during fat absorption. In addition, puromycin-treated cells contain much less RER and Golgi membranes are strikingly decreased in number. In this paper we discuss the consequences of these abnormalities and suggest that continued protein synthesis by the RER is required in order to generate Golgi membranes. If such membranes are absent the cell's ability to discarge chylomicra is impaired and lipid accumulates.  相似文献   

2.
Embryos of the viviparous poeciliid fish, Heterandria formosa, develop to term in the ovarian follicle where they undergo a 3,900% increase in embryonic dry weight. Maternal-embryonic nutrient transfer occurs across a follicular placenta that is formed by close apposition of the embryonic surface (i.e., the entire body surface during early gestation and the pericardial amnionserosa during mid-late gestation) to the follicular epithelium. To complement our recent study of the embryonic component of the follicular placenta, we now describe the development and fine structure of the maternal component of the follicular placenta. Transmission electron microscopy reveals that the ultrastructure of the egg envelope and the follicular epithelium that invests vitellogenic oocytes is typical of that described for teleosts. The egg envelope is a dense matrix, penetrated by microvilli of the oocyte. The follicular epithelium consists of a single layer of cuboidal cells that lack apical microvilli, basal surface specializations, and junctional complexes. Follicle cells investing the youngest embryonic stage examined (Tavolga's and Rugh's stage 5–7 for Xiphophorus maculatus) also lack apical microvilli and basal specializations, but possess junctional complexes. In contrast, follicle cells that invest embryos at stage 10 and later display ultrastructural features characteristic of transporting epithelial cells. Apical microvilli and surface invaginations are present. The basal surface is extensively folded. Apical and basal coated pits are present. The cytoplasm contains a rough endoplasmic reticulum, Golgi complexes, and dense staining vesicles that appear to be lysosomes. The presence of numerous apically located electron-lucent vesicles that appear to be derived from the apical surface further suggests that these follicle cells may absorb and process follicular fluid. The egg envelope, which remains intact throughout gestation and lacks perforations, becomes progressively thinner and less dense as gestation proceeds. We postulate that these ultrastructural features, which are not present in the follicles of the lecithotrophic poeciliid, Poecilia reticulata, are specializations for maternal-embryonic nutrient transfer and that the egg envelope, follicular epithelium, and underlying capillary network form the maternal component of the follicular placenta. © 1994 Wiley-Liss, Inc.  相似文献   

3.
The several cell types in mouse and rat rectosigmoid colon have been examined with light and electron microscopic methods for localizing and characterizing complex carbohydrates. Mucous cells, also termed vacuolated cells, and goblet cells comprised most of the deep crypt epithelium in both species, and absorptive columnar cells and goblet cells mainly populated the more superficial epithelium of the upper crypts and main lumen. Occasional tuft cells and enteroendocrine cells were also encountered. Transitional cells structurally intermediate between mucous cells and absorptive cells contained granules characteristic of mucous cells and vesicles like those of columnar absorptive cells. These intermediate cells supported the concept of replacement of mucous by absorptive cells through transformation of mucous into absorptive cells. The intermediate cells also contained numerous lysosomes often in apparent fusion with mucous granules, indicating crinophagic disposal of mucous granules as a mechanism in the cell transformation. Glycoconjugate in absorptive cell vesicles resembled that coating the apical plasmalemma and appeared to represent the source of the glycocalyx of the brush border. Complex carbohydrate in these vesicles differed cytochemically from that of the mucous cell granules, which release their content into the crypt lumen. The absorptive cell vesicles, therefore, constitute an organelle distinct from the mucous cell granules rather than an atrophic form of the latter in a more mature cell. Goblet cells differed in failing to transform morphologically with age but changed in the cytochemical characteristic of their secretion during migration up the crypts. Terminal N-acetylglucosamine residues diminished, while terminal sialic acid-galactose dimers increased during the upward migration, indicating activation of glycosyl transferase synthesis in relation to goblet cell maturation. Glycoconjugate in secretion of mucous cell granules differed markedly from that in goblet cell granules, and content of both organelles differed from that of absorptive cell vesicles. However, secretion in mucous cell granules appeared generally similar for mice and rats with minor exceptions, and secretion in goblets of mice generally resembled that in goblets of rats. Cells interpreted tentatively as Kulchitsky cells stained for high content of fucose with the Ulex europeus I lectin. Globoid leukocytes infiltrating the epithelium of the rat but not the mouse rectosigmoid colon resembled globoid leukocytes in rat tracheal epithelium and, like the latter, appeared to derive from mast cells.  相似文献   

4.
Summary A method is described for the three-dimensional (3-D) in vitro culture of nontransformed gastrointestinal epithelial cells from the human duodenal mucosa. Biopsies obtained from human duodenum were finely minced. The tissue fragments were suspended in culture medium supplemented with 5% fetal calf serum and the appropriate antibiotics. The suspended mucosal fragments generated spheroid-like multicellular vesicles consisting of highly prismatic absorptive and goblet cells retaining most of the histological features of the tissue in vivo. We performed immunocytochemical studies to determine the origin of the vesicles using monoclonal antibodies against EP4. The histochemistry of the vesicles showed alkaline phosphatase activity. Ultrastructural studies revealed that these cells exhibit characteristics of normal duodenal cells in vivo: apical microvilli, glycocalyx, tight junctions and desmosomes, lateral membrane interdigitations, mucous droplets, and a well-developed Golgi apparatus. An overgrowth of the vesicles by fibroblasts was not seen during cultivation. In contrast with the two-dimensional cell cultures grown on artificial supports, the vesicle cells show organization similar to that of natural epithelia. The polarization and cytoarchitecture of normal gastrointestinal epithelial cells cultured as 3-D vesicles are comparable to those known for the native tissue. This study was undertaken to provide a morphological baseline for subsequent infection experiments.  相似文献   

5.
We studied the morphological characteristics and seasonal changes of the bulbourethral gland of Eidolon helvum in a typical African tropical environment. Forty-eight bulbourethral glands were examined using gross anatomical, histological, histochemical, and ultrastructural techniques during the early rainy, late rainy, and peak dry seasons. The pear-shaped bilateral bulbourethral glands were located extra-abdominally in the inguinal region. Trabeculae from the capsule divided the parenchyma into numerous lobules of tubuloalveolar glandular acini. The mucosa was covered by a simple columnar epithelium consisting up of principal secretory cells, columnar dense cells and basal cells, which were progressively pronounced during the dry season. The principal cells contained eosinophilic granules, which were PAS positive while the dense cells did not show affinity for the stains. The mean gross weights, acini diameters, and epithelial heights were greater during the rainy season than the dry season. Ultrastructural evaluation showed that the cytoplasm of the principal cells contained well-developed Golgi complexes, rough endoplasmic reticulum, mitochondria, and secretory vesicles of varying electron densities and sizes. The secretory vesicles were numerous during the early rainy season, decreased during the late rainy season and were scanty during the peak dry season. The simple columnar epithelium observed during the rainy season was replaced by an undefined stratified epithelium during the dry season, and this was associated with cellular degenerations and regenerations. In conclusion, E. helvum has a typical mammalian bulbourethral gland, with a unique cell type, the dense cell whose functions are not well-understood. The gland exhibits cyclical seasonal variation in structure and secretory activity; being active during the early rainy season (breeding season), and showing the lowest activity during the dry season (non-breeding season). Glandular epithelial cell renewal occurs during the dry season in preparation for the next breeding season.  相似文献   

6.
The structure of the epithelial cells of the alimentary tract of Fasciola hepatica was investigated by means of light and electron microscopy. Tissue prepared for electron microscopy was fixed in 1 per cent osmium tetroxide, buffered with veronal to a pH of 7.4, and embedded in butyl methacrylate with 1 per cent benzoyl peroxide as a catalyst. Polymerisation was carried out at 60°C. The majority, if not all, the epithelial cells pass through both absorptive and secretory cycles. The free ends of absorptive cells possess fine protoplasmic processes that project into the lumen of the gut. These are apparently concerned with the absorption of nutriment. In electron micrographs, the protoplasmic (absorptive) processes are frequently seen to be in the form of tubular loops both ends of which arise from the same cell. The free end of a process is often expanded into a ribbon-like structure. Each process possesses an external limiting membrane and an internal membranous ultrastructure. When a cell becomes glandular in function, the protoplasmic processes seem to become less numerous. The plasma membrane is invaginated into the basal part of an absorptive cell. In the neighbourhood of the lumen of the gut where two tall cells are in contact, bands of amorphous cytoplasmic material are in contact with each cell membrane.  相似文献   

7.
Abstract Oikopleura dioica has two large subchordal cells which were studied in vivo and with light and electron microscopy. They have fixed positions within the haemocoel of the tail but change their morphology continually by protruding and withdrawing processes in an amoeboid manner. Also the fine structure varies considerably from one animal to the next. The cell surface sometimes indicates a strong pinocytotic activity with many coated pits and vesicles. In other cases there are many small vesicles which are interpreted as exocytotic. They are found both in the cytoplasm close to the plasma membrane and in the haemocoelic fluid. Subchordal cells with no pronounced surface activity have a large amount of rough endoplasmic reticulum, which suggests that they synthesize proteins. The presence of subchordal cells in the tail is correlated with the presence of the ontogenetically related bioluminescent oral gland cells in the pharynx; either both types exist simultaneously or both are lacking. It is speculated that the two cell types are also functionally co-ordinated. Oikopleura albicans has a multitude of tiny subchordal cells which have essentially the same fine structure as the two large Oikopleura dioica cells.  相似文献   

8.
The fine structure of dividing cambial cells of Ulmus americana and Tilia americana has been studied in material fixed in glutaraldehyde followed by osmium tetroxide. The cambia examined consisted of 7–9 rows of unexpanded fusiform cells, all of which had similar ultrastructural components. The fine structure and sequence of events of mitosis and cytokinesis in the dividing cambial cells apparently are similar to those of dividing cells in root tips and leaves. Of special interest was the observation that during cytokinesis, a broad cytoplasmic plate or phragmosome precedes the developing phragmoplast and cell plate through the dividing cambial cell. Smooth and coated vesicles derived from dictyosomes are associated with cell plate formation in these cells, smooth vesicles primarily with earlier stages of plate formation, and coated vesicles in later stages.  相似文献   

9.
The fine structure of the epithelium lining the extratesticular rete testis, ductuli efferentes and ductus epididymidis of the rabbit has been investigated. In the ductuli efferentes the epithelium is composed of two cell types, principal cells and ciliated cells. The latter type is distinguished from principal cells by the presence of cilia projecting into the lumen and the position of the nucleus in the apical half of the cell. Principal cells in this segment are characterized by micropinocytotic vesicles on the surface plasma membrane and a variety of small dense bodies scattered throughout the cytoplasm. In the ductus epididymidis basal cells replace ciliated cells as the second cell type, but differences between various segments of the epididymis are related to the fine structure of the principal cells. In the proximal caput epididymidis (Nicander's region 1) the principal cells are tall with long microvilli. They typically contain a small Golgi apparatus and a cluster of dense bodies adjacent to the nucleus. In the distal caput epididymidis (Nicander's regions 2-5) the apical cytoplasm of principal cells is filled with numerous micropinocytotic vesicles and large multivesicular bodies; these features are interpreted as signs of absorptive activity. The multivesicular bodies are absent from the cytoplasm of principal cells in the corpus epididymidis (Nicander's region 6) and, instead, numerous elements of smooth endoplasmic reticulum, a large Golgi apparatus, lipid droplets and dense bodies characterize principal cells in this segment. Towards the proximal cauda epididymidis (Nicander's region 7), the number of dense bodies (lysosomes) in the cytoplasm increases considerably. In the globose cauda (Nicander's region 8), the principal cells are reduced in height, and in addition to the features described in region 7, are characterized by a concentric array of rough endoplasmic reticulum in the basal cytoplasm. These observations are discussed in relation to the role of the epididymis in promoting the maturation and survival of spermatozoa.  相似文献   

10.
Synthesis of protein by the major ampullate silk glands in the barn spider, Araneus cavaticus was stimulated by depleting the storage of silk protein in the ampulla by mechanically pulling fiber from the spigot. After this treatment, fine structural changes of the glandular epithelium during silk production were examined using light and transmission electron microscopes. In the process of rapid production, major secretory silk was synthesized at the tail region via rER of glandular epithelial cells, and was transported into the ampulla region. The mature secretory product in glandular epithelium appears almost spherical vacuoles which were grown up by fusion with the surrounding small vesicles including the secretory silk. Unlike to a typical process of the secretion, the ampullate silk of tail region seems to bypass either concentrating or packaging steps by the Golgi apparatus. However there's no doubt that the Golgi apparatus also play an important role in the secretory process of the ampulla region. After mechanical pulling stimulation, both epithelia of ampulla and tail regions appeared as a thinner layer of columnar cells with less definitive cell membrane. There are few secretory droplets within these cells, thus causing this region to stain much lighter. It is obvious that the cell loses part of its cytoplasm in this process, and disorganization of the secretory product occurs when it is extruded from the cells by a apocrine release.  相似文献   

11.
Summary Membrane-bounded spherical vesicles found in rat Sertoli cells have been examined quantitatively during the cycle of the seminiferous epithelium. Most of the vesicles were localized to the basal and columnar portions of the Sertoli cell cytoplasm. The thin lateral projections of the Sertoli cells contained very few vesicles. Morphometric analysis of the basal portion of the Sertoli cell cytoplasm revealed that the volume density (V v ) of the vesicles changed markedly during the cycle. The V v was at its minimum (0.036) at stage VII and maximum (0.117) at stages XI-I. The vesicles were also smaller at stage VII compared to the vesicles at stages IX-V. The stage-dependent difference in the size of the vesicles was found both in the basal and the columnar portions of the Sertoli cells. At stage VII some of the vesicles appeared to be elongated much like the tubular elements of the smooth endoplasmic reticulum (SER) from which they are probably derived. The stage-dependent differences in volume density and size of the Sertoli cell vesicles may be related to cyclic biochemical variations in the Sertoli cells, and are further indications of a variation in Sertoli cell function during the cycle of the seminiferous epithelium. Whether or not this is due to an internal cycle of the Sertoli cell or to influences from adjacent germ cells remains to be determined.  相似文献   

12.
The present investigations describe the fine structure of the excretory complex, rectal cells and the anal vesicle of the microfilaria of Breinlia sergenti. The structure of the excretory cell and rectal cells is found to be similar to nerve cells. Axonal (digitiform) processes in the excretory and anal vesicles are described and a possible sensory function is ascribed to these structures.  相似文献   

13.
Scanning and transmission electron microscopy were used to examine the morphology of the perianal processes (trophotaeniae) of goodeid embryos (Girardinichthys viviparus) at two stages of gestation. The epithelial surface of trophotaeniae is composed of two cell types, one of which shows distinct features associated with absorptive activity. Such cells are characterized by microvilli, abundant mitochondria, and an agranular tubulolamellar network. Micropinocytosis at the apical surface is relatively rare. The brush border membranes contain high levels of alkaline phosphatase. The cells of the second type are the minor component of the trophotaenial epithelium. Their surface is distinct, due to the presence of microridges rather than microvilli. The reticulate arrangement of the cells gives rise to intercellular spaces which occasionally are very large. These interstices are populated with leukocytes. The histological appearance of these sections indicates that this tissue is involved in gas exchange. Embryos at very early stages of development possess similar epithelia which are differentiated to a lesser extent. The connective tissue in some parts of the processes shows structural modifications. It is densely packed with numerous leukocytes occupying the spaces between the cytyoplasmic ramifications of the stroma cells. Possible roles of the trophotaeniae in absorption, respiration, excretion, and the acquisition of immunity are discussed, and it is concluded that the perianal processes of the Goodeidae are more than just trophic embryonic structures.  相似文献   

14.
We have studied the ultrastructure of Sertoli-cell processes that extend into developing germ cells of the ground squirrel (Spermophilus lateralis). In other mammals it is speculated that these processes anchor germ cells to the seminiferous epithelium and transfer materials between Sertoli and germ cells. In the ground squirrel, Sertoli-cell projections first appear in round spermatids and consist of regions containing numerous mitochondria and intermediate filaments together with areas composed mainly of a fine filamentous matrix. Also present are what may be desmosomelike junctions with adjacent germ cells. During spermatogenesis, numerous changes in the penetrating processes and their internal composition occur. Especially significant are those occurring during the movement of residual cytoplasm basally over spermatid heads: some Sertoli-cell processes contain microtubules, mitochondria, and vesicular elements, but also present are regions that lack organelles and appear simply as thin lamellae of cytoplasm that line cavernous invaginations of the germ cell. Coated vesicles and pits are present in processes and adjacent germ-cell regions at all stages of spermatogenesis. Our observations are consistent with the suggestions that Sertoli-cell processes have an attachment function and that they also may facilitate the movement of residual cytoplasm into the epithelium. Further, they indicate that these structures might be involved with receptor-mediated edocytosis.  相似文献   

15.
Histological studies were performed on the ovary of the ovoviviparous cockroach Nauphoeta cinerea during the first reproductive cycle by means of optical microscopy and histoautoradiography, and electron microscopy. The oöcyte chamber is composed of follicle cells, the oöcyte and a layer of symbiotic bacteria at the level of the microvillous border of the oöcyte. The first reproductive cycle begins with a short inactive period preceding the appearance of vitellogenin. During this period, the follicular epithelium achieves its development by a mitotic flare. From the 3rd day on, vitellogenin is synthesized by the fat body and large intercellular spaces appear between the follicular cells, in conjunction with a rapid growth of the oöcyte, which takes up selectively the vitellogenin by means of pinocytotic vesicles. These coalesce to give the yolk globules. Along with these phenomena, the proteosynthetic apparatus and its activity in the follicular cells increase slowly. After about the 12th day, the intercellular spaces disappear and the follicular epithelium which has now a very well developed proteosynthetic apparatus, begins to synthesize and lay down the egg membranes. After ovulation, the empty oöcyte chamber collapses and the follicular epithelium shows rapid degeneration processes (large cytolysosomes) that destroy the chamber completely during the gestation period. At the beginning of the 2nd cycle, there only remain a cell or two of the previous follicular epithelium and a very large annular piece of basement membrane.  相似文献   

16.
Summary Fluorescence histochemistry reveals that in the frog's taste organ a yellow fluorescence is regularly observed at the most basal region of the sensory epithelium. The fluorescence has a strong intensity, but it fades rapidly upon the UV-irradiation. The peak of the emission spectrum is at 520 m. Following reserpine treatment the yellow fluorescence is markedly reduced, but not depleted completely. From these characteristics the monoamine fluorescence is regarded as representing 5-HT (serotonin).The ultrastructural study on sensory epithelia shows that the terminal portions of gustatory cell processes are localized at the basal region. These portions are filled with dense cored vesicles (700–1000 Å in diameter) and frequently opposed with nerve fibers penetrating into the epithelium. The gustatory cell processes are also interposed between the terminal portions or nerve fibers. The cytoplasm of the gustatory cell process is characterized by many mitochondria, fine filaments and glycogen particles, but contains few cored vesicles. The distribution of terminal portions of gustatory cell processes seems to correspond fairly well to that of the monoamine fluorescence observed discontinuously along the basal lamina. Accordingly it is concluded that the fluorigenic monoamine is localized in the cored vesicles of the gustatory cell.These results were reported in a preliminary form to the October, 1974 meeting of the Japan Society of Histochemistry and Cytochemistry.The authors gratefully acknowledge the support and helpful advice of Prof. Dr. T. Kanaseki.  相似文献   

17.
The fine structure of the lateral line organ of the Japanese sea eel Lyncozymba nystromi has been studied with the electron microscope. The sensory epithelium of the lateral line organ consists of a cluster of two major types of cells, the sensory hair cells and the supporting cells. The sensory cell is a slender element with a flat upper surface provided with sensory hairs, Two different types of synapses are distinguished on the basal surface of the receptor cell. The first type is an ending without vesicles and the second type is an ending with many vesicles. These are presumed to correspond to the afferent and the efferent innervations of the lateral line organ. The fine structure of the supporting cells and the morphological relationship between the supporting cells and the receptor cells were observed. The possible functions of the supporting cells are as follows: (a) mechanical and metabolic support for the receptor cell; (b) isolation of the individual receptor cell; (c) mucous secretion and probably cupula formation; (d) glial function for the intraepithelial nerve fibers. Both myelinated and unmyelinated fibers were found in the lateral line nerve. The mode of penetration of these fibers into the epithelium was observed.  相似文献   

18.
We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to describe the complete ontogeny of simple placentation and the development of both the yolk sac placentae and chorioallantoic placentae from nonreproductive through postparturition phases in the maternal uterine epithelium of the Australian skink, Eulamprus tympanum. We chose E. tympanum, a species with a simple, noninvasive placenta, and which we know, has little net nutrient uptake during gestation to develop hypotheses about placental function and to identify any difference between the oviparous and viviparous conditions. Placental differentiation into the chorioallantoic placenta and yolk sac placenta occurs from embryonic Stage 29; both placentae are simple structures without specialized features for materno/fetal connection. The uterine epithelial cells are not squamous as previously described by Claire Weekes, but are columnar, becoming increasingly attenuated because of the pressure of the impinging underlying capillaries as gestation progresses. When the females are nonreproductive, the luminal uterine surface is flat and the microvillous cells that contain electron-dense vesicles partly obscure the ciliated cells. As vitellogenesis progresses, the microvillous cells are less hypertrophied than in nonreproductive females. After ovulation and fertilization, there is no regional differentiation of the uterine epithelium around the circumference of the egg. The first differentiation, associated with the chorioallantoic placentae and yolk sac placentae, occurs at embryonic Stage 29 and continues through to Stage 39. As gestation proceeds, the uterine chorioallantoic placenta forms ridges, the microvillous cells become less hypertrophied, ciliated cells are less abundant, the underlying blood vessels increase in size, and the gland openings at the uterine surface are more apparent. In contrast, the yolk sac placenta has no particular folding with cells having a random orientation and where the microvillous cells remain hypertrophied throughout gestation. However, the ciliated cells become less abundant as gestation proceeds, as also seen in the chorioallantoic placenta. Secretory vesicles are visible in the uterine lumen. All placental differentiation and cell detail is lost at Stage 40, and the uterine structure has returned to the nonreproductive condition within 2 weeks. Circulating progesterone concentrations begin to rise during late vitellogenesis, peak at embryonic Stages 28-30, and decline after Stage 35 in the later stages of gestation. The coincidence between the time of oviposition and placental differentiation demonstrates a similarity during gestation in the uterus between oviparous and simple placental viviparous squamates.  相似文献   

19.
Summary Vacuolated and zymogenic cells, which are two of five cell types identified by electron microscopy in gastric epithelium of B. schlosseri, are described in detail. The vacuolated cells are characterized by one, or a few, supranuclear vacuoles containing myelin figures. A peculiar Golgi apparatus is consistently found at the base of the vacuoles; it consists of cisternae frequently containing small vesicles and tubules of constant diameter and/or a strong electron-opaque material. A variety of vesicles and multivesicular bodies are visible in the apical cytoplasm below long ribbon-like microvilli. The se findings suggest that the vacuolated cells are involved in absorptive and perhaps secretory activity. The zymogenic cells are characterized by a highly developed RER, numerous apical secretory granules and a well developed supranuclear Golgi apparatus. At the apical end, autophagosomes are frequently encountered, some of which contain also zymogen granules. Both cell types contain numerous lipid droplets, which are interpreted as an energy reserve available for the cells and for the entire colony during the change of generation. Correlation between structure and function in both cell types is discussed by taking into account the peculiar life cycle of B. schlosseri, as well as previously reported data on similar cells in other ascidians.We would like to dedicate this work to Prof. Giuseppe Reverberi on the occasion of his 70th birthday.The authors are indebted to Profs. A. Sabbadin and G. Mazzocchi for their most helpful suggestions and advice. We would also like to thank Mr. G. Tognon for technical assistance and the staff of the Stazione Idrobiologica di Chioggia for their assistance in collecting material. — This research was supported by a grant of C.N.R., contract from the Istituto di Biologia del Mare, Venezia, No. 7100396/04115542 and with the E.M. facilities of C. N. R. contract No. 70.01798.04.115.876.  相似文献   

20.
The distribution of two basement membrane (BM) components, laminin (LN) and type IV collagen (COLL IV), during acino-tubular morphogenesis of rat submandibular gland was examined immunohistochemically to determine the role of BM in the development of acino-tubular structures. On day 14 of gestation, LN could be found only in the BM separating an undifferentiated cell cluster of gland epithelium from surrounding mesenchyme. However, during a short period through days 15 to 17, LN was detected not only in the BM but also in intracellular vesicles of the cells of the terminal cluster. Immunoelectron microscopy showed the intracellular immunoreactive sites to be rough endoplasmic reticulum, indicating that active LN synthesis occurs in the cells of the terminal cluster. Intracellular immunostaining of LN disappeared completely on day 19 with the development of simple epithelium from the cell cluster, even though BM remained reactive. COLL IV also was accumulated in the intracellular vesicles of terminal cluster cells on day 16 of gestation but not on day 19. These results indicate that synthesis of certain BM components is transiently stimulated in gland epithelium before the formation of simple epithelial structure, and that these components are significantly involved in morphogenesis of the submandibular gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号